

RF Exposure Report

Report No.: SA191118E09B

FCC ID: PY319400466

Test Model: RAX50

Series Model: RAX45

Received Date: Nov. 12, 2019

Test Date: Dec. 10 to 12, 2019; Feb. 03, 2020

Issued Date: Mar. 31, 2020

Applicant: NETGEAR, Inc.

Address: 350 East Plumeria Drive San Jose, CA 95134

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

laiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / Designation Number:

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA191118E09B Page No. 1 / 7 Report Format Version: 6.1.1 Reference No.: 191128E08

Table of Contents

Rel	lease Control Record	
1	Certificate of Conformity	4
	RF Exposure	
	2.1 Limits for Maximum Permissible Exposure (MPE).	
	2.2 MPE Calculation Formula	
	2.3 Classification	
2	2.4 Antenna Gain	6
2	2.5 Calculation Result of Maximum Conducted Power	7

Release Control Record

Issue No.	Description	Date Issued
SA191118E09B	Original release.	Mar. 31, 2020

Page No. 3 / 7 Report Format Version: 6.1.1

Report No.: SA191118E09B Reference No.: 191128E08

1 Certificate of Conformity

Product: NIGHTHAWK AX6 AX5400 6-Stream WiFi Router, NIGHTHAWK AX6 AX4300

6-Stream WiFi Router

Brand: NETGEAR

Test Model: RAX50

Series Model: RAX45

Sample Status: ENGINEERING SAMPLE

Applicant: NETGEAR, Inc.

Test Date: Dec. 10 to 12, 2019; Feb. 03, 2020

Standards: FCC Part 2 (Section 2.1091)

IEEE C95.3 -2002

References Test KDB 447498 D01 General RF Exposure Guidance v06 Guidance:

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Mar. 31, 2020

Phoenix Huang / Specialist

Approved by: , Date: Mar. 31, 2020

Clark Lin / Technical Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	in a great in a great gr		Average Time (minutes)		
Limits For General Population / Uncontrolled Exposure						
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f ²)*	30		
30-300	27.5 0.073 0.2		0.2	30		
300-1500			f/1500	30		
1500-100,000			1.0	30		

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 25 cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA191118E09B Page No. 5 / 7 Report Format Version: 6.1.1

Reference No.: 191128E08

2.4 Antenna Gain

1. The antennas provided to the EUT, please refer to the following table:

Antenna Operation 1	Antenna Operation 2		
Dual_Ant0	Dual_Ant0		
Dual_Ant1	Dual_Ant1		
Single_Ant2	Dual_Ant2		
Single_Ant3	Dual_Ant3		

Note: From the above antenna conditions, the worst case was found in Antenna Operation 1. Therefore only the test data of the mode was recorded in this report.

2. The directional antenna gain, please refer to the following table:

Frequency Range (GHz)	Directional Antenna Gain (dBi)	Antenna Type	Antenna Connector	
2.4~2.4835	3.73			
5.15 ~ 5.25	6.61	Dipole		
5.25 ~ 5.35	6.53		R-SMA	
5.47 ~ 5.725	6.64			
5.725 ~ 5.85	6.66			

Note: More detailed information, please refer to antenna specification.

2.5 Calculation Result of Maximum Conducted Power

For 2.4GHz and 5GHz (U-NII-1 band and U-NII-3 band) data was copied from the original test report (Report No.: SA191118E09)

Operation Mode	Evaluation Frequency (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
WLAN (2.4GHz)	2412	917.02	3.73	25	0.27561	1
WLAN (U-NII-1)	5240	935.58	6.61	25	0.54575	1
WLAN (U-NII-2A)	5250	236.098	6.53	25	0.13521	1
WLAN (U-NII-2C)	5550	240.035	6.64	25	0.14099	1
WLAN (U-NII-3)	5745	997.865	6.66	25	0.58882	1

Note:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. 2.4GHz: The directional gain = 3.73 dBi
- 3. 5GHz:

U-NII-1: The directional gain = 6.61 dBi

U-NII-2A: The directional gain = 6.53 dBi

U-NII-2C: The directional gain = 6.64 dBi

U-NII-3: The directional gain = 6.66 dBi

4. The Max. Power = Max. tune up power including tolerance.

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz = 0.27561 / 1 + 0.58882 / 1 = <math>0.86443

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---