Appendix B: SAR System Check Plots Date: 2022/10/17 Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd ### System Performance Check-2450MHz #### **DUT: D2450V2-988** Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.871$ S/m; $\epsilon_r = 39.502$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### **DASY5** Configuration: - Probe: EX3DV4 SN3820; ConvF(7.24, 7.24, 7.24) @ 2450 MHz; Calibrated: 2022/7/27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn528; Calibrated: 2022/5/19 - Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **System Check/2450MHz/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.8 W/kg System Check/2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.7 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 48% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg ## **Appendix C: Highest SAR Test Plots** Date: 2022/10/17 Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd #### Bluetooth_Rear_ch78 Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2480 MHz; $\sigma = 1.904$ S/m; $\epsilon_r = 39.348$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(7.24, 7.24, 7.24) @ 2480 MHz; Calibrated: 2022/7/27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn528; Calibrated: 2022/5/19 - Phantom: ELI v5.0 1213; Type: QDOVA001BB; Serial: 1213 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Bluetooth_ch78/Area Scan (91x111x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.150 W/kg Bluetooth_ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.986 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.183 W/kg SAR(1 g) = 0.092 W/kg; SAR(10 g) = 0.042 W/kg Smallest distance from peaks to all points 3 dB below = 10.6 mm Ratio of SAR at M2 to SAR at M1 = 51.8% Maximum value of SAR (measured) = 0.144 W/kg 0 dB = 0.144 W/kg = -8.42 dBW/kg | t No.: 4790592589-US-S0-V0 | Issue Date: 11/7/20 | |--------------------------------|-----------------------------| | Appendix D: SAR Probe and Dipo | le Calibration Certificates | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Page 6 of 6 In Collaboration with ### e CAUBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client UL **Certificate No:** Z20-60445 ### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 988 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: November 10, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | | | | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | Calibrated by: Name **Function** Signature Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: November 19, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60445 Page 1 of 6 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 6 Certificate No: Z20-60445 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.2 ± 6 % | 1.78 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 10000 | | #### SAR result with Head TSL | Troduct With Frodd 192 | | | | | | |------------------------------------------------|--------------------|-----------------------------------|--|--|--| | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | | | | SAR measured | 250 mW input power | 13.0 W/kg | | | | | SAR for nominal Head TSL parameters | normalized to 1W | 52.2 W/kg ± 18.8 % (<i>k</i> =2) | | | | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | | | | SAR measured | 250 mW input power | 5.96 W/kg | | | | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 18.7 % (<i>k</i> =2) | | | | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4Ω+ 3.51jΩ | |--------------------------------------|---------------| | Return Loss | - 25.4dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.022 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z20-60445 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 988 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.784$ S/m; $\varepsilon_r = 39.22$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30 Date: 11.10.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 5.96 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: Z20-60445 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL Title: SAR Measurement Work Instructions Document Number: 17-EM-W09 Page 2 of 3 ## Dipole: 2450MHz, S/N: 988, Dipole calibration According to KDB 865664 & IEEE Std 1528 - 2013: #### 3.2.2. Dipole calibration It is necessary to re-calibrate reference dipoles at regular intervals to confirm the electrical specifications and SAR targets. A dipole must be calibrated using a fully validated SAR system according to the tissue dielectric parameters and SAR probe calibration frequency required for device testing. It is generally unacceptable to calibrate a dipole using the SAR system that has been validated by the same dipole; therefore, dipoles should be returned to the SAR system manufacturer or its designated calibration facilities for re-calibration. However, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. - The test laboratory must ensure that the required supporting information and documentation are included in the SAR report to qualify for the three-year extended calibration interval; otherwise, the IEEE Std 1528-2013 recommended annual calibration applies. - 2) Immediate re-calibration is required for the following conditions. - a) After a dipole is damaged and properly repaired to meet required specifications. - b) When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions; i.e., the error is not introduced by incorrect measurement procedures or other issues relating to the SAR measurement system. - c) When the most recent return-loss result, measured at least annually, deviates by more than 20% from the previous measurement (i.e. value in dB \times 0.2) or not meeting the required 20 dB minimum return-loss requirement.²⁴ - d) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement. | Title: SAR Measurement Work Instructions | | Page 3 of 3 | |------------------------------------------|--|-------------| | Document Number: 17-EM-W09 | | | | | | | | Calibration Date | Impedance R (ohm) | Delta (ohm) | Impedance jX (ohm) | Delta (ohm) | Return-loss (dB) | Delta (%) | |------------------|-------------------|-------------|--------------------|-------------|------------------|-----------| | 2020/11/10 | 54.4 | N/A | 3.51 | N/A | -25.4 | N/A | | 2022/10/11 | 52.408 | -1.99 | 1.18 | -2.33 | -25.2431 | -0.62 | Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss ### **IMPORTANT NOTICE** #### **USAGE OF THE DAE3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: **Battery Exchange**: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exa ct values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### **Important Note:** Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### **Important Note:** To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 0108 S C S Certificate No: DAE3-528_May22 ### **CALIBRATION CERTIFICATE** Object DAE3 - SD 000 D03 AA - SN: 528 QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 19, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---------------------------------------|--------------------------------------------------------------| | SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | ID# | Check Date (in house) | Scheduled Check | | SE UWS 053 AA 1001 | 24-Jan-22 (in house check) | In house check: Jan-23 | | SE UMS 006 AA 1002 | 24-Jan-22 (in house check) | In house check: Jan-23 | | | SN: 0810278 ID # SE UWS 053 AA 1001 | SN: 0810278 31-Aug-21 (No:31368) ID # Check Date (in house) | Calibrated by: Name Function Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: May 19, 2022 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-528_May22 Page 1 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.678 ± 0.02% (k=2) | 404.776 ± 0.02% (k=2) | 404.698 ± 0.02% (k=2) | | Low Range | 3.97108 ± 1.50% (k=2) | 3.96048 ± 1.50% (k=2) | 3.96714 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 51.0 ° ± 1 ° | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | AND CONTROL OF THE CO | | ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200035.54 | -2.70 | -0.00 | | Channel X | + Input | 20008.36 | 2.37 | 0.01 | | Channel X | - Input | -19999.24 | 6.68 | -0.03 | | Channel Y | + Input | 200035.77 | 0.58 | 0.00 | | Channel Y | + Input | 20006.00 | 0.05 | 0.00 | | Channel Y | - Input | -20003.41 | 2.64 | -0.01 | | Channel Z | + Input | 200033.50 | -1.71 | -0.00 | | Channel Z | + Input | 20006.46 | 0.65 | 0.00 | | Channel Z | - Input | -20003.96 | 2.18 | -0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.61 | 0.44 | 0.02 | | Channel X | + Input | 200.65 | -0.42 | -0.21 | | Channel X | - Input | -198.60 | 0.19 | -0.10 | | Channel Y | + Input | 2001.63 | 0.59 | 0.03 | | Channel Y | + Input | 200.74 | -0.29 | -0.14 | | Channel Y | - Input | -199.63 | -0.80 | 0.40 | | Channel Z | + Input | 2001.04 | -0.04 | -0.00 | | Channel Z | + Input | 200.33 | -0.69 | -0.34 | | Channel Z | - Input | -199.25 | -0.46 | 0.23 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 9.52 | 8.36 | | | - 200 | -6.15 | -8.92 | | Channel Y | 200 | 14.97 | 14.83 | | | - 200 | -16.97 | -16.80 | | Channel Z | 200 | -2.75 | -4.14 | | | - 200 | 3.72 | 3.40 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 2.97 | -2.05 | | Channel Y | 200 | 7.06 | - | 4.80 | | Channel Z | 200 | 7.42 | 5.02 | - | ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15979 | 16445 | | Channel Y | 15911 | 17034 | | Channel Z | 16178 | 16592 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.28 | 0.35 | 2.98 | 0.45 | | Channel Y | 0.10 | -0.98 | 1.58 | 0.48 | | Channel Z | 0.23 | -1.08 | 1.37 | 0.44 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | Certificate No: DAE3-528_May22 Page 5 of 5 ### Calibration Laboratory of Schmid & Partner Engineering AG S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No EX-3820 Jul22 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3820 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, **QA CAL-25.v7** Calibration procedure for dosimetric E-field probes Calibration date July 27, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Cobodulad Call | |----------------------------|------------|-----------------------------------|-----------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | OCP DAK-3.5 (weighted) | SN: 1249 | | Apr-23 | | OCP DAK-12 | SN: 1016 | 20-Oct-21 (OCP-DAK3.5-1249_Oct21) | Oct-22 | | Reference 20 dB Attenuator | | 20-Oct-21 (OCP-DAK12-1016_Oct21) | Oct-22 | | DAE4 | (=0,1) | 04-Apr-22 (No. 217-03527) | Apr-23 | | | SN: 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID | Chaol: Data (in house) | | |-------------------------|------------------|------------------------------------|------------------------| | Power meter E4419B | 10 | Check Date (in house) | Scheduled Check | | | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | | | Power sensor E4412A | | | In house check: Jun-24 | | | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | | | Network Analyzer E8358A | | 04-Aug-33 (III House check Jun-22) | In house check: Jun-24 | | Network Analyzer E0358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Name Function Signature Calibrated by Jeffrey Katzman Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 1, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL NORMx,y,z tissue simulating liquid ConvF sensitivity in free space DCP sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800\,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800\,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch - · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). ## Parameters of Probe: EX3DV4 - SN:3820 #### **Basic Calibration Parameters** | ο Λ | Sensor X | Sensor Y | Sensor Z | Unc $(k=2)$ | |--------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)^A$ | 0.40 | 0.46 | 0.49 | ±10.1% | | DCP (mV) ^B | 103.4 | 102.7 | 100.9 | +4.7% | ## Calibration Results for Modulation Response | UID | Communication System Name | | Α | В | С | D | VR | Max | Max | |-------------|-----------------------------|---|-------|------------------|-------|-------|-------|-------|--------| | | | | dB | $dB\sqrt{\mu V}$ | | dB | mV | dev. | UncE | | 0 | OW | | | | | | | | k=2 | | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 165.0 | ±3.5% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 152.9 | | | | 10050 | D. J. M. (Section 1997) | Z | 0.00 | 0.00 | 1.00 | 1 | 162.3 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 20.00 | 91.81 | 21.54 | 10.00 | 60.0 | ±3.0% | ±9.6% | | | | Y | 20.00 | 89.06 | 19.90 | | 60.0 | | | | 10050 | D. I. M. C. Const. | Z | 20.00 | 92.88 | 22.35 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 93.03 | 20.85 | 6.99 | 80.0 | ±1.4% | ±9.6% | | | | Υ | 20.00 | 89.94 | 19.40 | | 80.0 | | | | 10054 | D. I. W. C. C. | Z | 20.00 | 93.35 | 21.39 | | 80.0 | 1 | | | 10354 Pulse | Pulse Waveform (200Hz, 40%) | X | 20.00 | 96.42 | 20.88 | 3.98 | 95.0 | ±1.5% | ±9.6% | | | | Y | 20.00 | 91.26 | 18.78 | | 95.0 | | | | 10055 | D. I. W. C. C. | Z | 20.00 | 96.14 | 21.21 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 20.00 | 100.55 | 21.18 | 2.22 | 120.0 | ±1.7% | ±9.6% | | | | Υ | 20.00 | 94.46 | 19.04 | | 120.0 | | | | 10007 | OBOLOW | Z | 20.00 | 100.25 | 21.58 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.77 | 67.25 | 15.87 | 1.00 | 150.0 | ±2.9% | ±9.6% | | | | Y | 1.89 | 68.84 | 16.63 | | 150.0 | | _0.070 | | 10000 | OBOKW | Z | 1.76 | 66.92 | 15.74 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.44 | 69.88 | 16.71 | 0.00 | 150.0 | ±1.6% | ±9.6% | | | | Y | 2.61 | 71.17 | 17.45 | | 150.0 | | _0.070 | | 10000 | | Z | 2.42 | 69.63 | 16.60 | İ | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 4.05 | 76.16 | 21.65 | 3.01 | 150.0 | ±1.3% | ±9.6% | | | | Y | 3.39 | 73.99 | 21.02 | | 150.0 | | _0.070 | | 10000 | 04.004444 | Z | 4.35 | 77.40 | 22.20 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.70 | 68.23 | 16.44 | 0.00 | 150.0 | ±2.5% | ±9.6% | | | | Y | 3.69 | 68.29 | 16.56 | | 150.0 | | _0.070 | | 0414 | MII AN OODE ALCOH | Z | 3.71 | 68.18 | 16.42 | ŀ | 150.0 | | | | 0414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.89 | 65.67 | 15.68 | 0.00 | 150.0 | ±4.6% | ±9.6% | | | | Υ | 5.00 | 66.23 | 16.02 | + | 150.0 | | _0.070 | | | | Z | 4.90 | 65.60 | 15.65 | - | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Parameters of Probe: EX3DV4 - SN:3820 ### **Sensor Model Parameters** | | C1
fF | C2
fF | V^{-1} | T1
ms V ⁻² | T2
ms V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 52.9 | 400.42 | 36.54 | 13.88 | 0.60 | 5.09 | 1.20 | 0.41 | 1.01 | | У | 47.9 | 362.06 | 36.50 | 23.72 | 0.17 | 5.10 | 0.74 | | 1.01 | | Z | 54.4 | 413.73 | 36.88 | 18.94 | 0.69 | 5.10 | | 0.34 | 1.01 | | | | | | 10.01 | 0.03 | 5.10 | 1.59 | 0.36 | 1.02 | ### Other Probe Parameters | Sensor Arrangement | T | |---|------------| | Connector Angle | Triangular | | Mechanical Surface Detection Mode | -82.3° | | | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1 mm | | -1- 14 | 1.4 mm | Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job. ### Parameters of Probe: EX3DV4 - SN:3820 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 41.9 | 0.89 | 9.44 | 9.44 | 9.44 | 0.55 | 0.80 | ±12.0% | | 835 | 41.5 | 0.90 | 9.20 | 9.20 | 9.20 | 0.46 | 0.80 | ±12.0% | | 900 | 41.5 | 0.97 | 8.96 | 8.96 | 8.96 | 0.52 | 0.80 | ±12.0% | | 1450 | 40.5 | 1.20 | 8.11 | 8.11 | 8.11 | 0.36 | 0.80 | ±12.0% | | 1640 | 40.2 | 1.31 | 8.03 | 8.03 | 8.03 | 0.37 | 0.86 | ±12.0% | | 1750 | 40.1 | 1.37 | 8.00 | 8.00 | 8.00 | 0.23 | 0.86 | ±12.0% | | 1810 | 40.0 | 1.40 | 7.73 | 7.73 | 7.73 | 0.30 | 0.86 | ±12.0% | | 1900 | 40.0 | 1.40 | 7.51 | 7.51 | 7.51 | 0.38 | 0.86 | ±12.0% | | 2000 | 40.0 | 1.40 | 7.45 | 7.45 | 7.45 | 0.38 | 0.86 | ±12.0% | | 2450 | 39.2 | 1.80 | 7.24 | 7.24 | 7.24 | 0.35 | 0.90 | ±12.0% | | 2600 | 39.0 | 1.96 | 7.12 | 7.12 | 7.12 | 0.36 | 0.90 | ±12.0% | | 3300 | 38.2 | 2.71 | 6.85 | 6.85 | 6.85 | 0.30 | 1.30 | ±13.1% | | 3500 | 37.9 | 2.91 | 6.83 | 6.83 | 6.83 | 0.30 | 1.35 | ±13.1% | | 3700 | 37.7 | 3.12 | 6.80 | 6.80 | 6.80 | 0.30 | 1.35 | ±13.1% | | 3900 | 37.5 | 3.32 | 6.29 | 6.29 | 6.29 | 0.40 | 1.60 | ±13.1% | | 4100 | 37.2 | 3.53 | 6.25 | 6.25 | 6.25 | 0.40 | 1.60 | ±13.1% | | 4200 | 37.1 | 3.63 | 6.19 | 6.19 | 6.19 | 0.40 | 1.70 | ±13.1% | | 4400 | 36.9 | 3.84 | 6.13 | 6.13 | 6.13 | 0.40 | 1.70 | ±13.1% | | 4600 | 36.7 | 4.04 | 6.01 | 6.01 | 6.01 | 0.40 | 1.70 | ±13.1% | | 4800 | 36.4 | 4.25 | 5.92 | 5.92 | 5.92 | 0.40 | 1.80 | ±13.1% | | 4950 | 36.3 | 4.40 | 5.68 | 5.68 | 5.68 | 0.40 | 1.80 | ±13.1% | | 5250 | 35.9 | 4.71 | 5.35 | 5.35 | 5.35 | 0.40 | 1.80 | ±13.1% | | 5600 | 35.5 | 5.07 | 4.62 | 4.62 | 4.62 | 0.40 | 1.80 | ±13.1% | | 5750 | 35.4 | 5.22 | 4.70 | 4.70 | 4.70 | 0.40 | 1.80 | ±13.1% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. Certificate No: EX-3820_Jul22 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. ### Parameters of Probe: EX3DV4 - SN:3820 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity ^F
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc (k = 2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------| | 750 | 55.5 | 0.96 | 9.41 | 9.41 | 9.41 | 0.42 | 0.80 | ±12.0% | | 835 | 55.2 | 0.97 | 9.26 | 9.26 | 9.26 | 0.45 | 0.80 | ±12.0% | | 900 | 55.0 | 1.05 | 9.07 | 9.07 | 9.07 | 0.47 | 0.80 | ±12.0% | | 1450 | 54.0 | 1.30 | 8.04 | 8.04 | 8.04 | 0.26 | 0.80 | ±12.0% | | 1640 | 53.7 | 1.42 | 7.95 | 7.95 | 7.95 | 0.46 | 0.86 | ±12.0% | | 1750 | 53.4 | 1.49 | 7.76 | 7.76 | 7.76 | 0.33 | 0.86 | ±12.0% | | 1810 | 53.3 | 1.52 | 7.61 | 7.61 | 7.61 | 0.38 | 0.86 | ±12.0% | | 1900 | 53.3 | 1.52 | 7.34 | 7.34 | 7.34 | 0.45 | 0.86 | ±12.0% | | 2000 | 53.3 | 1.52 | 7.30 | 7.30 | 7.30 | 0.34 | 0.86 | ±12.0% | | 2450 | 52.7 | 1.95 | 7.19 | 7.19 | 7.19 | 0.35 | 0.90 | ±12.0% | | 2600 | 52.5 | 2.16 | 7.07 | 7.07 | 7.07 | 0.43 | 0.90 | ±12.0% | | 3300 | 51.6 | 3.08 | 6.23 | 6.23 | 6.23 | 0.40 | 1.35 | ±13.1% | | 3500 | 51.3 | 3.31 | 6.17 | 6.17 | 6.17 | 0.40 | 1.35 | ±13.1% | | 3700 | 51.0 | 3.55 | 6.14 | 6.14 | 6.14 | 0.40 | 1.35 | ±13.1% | | 3900 | 50.8 | 3.78 | 6.11 | 6.11 | 6.11 | 0.40 | 1.60 | ±13.1% | | 4100 | 50.5 | 4.01 | 5.84 | 5.84 | 5.84 | 0.40 | 1.60 | ±13.1% | | 4200 | 50.4 | 4.13 | 5.80 | 5.80 | 5.80 | 0.40 | 1.60 | ±13.1% | | 4400 | 50.1 | 4.37 | 5.56 | 5.56 | 5.56 | 0.40 | 1.70 | ±13.1% | | 4600 | 49.8 | 4.60 | 5.48 | 5.48 | 5.48 | 0.40 | 1.70 | ±13.1% | | 4800 | 49.6 | 4.83 | 5.37 | 5.37 | 5.37 | 0.50 | 1.90 | ±13.1% | | 4950 | 49.4 | 5.01 | 5.10 | 5.10 | 5.10 | 0.50 | 1.90 | ±13.1% | | 5250 | 48.9 | 5.36 | 4.83 | 4.83 | 4.83 | 0.50 | 1.90 | ±13.1% | | 5600 | 48.5 | 5.77 | 4.23 | 4.23 | 4.23 | 0.50 | 1.90 | ±13.1% | | 5750 | 48.3 | 5.94 | 4.28 | 4.28 | 4.28 | 0.50 | 1.90 | ±13.1% | C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: EX-3820_Jul22 G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide:R22) Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2) # Dynamic Range f(SAR_{head}) (TEM cell, f_{eval} = 1900 MHz) Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2) ## **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (ϕ , θ), f = 900 MHz