TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRRFCC1910-0098(1)

2. Customer

· Name: Asterisk Inc.

Address: 5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201, Osaka, Japan

532-0011

3. Use of Report: FCC Original Grant

4. Product Name / Model Name: COMBO Reader / ASR-X23XD

FCC ID: 2AJXE-ASR-X23XD

5. Test Method Used: IEEE 1528-2013, FCC SAR KDB Publications (Details in test report)

Test Specification: CFR §2.1093

6. Date of Test: 2019.10.30

7. Testing Environment: See appended test report.

8. Test Result: Refer to the attached test result.

Affirmation Tested by

Name : BumJun Park

Reviewed by

Name : HakMin Kim

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2019.11.18.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRRFCC1910-0098	Oct. 30, 2019	Initial issue
DRRFCC1910-0098(1)	Nov. 18, 2019	Revise of Product Name

Table of Contents

1. DESCRIPTION OF DEVICE	4
1.1 Guidance Applied	
1.2 SAR Test Configurations and Exclusions	
1.3 Power Reduction for SAR	
1.4 Device Serial Numbers	
3. DESCRIPTION OF TEST EQUIPMENT	
3.1 SAR MEASUREMENT SETUP	
3.2 Probe Specification	
3.3 Probe Calibration Process	
3.3.1 E-Probe Calibration	
3.4 Data Extrapolation	
3.5 SAM Twin PHANTOM	
3.7 Brain Simulation Mixture Characterization	
3.8 SAR TEST EQUIPMENT	
4. TEST SYSTEM SPECIFICATIONS	
5. SAR MEASUREMENT PROCEDURE	15
5.1 Measurement Procedure	
6. RF EXPOSURE LIMITS.	
7. SAR MEASUREMENT PROCEDURES	18
7.1 Measured and Reported SAR	
7.1 Measured and Reported SAR	
7.3 Generic device	
7.4 Extremity Exposure Configurations	
8. Nominal and Maximum Output Power Spec and RF Conducted Powers	20
8.1 RFID Nominal and Maximum Output Power Spec and Conducted Powers	20
8.2 Bluetooth LE Conducted Powers	
9. SYSTEM VERIFICATION	
9.1 Tissue Verification	
9.2 Test System Verification	
10. SAR TEST RESULTS	
10.1 Extremity SAR Results	
10.2 SAR Test Notes	
11.1 Introduction	
11.2 Simultaneous Transmission Procedures	
11.4 Extremity Simultaneous Transmission Analysis	
12. MEASUREMENT UNCERTAINTIES	25
13. CONCLUSION	
14. REFERENCES	
Attachment 1. – Probe Calibration Data	
Attachment 2. – Dipole Calibration Data	
Attachment 2. – Dipole Calibration Data	40
Attachment 3 - SAR SYSTEM VALIDATION	<i>1</i> 9

1. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

Report No.: DRRFCC1910-0098(1)

General Information

EUT type	COMBO Reader					
FCC ID	2AJXE-ASR-X23XD					
Equipment model name	ASR-X23XD					
Equipment add model name						
Equipment serial no.	Identical prototype		• • •			
Mode(s) of Operation	RFID (900 MHz), Bluetooth LE	<u> </u>				
	Band	Operating Modes	Frequency			
TX Frequency Range	RFID (900 MHz),	Data	917.10 ~ 926.90 MHz			
	Bluetooth LE	Data	2402 ~ 2480 MHz			
DV Fraguency Banga	RFID (900 MHz),	Data	917.10 ~ 926.90 MHz			
RX Frequency Range	Bluetooth LE	Data	2402 ~ 2480 MHz			
		Re	eported SAR			
Equipment Class	Band	100	g SAR (W/kg)			
Ciass			Extremity			
DSS	RFID (900 MHz),		0.76			
DSS	Bluetooth LE		0.03 ^{Note}			
Simultaneous SAR per	KDB 690783 D01v01r03 0.79					
FCC Equipment Class	Part 15 Spread Spectrum Tran	nsmitter (DSS)				
Date(s) of Tests	2019.10.30					
Note	Bluetooth LE SAR was estimated.					
Antenna Type	Internal Type Antenna					

1.1 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz)
- FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting)
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)

1.2 SAR Test Configurations and Exclusions

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 7.5$$

Table 1.1 SAR exclusion threshold for distances < 50 mm

Band	Equation	Result	SAR exclusion threshold	Required SAR
Bluetooth LE	[(2/5)* √2.480]	0.6	7.5	X

Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

1.3 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.4 Device Serial Numbers

Band & Mode	Serial Number
RFID	FCC #1

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-2600 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

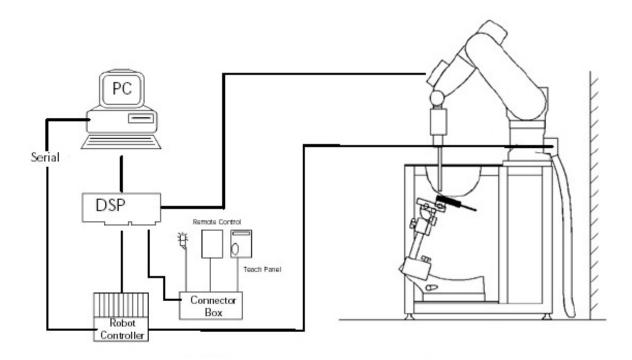


Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

3.2 Probe Specification

Frequency 10 MHz to 4 GHz

Linearity ± 0.2 dB(30 MHz to 4 GHz)

Dynamic 10 μ W/g to > 100 mW/g

Range Linearity: ±0.2dB

Dimensions Overall length: 337 mm

Tip length 20 mm

Body diameter 12 mm

Tip diameter 3.9 mm

Distance from probe tip to sensor center 2.0 mm

Application SAR Dosimetry Testing

Compliance tests of mobile phones

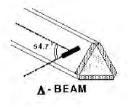


Figure 3.2 Triangular Probe Configurations

Figure 3.3 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe ES3DV3 designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

 $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$

where: where:

 Δt = exposure time (30 seconds),

heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

 σ = simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

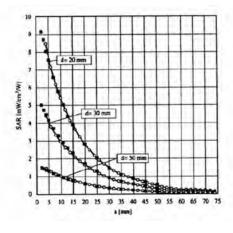


Figure 3.4 E-Field and Temperature Measurements at 900MHz

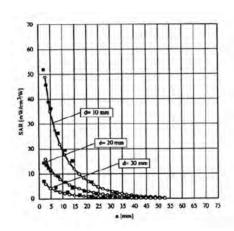


Figure 3.5 E-Field and Temperature Measurements at 1800MHz

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i$$
 = compensated signal of channel i (i=x,y,z)
 $V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$ with V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

3.5 SAM Twin PHANTOM

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

Figure 3.6 SAM Twin Phantom

SAM Twin Phantom Specification:

Construction

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching

three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as

Twin SAM V4.0, but has reinforced top structure.

Shell Thickness $2 \pm 0.2 \text{ mm}$ Filling VolumeApprox. 25 litersDimensionsLength: 1000 mmWidth: 500 mm

Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 3.7 Sam Twin Phantom shell

3.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.8 Mounting Device

3.7 Brain Simulation Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Table 3.1 Composition of the Tissue Equivalent Matter

Ingredients	Frequency (MHz)									
(% by weight)	835		900		1900		2450		5200 ~ 5800	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.19	50.75	41.45	52.50	55.24	70.23	71.88	73.40	65.52	80.00
Salt (NaCl)	1.480	0.940	1.450	1.400	0.310	0.290	0.160	0.060	-	-
Sugar	57.90	48.21	56.00	45.00	-	-	-	-	-	-
HEC	0.250	-	1.000	1.000	-	-	-	-	-	-
Bactericide	0.180	0.100	0.100	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	-	-	44.45	29.48	7.990	26.54	-	-
Diethylene glycol hexyl ether	-	-	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-	-	-	-	20.00
Target for Dielectric Constant	41.5	55.2	41.5	55.0	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.90	0.97	0.97	1.05	1.40	1.52	1.80	1.95	-	-

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

3.8 SAR TEST EQUIPMENT

Table 3.2 Test Equipment Calibration

Report No.: DRRFCC1910-0098(1)

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
\boxtimes	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
\boxtimes	Robot	SCHMID	TX60L	N/A	N/A	F12/5LP5A1/A/01
\boxtimes	Robot Controller	SCHMID	CS8C	N/A	N/A	F12/5LP5A1/C/01
\boxtimes	Joystick	SCHMID	N/A	N/A	N/A	S-12030401
	IntelCorei7-2600 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
\boxtimes	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
\boxtimes	Device Holder	SCHMID	Holder	N/A	N/A	SD000H01KA
\boxtimes	Twin SAM Phantom	SCHMID	QD000P40CD	N/A	N/A	1679
\boxtimes	Data Acquisition Electronics	SCHMID	DAE3V1	2019-01-24	2020-01-24	519
\boxtimes	Dosimetric E-Field Probe	SCHMID	ES3DV3	2019-03-28	2020-03-28	3328
\boxtimes	900MHz SAR Dipole	SCHMID	D900V2	2019-07-18	2021-07-18	1d146
\boxtimes	Network Analyzer	Agilent	E5071C	2019-06-24	2020-06-24	MY46106970
\boxtimes	Signal Generator	Agilent	E4438C	2019-06-24	2020-06-24	US41461520
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2019-06-24	2020-06-24	1020
\boxtimes	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2019-06-24	2020-06-24	1005
\boxtimes	Power Meter	HP	EPM-442A	2018-12-19	2019-12-19	GB37170267
\boxtimes	Power Meter	HP	EPM-442A	2018-12-18	2019-12-18	GB37170413
\boxtimes	Power Sensor	HP	8481A	2018-12-18	2019-12-18	US37294267
\boxtimes	Power Sensor	HP	8481A	2018-12-19	2019-12-19	3318A96566
\boxtimes	Power Sensor	HP	8481A	2018-12-19	2019-12-19	2702A65976
\boxtimes	Power Meter	HP	EPM-442A	2018-12-19	2019-12-19	GB37170267
\boxtimes	Dual Directional Coupler	Agilent	778D-012	2018-12-19	2019-12-19	50228
\boxtimes	Low Pass Filter 1.5GHz	Micro LAB	LA-15N	2019-06-24	2020-06-24	2
\boxtimes	Attenuators(10 dB)	WEINSCHEL	23-10-34	2018-12-19	2019-12-19	BP4387
\boxtimes	Attenuators	Cernexwave	CFADC2603U5	2019-06-27	2020-06-27	C11740
	Dielectric Probe kit	SPEAG	DAK-3.5	2018-11-20	2019-11-20	1092

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The muscle simulating material was calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the muscle-equivalent material. Each equipment item was used solely within its respective calibration period.

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS:

Positioner

Robot Stäubli Unimation Corp. Robot Model: TX60L

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i7-2600

Clock Speed 3.40 GHz

Operating System Windows 7 Professional DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 3

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model ES3DV3 S/N: 3328

Construction Triangular core fiber optic detection system

Frequency 10 MHz to 4 GHz

Linearity ± 0.2 dB (30 MHz to 4 GHz)

Phantom

Phantom SAM Twin Phantom (V5.0)

Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$

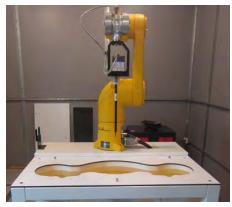


Figure 4.1 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

5.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

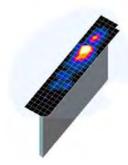


Figure 5.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

			≤ 3 GHz	>3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the			30°±1°	20°±1°
			≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan s	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orienta above, the measurement re corresponding x or y dimen at least one measurement p	tion, is smaller than the solution must be≤the usion of the test device with
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface grade	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
l b		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	X V Z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: DRRFCC1910-0098(1)

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

	HUMAN EXPOSURE LIMITS				
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)			
SPATIAL PEAK SAR * (Brain)	1.60	8.00			
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40			
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0			

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

7. SAR MEASUREMENT PROCEDURES

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

Report No.: DRRFCC1910-0098(1)

7.2 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

This device was tested with continuous modulated transmission and below duty cycle.

Channel	Frequency(MHz)	Duty Cycle [%]	Crest Factor
1	917.10	18.90	5.28
25	921.90	18.90	5.28
50	926.90	18.90	5.28

7.3 Generic device

The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in Figure 7.1. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer. If the intended use is not specified, all surfaces of the DUT shall be tested directly against the flat phantom.

The surface of the generic device (or the surface of the carry accessory holding the DUT) pointing towards the flat phantom shall be parallel to the surface of the phantom.

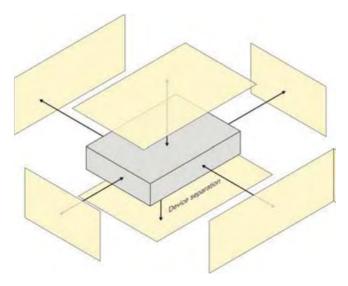


Figure 7.1 Test positions for a generic device

7.4 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

8. Nominal and Maximum Output Power Spec and RF Conducted Powers

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

8.1 RFID Nominal and Maximum Output Power Spec and Conducted Powers

Band	Frequency	Burst Modulate	ed Average[dBm]
Dallu	[MHz]	Maximum	Nominal
RFID	917.10 ~ 926.90	26.00	25.00

Table 8.1.1 RFID Nominal and Maximum Output Power Spec (Burst)

Band	Frequency	Frame Modulate	ed Average[dBm]
Ballu	[MHz]	Maximum	Nominal
RFID	917.10 ~ 926.90	18.77	17.77

Table 8.1.2 RFID Nominal and Maximum Output Power Spec (Frame)

Band	Freq.	Channel	RFID Burst AVG Conducted Power			
Bulla	(MHz)	Gildinier	(dBm)			
	917.10	1	25.12			
RFID	921.90	25	24.83			
	926.90	50	24.87			

Table 8.1.3 RFID Burst Average RF Power

Rand	Freq. C		RFID Frame AVG Conducted Power		
Ballu	(MHz)	Channel	(dBm)		
	917.10	1	17.89		
RFID	921.90	25	17.60		
	926.90	50	17.64		

Table 8.1.3 RFID Frame Average RF Power

Figure 8.1.1 Power Measurement Setup

8.2 Bluetooth LE Conducted Powers

Frame Modulated Average[dBm]							
Bluetooth	Maximum	2.5					
LE	Nominal	1.5					

Table 8.2.1 Nominal and Maximum Output Power Spec

Channel	Frequency	Frame AVG Output Power(LE)
Channel	(MHz)	(dBm)
Low	2402	1.30
Mid	2440	1.08
High	2480	0.96

Table 8.2.2 Bluetooth LE Frame Average RF Power

Bluetooth LE Conducted Powers procedures

Bluetooth (LE)

- 1) Enter LE mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
- 2) Instruments and EUT were connected like Figure 8.2.1.
- 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT.
- 4) Power levels were measured by a Power Meter.

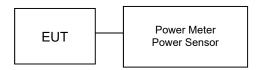


Figure 8.2.1 Average Power Measurement Setup

The average conducted output powers of Bluetooth LE were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level.

9. SYSTEM VERIFICATION

9.1 Tissue Verification

	MEASURED TISSUE PARAMETERS											
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]		
	900 Head	21.4	21.2	900.00	41.500	0.970	42.486	0.938	2.38	-3.30		
Oct. 30. 2019				917.10	41.469	0.977	42.257	0.956	1.90	-2.15		
Oct. 30. 2019				921.90	41.462	0.979	42.205	0.961	1.79	-1.84		
				926.90	41.453	0.981	42.148	0.965	1.68	-1.63		

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$= \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{a} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

9.2 Test System Verification

Prior to assessment, the system is verified to the ± 10 % of the specifications by using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 9.2.1 System Verification Results (10g)

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED											
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{10g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation [%]
Α	900	D900V2, SN: 1d146	Oct. 30. 2019	Head	21.4	21.2	3328	250	7.06	1.79	7.16	1.42

Note(s):

- 1. Full system validation status and results can be found in Attachment 3.
- 2. Effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.

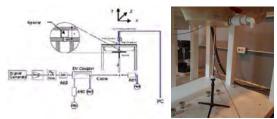


Figure 9.1 Dipole Verification Test Setup Diagram & Photo

10. SAR TEST RESULTS

10.1 Extremity SAR Results

Table 10.1.1 RFID Extremity SAR

					MEAS	SUREMENT RESU	LTS					
FREQUENCY		Mode	Maximum Allowed Power	Conducted Power	Drift Power [dB]	Phantom Position	Device Serial	Duty Cycle (%)	10g SAR	Scaling Factor (Duty	10g Scaled SAR	Plots
MHz	Ch		[dBm]	[dBm]	[ub]	rosition	Number	(%)	(W/kg)	Cycle)	(W/kg)	"
921.9	25	RFID	18.77	17.60	0.160	0 mm [Top]	FCC #1	18.90	0.089	1.309	0.117	
921.9	25	RFID	18.77	17.60	-0.100	0 mm [Bottom]	FCC #1	18.90	0.054	1.309	0.071	
921.9	25	RFID	18.77	17.60	-0.140	0 mm [Front]	FCC #1	18.90	0.221	1.309	0.289	
921.9	25	RFID	18.77	17.60	0.180	0 mm [Rear]	FCC #1	18.90	0.578	1.309	0.757	A1
921.9	25	RFID	18.77	17.60	-0.110	0 mm [Right]	FCC #1	18.90	0.311	1.309	0.407	
921.9	25	RFID	18.77	17.60	-0.110	0 mm [Left]	FCC #1	18.90	0.107	1.309	0.140	
	ANSI / IEEE C95.1-1992- SAFETY LIMIT						Extremity					
	Spatial Peak						4.0 W/kg (mW/g)					
		Uncontroll	ed Exposure/Ge	neral Populati	on Exposure			avera	aged over 10	gram		

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.

11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as Bluetooth LE devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. The different test position in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

Table 11.2.1 Estimated SAR (Extremity)

Mode	Frequency		mum d Power	Separation Distance (Hand)	Estimated SAR (Body)	
	[MHz]	[dBm]	[mW]	[mm]	[W/kg]	
Bluetooth LE	2480	2.5	2	5	0.030	

11.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 11.1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 11.1 Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06.

Table 11.3.1 Simultaneous Transmission Scenarios

No	Capable TX Configuration	RFID	Bluetooth LE 2.4GHz
1	RFID		Yes
2	Bluetooth LE 2.4GHz	Yes	

Table 11.3.2 Simultaneous SAR Cases

No.	Capable Transmit Configuration	Extremity SAR	Note
1	RFID + Bluetooth LE 2.4 GHz	Yes	

11.4 Extremity Simultaneous Transmission Analysis

Table 11.4.1 Simultaneous Transmission Scenario: RFID + Bluetooth LE (Extremity)

	able 11.4.1 Silliu	itaneous mansiin	SSION SCENATIO . IXI I	D . Didetootti EE (Extreiii	ty)
Exposure	Mode	Configuration	RFID SAR (W/kg)	Bluetooth LE SAR (W/kg)	ΣSAR (W/kg)
Condition			1	2	1+2
		Тор	0.117	0.030	0.147
		Bottom	0.071	0.030	0.101
Extremity	DEID	Front	0.289	0.030	0.319
SAR	RFID	Rear	0.757	0.030	0.787
		Right	0.407	0.030	0.437
		Left	0.140	0.030	0.170

12. MEASUREMENT UNCERTAINTIES

900 MHz Head

Form December	Uncertainty	Probability	Divisor	(Ci)	(Ci)	Standard	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	10g	(1g)	(10g)	Veff
Measurement System		-						
Probe calibration	± 6.0	Normal	1	1	1	± 6.0 %	± 6.0 %	∞
Isotropy	± 1.3	Normal	1	1	1	± 1.3 %	± 1.3 %	∞
Boundary Effects	± 2.0	Rectangular	√3	1	1	± 1.2 %	± 1.2 %	∞
Probe Linearity	± 0.3	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Probe modulation response	± 0.0	Rectangular	√3	1	1	± 0.0 %	± 0.0 %	∞
Detection limits	± 0.25	Rectangular	√3	1	1	± 0.14 %	± 0.14 %	∞
Readout Electronics	± 0.3	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8	Rectangular	√3	1	1	± 0.46 %	± 0.46 %	∞
Integration time	± 2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %	∞
RF Ambient Conditions – Noise	± 3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %	∞
RF Ambient Conditions – Reflections	± 3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %	∞
Probe Positioner	± 0.8	Rectangular	√3	1	1	± 0.46 %	± 0.46 %	∞
Probe Positioning	± 6.7	Rectangular	√3	1	1	± 3.9 %	± 3.9 %	∞
Algorithms for Max. SAR Eval.	± 4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %	∞
Test Sample Related								
Device Positioning	± 2.9	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %	∞
SAR Scaling	± 0.0	Rectangular	√3	1	1	± 0.0 %	± 0.0 %	∞
Physical Parameters								
Phantom Shell	± 7.6	Rectangular	√3	1	1	± 4.4 %	± 4.4 %	∞
SAR correction	± 0.0	Normal	1	1	0.84	± 0.0 %	± 0.0 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %	∞
Liquid conductivity (Meas.)	± 4.0	Normal	1	0.78	0.71	± 3.1 %	± 2.8 %	10
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.60	0.49	± 1.7 %	± 1.4 %	∞
Liquid permittivity (Meas.)	± 3.8	Normal	1	0.23	0.26	± 0.9 %	± 1.0 %	10
Temp. unc Conductivity	± 1.8	Rectangular	√3	0.78	0.71	± 0.8 %	± 0.7 %	∞
Temp. unc Permittivity	± 1.9	Rectangular	√3	0.23	0.26	± 0.3 %	± 0.3 %	∞
Combined Standard Uncertainty						± 11.6 %	± 11.4 %	330
Expanded Uncertainty (k=2)						± 23.2 %	± 22.8 %	

The above measurement uncertainties are according to IEEE Std 1528

13. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

Report No.: DRRFCC1910-0098(1)

- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2013,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), 2016.
- [21] RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02
- [24] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04
- [25] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [26] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [27] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [28] Anexo à Resolução No. 533, de 10 de September de 2009.
- [29] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), 2010.

Attachment 1. - Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ES3-3328_Mar19

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3328

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA

CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date: March 28, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID -	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Claudio Leubler

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: March 28, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3328_Mar19

Page 1 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3328_Mar19

ES3DV3 - SN:3328 March 28, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.03	1.05	1.08	± 10.1 %
DCP (mV) ⁸	106.5	105.2	105.6	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	191.9	±3.5 %	± 4.7 %
		Y	0.0	0.0	1.0		191.3		
		Y	0.0	0.0	1.0		191.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3328 March 28, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-22.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ES3DV3-SN:3328

March 28, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.53	6.53	6.53	0.34	1.73	± 12.0 %
835	41.5	0.90	6.26	6.26	6.26	0.62	1.27	± 12.0 %
900	41.5	0.97	6.16	6.16	6.16	0.43	1.56	± 12.0 %
1750	40.1	1.37	5.42	5.42	5.42	0.80	1.12	± 12.0 %
1900	40.0	1.40	5.10	5.10	5.10	0.67	1.28	± 12.0 %
2450	39.2	1.80	4.67	4.67	4.67	0.80	1.30	± 12.0 %
2600	39.0	1.96	4.46	4.46	4.46	0.75	1.35	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- SN:3328

March 28, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

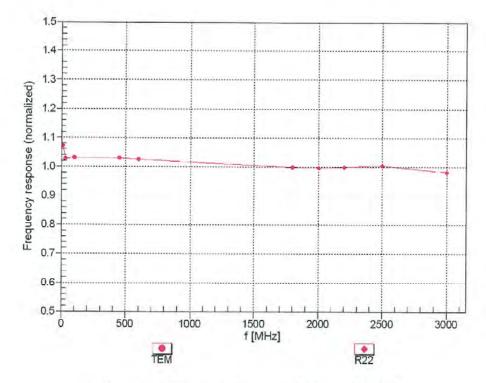
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.26	6.26	6.26	0.56	1.33	± 12.0 %
835	55.2	0.97	6.14	6.14	6.14	0.80	1.17	± 12.0 %
900	55.0	1.05	6.26	6.26	6.26	0.54	1.43	± 12.0 %
1750	53.4	1.49	5.01	5.01	5.01	0.58	1.40	± 12.0 %
1900	53.3	1.52	4.81	4.81	4.81	0.61	1.44	± 12.0 %
2450	52.7	1.95	4.43	4.43	4.43	0.80	1.20	± 12.0 %
2600	52.5	2.16	4.26	4.26	4.26	0.80	1.20	± 12.0 %

 $^{^{\}text{C}}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

Certificate No: ES3-3328_Mar19

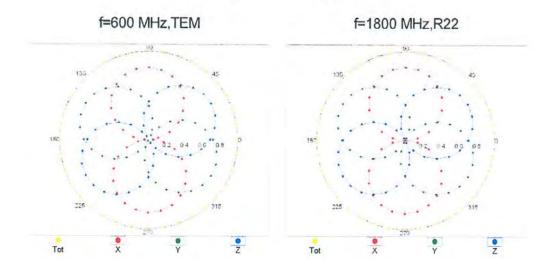
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

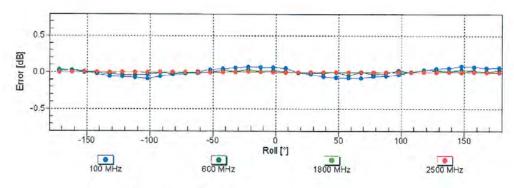

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3-SN:3328 March 28, 2019

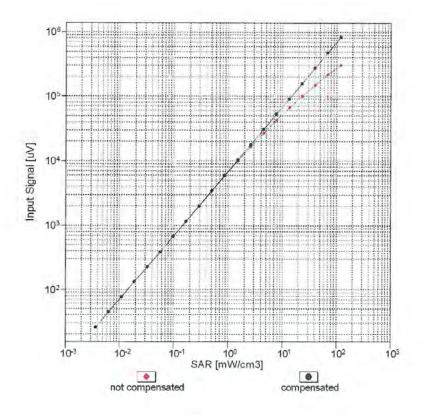
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

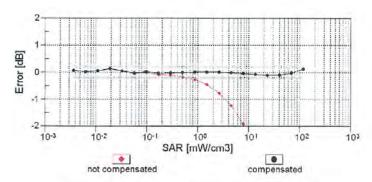



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3- SN:3328 March 28, 2019

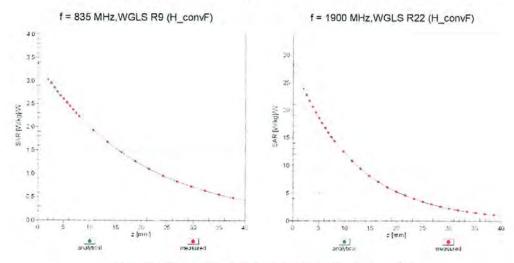
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



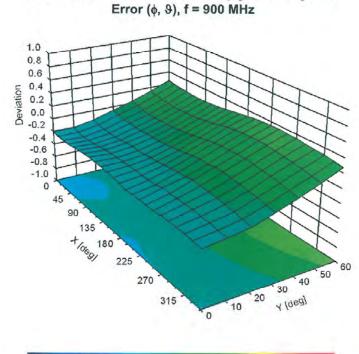

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3- SN:3328 March 28, 2019

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3328_Mar19



ES3DV3- SN:3328 March 28, 2019

Conversion Factor Assessment

Deviation from Isotropy in Liquid

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3328_Mar19

Page 10 of 10

Attachment 2. - Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

lient DT&C (Dymstec)		Certificate N	o: D900V2-1d146_Jul19
CALIBRATION C	ERTIFICATE		
Object	D900V2 - SN:1d1	146	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Source	s between 0.7-3 GHz
Calibration date:	July 18, 2019		
Calibration Equipment used (M&TE	critical for calibration)	ry facility: environment temperature (22 \pm 3)	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20 Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20 Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894) 04-Apr-19 (No. 217-02895)	Apr-20 Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327 SN: 7349	29-May-19 (No. EX3-7349_May19)	May-20
Reference Probe EX3DV4 DAE4	SN: 7349 SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
DALT	,		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18) Function	In house check: Oct-19
	Harrio	T MITOGOTT	

Katja Pokovic Technical Manager

Laboratory Technician

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Claudio Leubler

Certificate No: D900V2-1d146_Jul19

Calibrated by:

Approved by:

Issued: July 19, 2019

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-1d146_Jul19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appropriet	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	11.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.06 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appropriate	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	11.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	7.16 W/kg ± 16.5 % (k=2)

Certificate No: D900V2-1d146_Jul19

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 1.2 jΩ
Return Loss	- 36.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.4 Ω - 3.3 jΩ
Return Loss	- 24.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.409 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	00510
Manufactured by	SPEAG
Waridiactured by	

Certificate No: D900V2-1d146_Jul19

DASY5 Validation Report for Head TSL

Date: 18.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d146

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

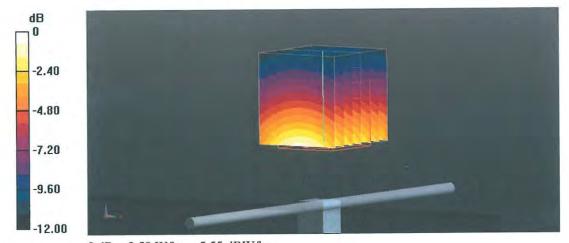
DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.51, 9.51, 9.51) @ 900 MHz; Calibrated: 29.05.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

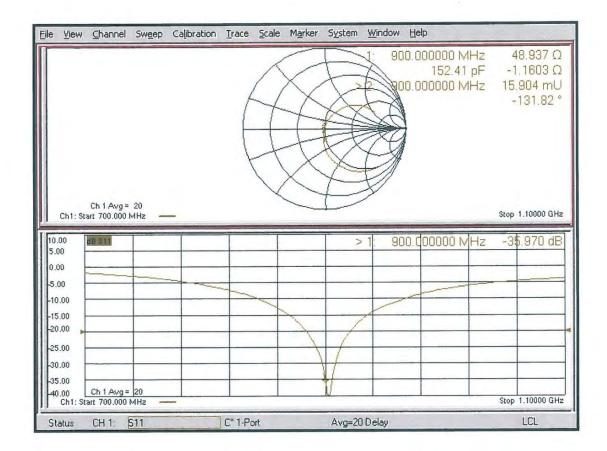

DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 65.42 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 2.69 W/kg; SAR(10 g) = 1.73 W/kgMaximum value of SAR (measured) = 3.59 W/kg


0 dB = 3.59 W/kg = 5.55 dBW/kg

Certificate No: D900V2-1d146_Jul19

Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 18.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d146

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

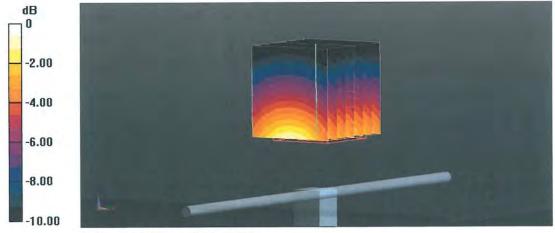
DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.95, 9.95, 9.95) @ 900 MHz; Calibrated: 29.05.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

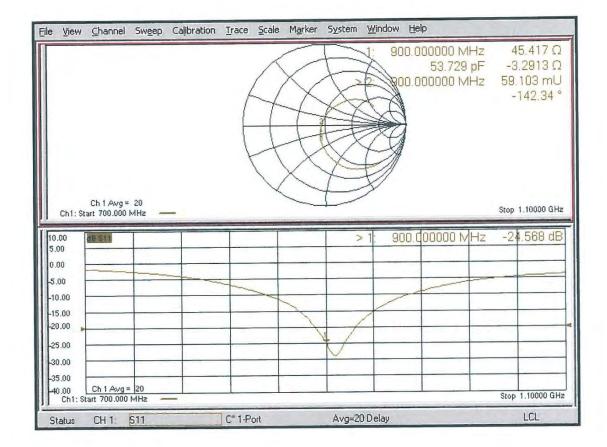

DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.91 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 2.72 W/kg; SAR(10 g) = 1.76 W/kg

Maximum value of SAR (measured) = 3.61 W/kg



0 dB = 3.61 W/kg = 5.58 dBW/kg

Certificate No: D900V2-1d146_Jul19

Impedance Measurement Plot for Body TSL

Attachment 3. - SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

Report No.: DRRFCC1910-0098(1)

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table Attachment 3.1 SAR System Validation Summary

SAR System	Freq. [MHz]	Date	Probe SN	Probe Type	Probe CAL. Point		PERM.	COND.	CW Validation			MOD. Validation		
							(εr)	(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
Α	900	2019.04.16	3328	ES3DV3	900	Head	40.446	0.988	PASS	PASS	PASS	N/A	N/A	N/A

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.