
Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC	TEST REPORT Rules and Regulations Part PART 15.249
Report Reference No	: CTA25031701202
FCC ID	: 2BNX9-MY-V82
Compiled by (position+printed name+signat	ture File administrators Joan Wu
Supervised by (position+printed name+signat Approved by (position+printed name+signat	ture Project Engineer Zoey Cao
Date of issue	Mar. 27, 2025
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	HuNan FuYao Electronic Technology Co., Ltd
Address	Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan Province, China
Standard	FCC Rules and Regulations PART 15.249
Shenzhen CTA Testing Tech	nology Co., Ltd. All rights reserved.
Shenzhen CTA Testing Techno material. Shenzhen CTA Testir	uced in whole or in part for non-commercial purposes as long as the blogy Co., Ltd. is acknowledged as copyright owner and source of the ng Technology Co., Ltd. takes no responsibility for and will not assume rom the reader's interpretation of the reproduced material due to its
Test item description	Wireless mechanical keyboard
Trade Mark	MMViCTY
Manufacturer	······· HuNan FuYao Electronic Technology Co., Ltd
Model/Type reference	
	MY-V82
Listed Models	MY-V82 N/A
Listed Models	-ESTIN
Model/Type reference Listed Models Modulation Frequency	MY-V82 N/A GFSK 2402-2478MHz
Listed Models	

eport No.: CTA250317012)2	Page 2 of 23
	TEST REP	ORT
TATESTIC		
Equipment under Test	: Wireless mechanical keyboa	ard
	CTA	
Model /Type	: MY-V82	CTA TESTING
Listed Models	: N/A	
	· WA	
Applicant	: HuNan FuYao Electronic 1	
Address	Steel Market 1-20 # 113. Tia	anXin District, ChangSha City, HuNan
CTA	Province, China	CTING
		TED
Manufacturer	: HuNan FuYao Electronic 1	Technology Co., Ltd
Address	· Steel Market 1-20 # 113 Ti:	anXin District, ChangSha City, HuNan
Address	Province, China	
TEST	G	
Test R	esult:	PASS
	(Chr	TESTINO
The test report merely	corresponds to the test sample.	CTAT
It is not permitted to laboratory.	copy extracts of these test res	ult without the written permission of the
NG		
NG		
	ESTING	
	TESTING	
	GT CTP	TESTING CTATEST
	Gen CTP	TESTING CTATES
		TESTING CTATES
		TESTING CA CTATEST
CTATESTING		
	En CTATESTING	CTATESTING
		TESTING CATESTING

TEST CONDITIONS AND RESULTS....

CTATES

4.

<u>5.</u>

6.

4.1.	AC Power Conducted Emission	
4.2.	Radiated Emission and Band Edges	
4.3.	20dB Bandwidth Measurement	
4.4.	Antenna Requirement	
тсет		2.2

5 5 5

5

5

6

6

6

....76

7

7

7

8

8

8

10

<u>...I E</u> PHOIDS OF 23

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

CTATE ANSI C63.4: 2014: - American National Standard for Methods of Measurement of Radio-Noise Americ Americ Range of 9 kHz to 40GHz Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz CTATESTING

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	and in	Mar. 17, 2025		
Testing commenced on	G	Mar. 17, 2025	10-102 11-12	CTATE
Testing concluded on	:	Mar. 27, 2025	(C)	

2.2. Product Description

Name of EUT	Wireless mechanical keyboard
Model Number	MY-V82
Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Sample ID:	CTA250317012-1# (Engineer sample) CTA250317012-2# (Normal sample)
Operation frequency	2402-2478MHz
Modulation	GFSK
Antenna Type	PCB antenna
Antenna Gain	2.96 dBi
GU	ESTING
2.3. Equipment Under 1	Test
Power supply system ut	silicod

2.3. Equipment Under Test

Power supply system utilised

Power supply system ut	tilised					TATES	
Power supply voltage	:	0	230V / 50 Hz	(21	0	120V / 60Hz	
		Ο	12 V DC	A DESCRIPTION OF	0	24 V DC	5
C		•	Other (specified in	blank be	low)	
DC DC	3.7V From	n ba	attery and DC 5.0V F	From exte	erna	<u>Il circuit</u>	

2.4. Short description of the Equipment under Test (EUT)

This is a Wireless mechanical keyboard.

For more details, refer to the user's manual of the EUT.

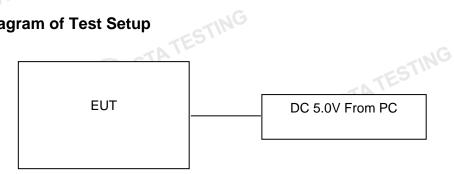
2.5. EUT configuration

TATESTING The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

Ο	 supplied by the lab 	

O PC	Model: E470C	
CTATE	Trade Mark: thinkpad	
CTA C.	TESTI	
	CTA	
		TATES.


2.6. EUT operation mode

The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 39 channels provided to the EUT. Channel Low,Mid and High was selected to test.

	Operation Frequency:	CTA			
	Cha	annel	Freq	juency (MHz)	
		01		2402	
)2		2404	
		03	L'and	2406	ATA
				:	COM .
		20		2440	
				:	
C/r		37		2474	
		38	.6	2476	
		39		2478	
	Test frequency:		CTATES		
	Channel	Frequency (MHz)		CTA TE	
	Low	2402			
	Mid	2440			
	High	2/78			

Channel	Frequency (MHz)
Low	2402
Mid	2440
High	2478
TESTING	

2.7. Block Diagram of Test Setup

CTATESTING 2.8. Modifications

GA CTATESTING No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127 The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio TATEST equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTA TE

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
NG	
Atmospheric pressure:	950-1050mbar

CTATES AC Main Conducted testing:

C Main Conducted testing:	
Temperature:	24 ° C
G	
Humidity:	45 %
Strengton (Ci
Atmospheric pressure:	950-1050mbar

Conducted testina:

o o na a o to o a no	
Temperature:	24 ° C
Humidity:	45 %
STIN	
Atmospheric pressure:	950-1050mbar 💦
C.	GA CTATESTING

3.4. Summary of measurement results

FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	65.54 dB	(1)

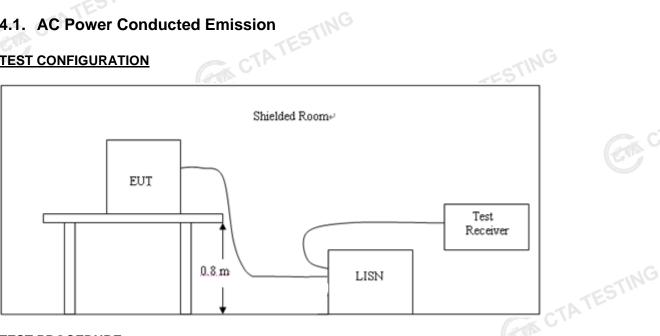
(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence CTA TESTIN level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date			
LISN	G R&S	ENV216	CTA-308	2024/08/03	2025/08/02			
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02			
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02			
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02			
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02	TATE		
TING								

Page 9 of 23

CTA CTA


				1		1	-
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02	
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02	
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02	
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02	
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02	A
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16	
TE	5 Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12	
AT	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16]
	Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02	5
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02	
3	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02	
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02	
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02	
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02	
			 				17
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
TATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
۲. د ر	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
	L	1	ALC: NO. OF THE OWNER.				_

.....

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

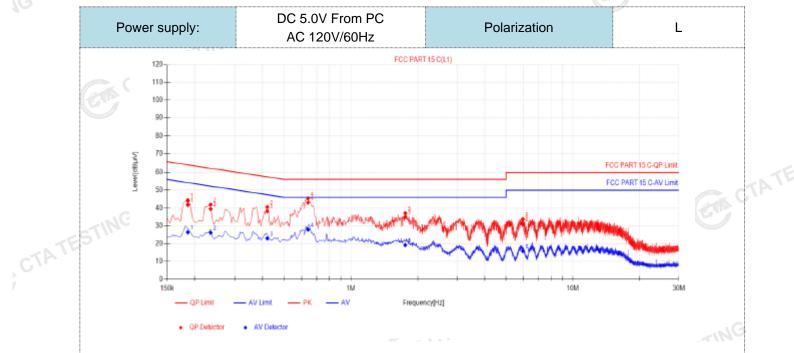
TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

	Limit ((dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decrease with the locarithm of the freque		Country and the second s

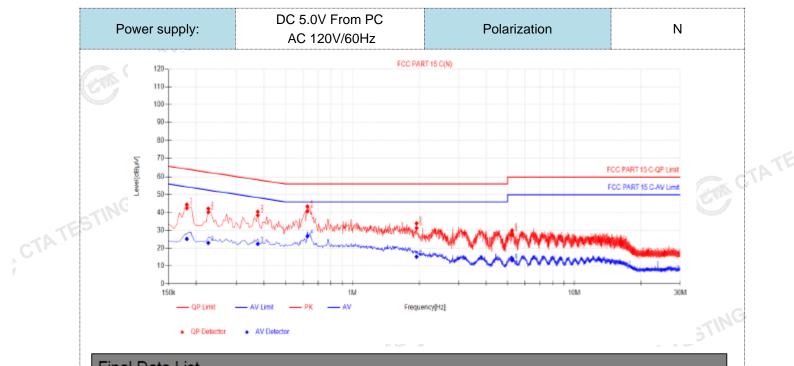

Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

- 1 All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19 was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result 2. CTATE of 120 VAC, 60 Hz was reported as below:.

CTATE



NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.186	10.03	31.85	41.88	64.21	22.33	16.40	26.43	54.21	27.78	PASS
2	0.2355	9.98	29.52	39.50	62.25	22.75	16.18	26.16	52.25	26.09	PASS
3	0.42	9.90	28.28	38.18	57.45	19.27	13.11	23.01	47.45	24.44	PASS
4	0.6405	9.99	33.03	43.02	56.00	12.98	17.91	27.90	46.00	18.10	PASS
5	1.7565	9.91	25.17	35.08	56.00	20.92	9.24	19.15	46.00	26.85	PASS
6	5.946	10.14	20.92	31.06	60.00	28.94	5.74	15.88	50.00	34.12	PASS

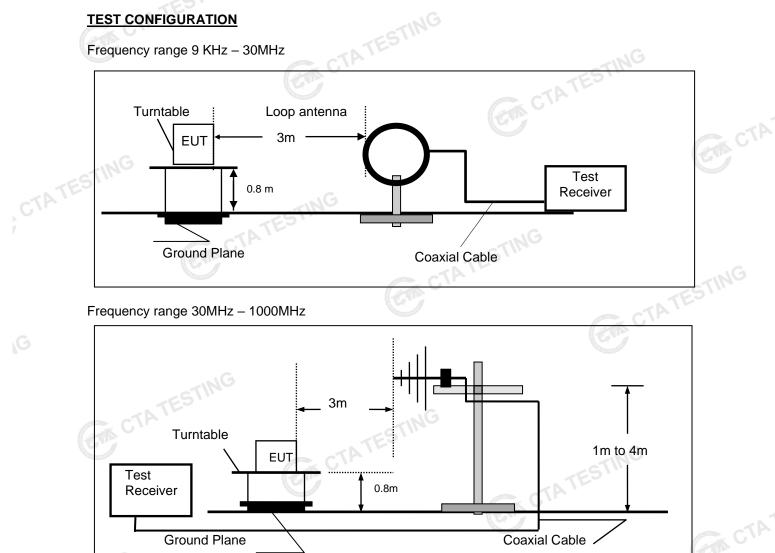
CTATESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Page 12 of 23

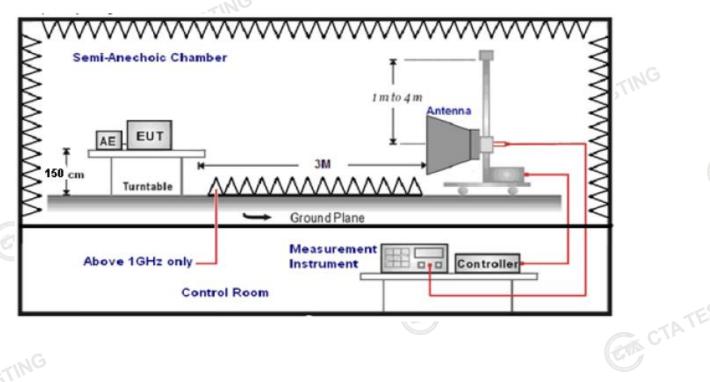
GA CTATE

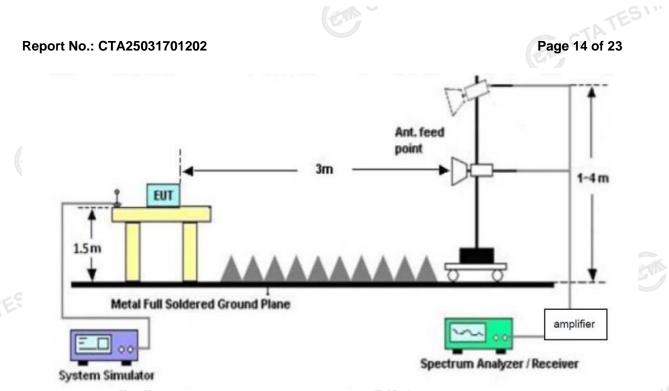
_		-		
Fin	2	114		let.
	aı		ala	131

NO.	Freq. [MHz]	Factor [dB]	QP Reading(dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1815	10.03	32.41	42.44	64.42	21.98	15.16	25.19	54.42	29.23	PASS
2	0.2265	9.99	30.22	40.21	62.58	22.37	12.96	22.95	52.58	29.63	PASS
3	0.375	9.90	28.56	38.46	58.39	19.93	12.43	22.33	48.39	26.06	PASS
4	0.627	10.13	30.64	40.77	56.00	15.23	16.61	26.74	46.00	19.26	PASS
5	1.9455	10.19	21.09	31.28	56.00	24.72	5.01	15.20	46.00	30.80	PASS
6	5.2485	10.12	17.64	27.76	60.00	32.24	3.02	13.14	50.00	36.86	PASS
2). Fact	6 5.2485 10.12 17.64 27.76 60.00 32.24 3.02 13.14 50.00 36.86 PASS lote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) . Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) .										


3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)

4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATEST


4.2. Radiated Emission and Band Edges


TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 26MHz and maximum operation frequency 5. was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance			
9KHz-30MHz	Active Loop Antenna	3			
30MHz-1GHz	Ultra-Broadband Antenna	3			
1GHz-18GHz	Double Ridged Horn Antenna	3			
18GHz-25GHz	Horn Anternna	1			
Setting test receiver/spectrum as following table states:					
Test Frequency range	Test Receiver/Spectrum S	etting	Detector		

	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
SIE	C C	Peak Value: RBW=1MHz/VBW=3MHz,	
	1GHz-40GHz	Sweep time=Auto	Peak
10	10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	r eak
		Sweep time=Auto	-ESIN'

Field Strength Calculation

7.

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

	Where FS = Field S	Strength	NG	CL = Cable Attenuation Factor (Cable Loss)
K.	RA = Reading /	Amplitude	STIL	AG = Amplifier Gain
	AF = Antenna F	actor	TES	
Tra	nsd=AF +CL-AG	CI	-	TESTING
ADIA	TION LIMIT			CTA L

RADIATION LIMIT

CTATE According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

Page 15 of 23

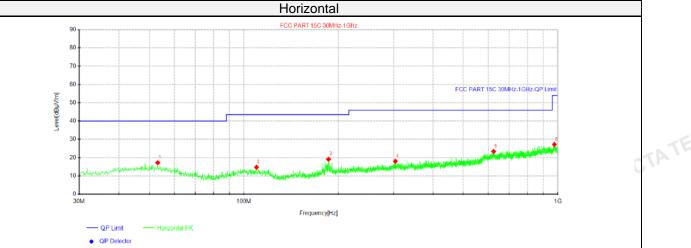
FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

	A CONTRACTOR OF CONTRACTOR OFO	Rac	liated emission limits	ING
	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
CTATE	88-216	3 G	43.5	150
	216-960	3	46.0	200
r	Above 960	CTA 3	54.0	500
	TEET DECLII TE		440	•

TEST RESULTS Remark:

1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.


2. GFSK were tested at Low, Middle, and High channel and recorded worst mode at the High channel.

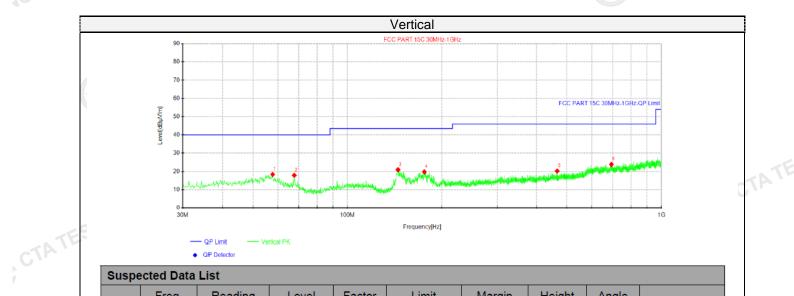
Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 16 of 23

Suspected Data List

CTATE

- dob												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	rolarity			
1	53.1588	28.64	17.24	-11.40	40.00	22.76	200	20	Horizontal			
2	109.661	28.05	14.73	-13.32	43.50	28.77	100	325	Horizontal			
3	186.048	33.23	19.15	-14.08	43.50	24.35	100	56	Horizontal			
4	303.782	28.88	18.00	-10.88	46.00	28.00	200	196	Horizontal			
5	624.367	29.08	23.37	-5.71	46.00	22.63	100	56	Horizontal			
6	975.022	29.07	27.18	-1.89	54.00	26.82	100	220	Horizontal			


Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Page 17 of 23

CTATESTING

Suspected Data List

ousp												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	57.7662	30.56	18.34	-12.22	40.00	21.66	200	2	Vertical			
2	67.7088	32.26	17.90	-14.36	40.00	22.10	100	182	Vertical			
3	144.823	36.47	20.92	-15.55	43.50	22.58	100	240	Vertical			
4	175.742	34.53	19.75	-14.78	43.50	23.75	200	228	Vertical			
5	465.893	29.70	20.20	-9.50	46.00	25.80	100	182	Vertical			
6	693.358	29.00	23.83	-5.17	46.00	22.17	100	309	Vertical			

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m) CTATES

Page 18 of 23

For 1GHz to 25GHz

		. C.		GFSK (abo	ve 1GHz)					
Freque	ncy(MHz)	:	24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2402.00	88.67	PK	114.00	25.33	99.95	27.47	3.43	42.18	-11.28	
2402.00	80.01	AV	94.00	13.99	91.29	27.47	3.43	42.18	-11.28	
4804.00	49.42	PK	74.00	24.58	53.69	32.33	5.12	41.72	-4.27	
4804.00	39.34	AV	54.00	14.66	43.61	32.33	5.12	41.72	-4.27	
7206.00	49.51	PK	74.00	24.49	50.03	36.6	6.49	43.61	-0.52	
7206.00	37.73	AV	54.00	16.27	38.25	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2402.00	87.08	PK	114.00	26.92	98.36	27.47	3.43	42.18	-11.28
2402.00	78.00	AV	94.00	16.00	89.28	27.47	3.43	42.18	-11.28
4804.00	47.76	PK	74.00	26.24	52.03	32.33	5.12	41.72	-4.27
4804.00	39.55	AV	54.00	14.45	43.82	32.33	5.12	41.72	-4.27
7206.00	48.34	PK	74.00	25.66	48.86	36.6	6.49	43.61	-0.52
7206.00	35.79	AV	54.00	18.21	36.31	36.6	6.49	43.61	-0.52

Freque	ency(MHz)	:	24	40	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2440.00	88.08	PK	114.00	25.92	99.33	27.52	3.45	42.22	-11.25
2440.00	79.14	AV	94.00	14.86	90.39	27.52	3.45	6 42.22	-11.25
4880.00	48.31	PK	74.00	25.69	52.19	32.6	5.34	41.82	-3.88
4880.00	40.53	AV	54.00	13.47	44.41	32.6	5.34	41.82	-3.88
7320.00	50.08	PK	74.00	23.92	50.19	36.8	6.81	43.72	-0.11
7320.00	37.90	AV	54.00	16.10	38.01	36.8	6.81	43.72	-0.11
									C V
Freque	encv(MHz)	:	24	40	Pola	aritv:		VERTICAL	_

Freque	ncy(MHz)	:	24	40	Pola	arity:			
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2440.00	86.39	PK	114.00	27.61	97.64	27.52	3.45	42.22	-11.25
2440.00	77.61	AV	94.00	16.39	88.86	27.52	3.45	42.22	-11.25
4880.00	47.84	PK	74.00	26.16	51.72	32.6	5.34	41.82	-3.88
4880.00	38.00	AV	54.00	16.00	41.88	32.6	5.34	41.82	-3.88
7320.00	48.85	PK	74.00	25.15	48.96	36.8	6.81	43.72	-0.11
7320.00	36.01	AV	54.00	17.99	36.12	36.8	6.81	43.72	-0.11
								÷	

Freque	ency(MHz)	:	24	78	Pola	arity:	F	HORIZONTAL		
Frequency (MHz)	Emis Le (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2478.00	87.32	PK	114.00	26.68	97.43	27.7	4.47	42.28	-10.11	
2478.00	81.39	AV	94.00	12.61	91.50	27.7	4.47	42.28	-10.11	
4956.00	49.27	PK	74.00	24.73	52.35	32.73	5.66	3 41.47	-3.08	
4956.00	40.09	AV	54.00	13.91	43.17	32.73	5.66	41.47	-3.08	
7434.00	49.38	PK	74.00	24.62	48.93	37.04	7.25	43.84	0.45	
7434.00	37.02	AV	54.00	16.98	36.57	37.04	7.25	43.84	0.45	

CTA

cTA

Page 19 of 23

Freque	ncy(MHz)	:	24	78	Pola	arity:		VERTICAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2478.00	85.68	PK	114.00	28.32	95.79	27.7	4.47	42.28	-10.11	
2478.00	78.54	AV	94.00	15.46	88.65	27.7	4.47	42.28	-10.11	
4956.00	47.16	PK	74.00	26.84	50.24	32.73	5.66	41.47	-3.08	
4956.00	38.30	AV	54.00	15.70	41.38	32.73	5.66	41.47	-3.08	
7434.00	49.56	PK	74.00	24.44	49.11	37.04	7.25	43.84	0.45	
7434.00	36.76	AV	54.00	17.24	36.31	37.04	7.25	43.84	0.45	
REMARKS: 1. 2. 3.	Correctior Margin va	n Factor (dB lue = Limit v	(m) =Raw Value (d /m) = Antenna Fac ralue- Emission lev	tor (dB/m)+Cable vel.	Factor (dB)- P	re-amplifier			GTA CTA	

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

CTATESTIN Results of Band Edges Test (Radiated)

	Freque	ncy(MHz)	:	24	02	Pola	arity:	F	IORIZONTA	NL .
	Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	CRaw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
6	2390.00	62.18	PK	74.00	11.82	72.60	27.42	4.31	42.15	-10.42
G	2390.00	42.64	AV	54.00	11.36	53.06	27.42	4.31	42.15	-10.42
	2400.00	62.56	PK	74.00	11.44	72.99	27.43	4.31	42.17	-10.43
	2400.00	48.37	AV	54.00	5.63	58.80	27.43	4.31	42.17	-10.43
	Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
	Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	2390.00	60.73	PK	74.00	13.27	71.15	27.42	4.31	42.15	-10.42
	2390.00	42.03	AV	54.00	11.97	52.45	27.42	4.31	42.15	-10.42
	2400.00	61.27	PK	74.00	12.73	71.70	27.43	4.31	42.17	-10.43
	2400.00	46.82	AV	54.00	7.18	57.25	27.43	4.31	42.17	-10.43
	Freque	ncy(MHz)	:	24	78	Pola	arity:	F	IORIZONTA	AL.
CTA	Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
.0.	2483.50	61.38	PK	74.00	12.62	71.49	27.7	4.47	42.28	-10.11
1	2483.50	42.87	AV	54.00	11.13	52.98	27.7	4.47	42.28	-10.11
	Freque	ncy(MHz)	:	24	78	Pola	arity:		VERTICAL	
	Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	2483.50	60.74	Ρ̈́K	74.00	13.26	70.85	27.7	4.47	42.28	-10.11
G	2483.50	41.46	AV	54.00	12.54	51.57	27.7	4.47	42.28	-10.11
G	(MHz) 2483.50	Le [.] (dBu 60.74	vel V/m) PK	(dBuV/m) 74.00	(dB) 13.26	Value (dBuV) 70.85	Factor (dB/m) 27.7	Factor (dB) 4.47	amplifier (dB) 42.28	Fa (d -1

Note:

Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)

Margin value = Limits-Emission level. 2)

-- Mean the PK detector measured value is below average limit. 3)

The other emission levels were very low against the limit. 4)

RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV 5) .ect value.

4.3. 20dB Bandwidth Measurement

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTA TESTING CTATE 20dB.

LIMIT

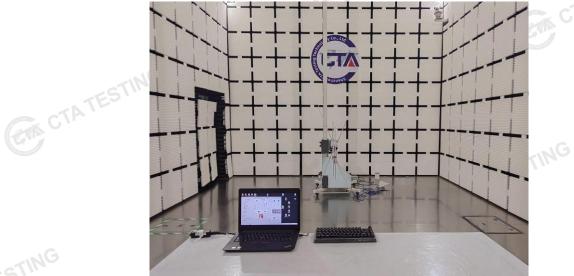
N/A

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result	
CTATE .	Low	2.206		
GFSK	Mid	2.210	PASS	
and the second states	High	2.203		
Note: 1.The test res	sults including the cal	ble loss.	CTATES.	

4.4. Antenna Requirement

Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The maximum gain of antenna was 2.96 dBi. Remark:The anter Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

5. Test Setup Photos of the EUT GIA CTATES

CTATESTING GM CTATESTIN

6. Test Photos of the EUT Reference to the test report No. CTA25031701201.

.....End of Report.....

CTA CT