Rev.01 # **EMC Test Report** **Applicant** : Plasma Cloud Limited **Product Type** : WiFi Access Point Trade Name : Plasma Cloud Model Number : PA1200 Applicable Standard: FCC 47 CFR PART 15 SUBPART B ANSI C63.4: 2014 Receive Date : Aug. 29, 2017 **Test Period** : Mar. 19, 2018 ~ Aug. 05, 2019 Issue Date : Aug. 05, 2019 ### Issue by A Test Lab Techno Corp. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190 Test Firm MRA designation number: TW1062 Taiwan Accreditation Foundation accreditation number: 1330 Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample. **Revision History** | Rev. | Issue Date | Revisions | Revised By | |------|---------------|---|-------------| | 00 | Jun. 04, 2019 | Initial Issue. | Serene Yang | | 01 | Aug. 05, 2019 | Page 1 Revised test period. Page 7 Revised EUT modify description. Page 9 Revised configuration of test system Details. Page 10 Revised conducted emission certificate date of equipment. Page 19 & 20 Add conducted emission data. | Serene Yang | | | | | | | | | | | Rev.01 # **Verification of Compliance** Issued Date: Aug. 05, 2019 **Applicant** : Plasma Cloud Limited Product Type : WiFi Access Point Trade Name Plasma Cloud Model Number PA1200 **EUT Rated Voltage** DC 12 V - 24 V, 1 A (DC Power Adapter) DC 48 V - 54 V, 0.5 A (PoE injector (802.3af/at)) Test Voltage 120 Vac / 60 Hz Applicable Standard : FCC 47 CFR PART 15 SUBPART B ANSI C63.4: 2014 Test Result Complied Performing Lab. : A Test Lab Techno Corp. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 / Fax: +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330 http://www.atl-lab.com.tw/e-index.htm The above equipment has been tested by A Test Lab Techno Corp., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Ljao Reviewed By : Misty Wu) (Testing Engineer) (Misty Wu) Approved By (Terry Liao) (Testing Engineer) (Manager) # **TABLE OF CONTENTS** | 1 | General Information | 5 | |---|---|----| | | 1.1. Summary of Test Result | 5 | | | 1.2. Testing Location | 5 | | | 1.3. Measurement Uncertainty | 6 | | | 1.4. Test Site Environment | 6 | | 2 | EUT Description | 7 | | 3 | Test Methodology | 8 | | | 3.1. Decision of Test Mode | 8 | | | 3.2. EUT Exercise Software | 8 | | | 3.3. Configuration of Test System Details | 9 | | | 3.4. Test Instruments | 10 | | 4 | Measurement Procedure | 11 | | | 4.1. Conducted Emission | 11 | | | 4.2. Radiated Emission | 13 | | 5 | Test Results | 16 | | | 5.1. Conducted Emission | 16 | | | 5.2 Radiated Emission | 21 | Rev.01 ### 1 General Information ### 1.1. Summary of Test Result | Emission | | | | | |--|--------------------|---------|--------------------|--| | Standard | Item | Verdict | Remark | | | FCC 47 CFR PART 15 SUBPART B
ANSI C63.4 | Conducted Emission | PASS | Meet Class B limit | | | FCC 47 CFR PART 15 SUBPART B
ANSI C63.4 | Radiated Emission | PASS | Meet Class B limit | | The test results of this report was related only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result. ### 1.2. Testing Location Site Name: A Test Lab Techno Corp. http://www.atl-lab.com.tw/e-index.htm Site Address: No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.) Tel: +886-3-2710188 Fax: +886-3-2710190 Rev.01 # 1.3. Measurement Uncertainty | Test Item | | Frequency Range | Uncertainty (dB) | |--------------------|---------------|------------------|------------------| | Canduated Emission | AC Dower Dort | 9 kHz ~ 150 kHz | 2.7 | | Conducted Emission | AC Power Port | 150 kHz ~ 30 MHz | 2.7 | | Test Item | Test Site | Frequency Range | | Uncertainty (dB) | |--------------------|-----------|-----------------------|------------|------------------| | | TEOC | 30 MHz ~ 1000 MHz | Horizontal | 5.6 | | | TE06 | | Vertical | 6.0 | | | | 1000 MHz ~ 600 | 0 MHz | 5.2 | | | TE04 | 6000 MHz ~ 18000 MHz | | 5.5 | | Dedicted Fusionism | TE01 | 18000 MHz ~ 26500 MHz | | 4.8 | | Radiated Emission | | 26500 MHz ~ 40000 MHz | | 4.8 | | | TE09 | 1000 MHz ~ 6000 MHz | | 4.9 | | | | 6000 MHz ~ 18000 MHz | | 5.3 | | | | 18000 MHz ~ 26500 MHz | | 4.5 | | | | 26500 MHz ~ 40000 MHz | | 4.8 | Note: The Vertical and Horizontal measurement uncertainty of 1 GHz to 40 GHz is evaluated and choose which polarity is worst value. ### 1.4. Test Site Environment | Test Item | Items | Required (IEC 60068-1) | Actual | |--------------------|----------------------------|------------------------|--------| | | Temperature (°C) | 15-35 | 26 | | Conducted Emission | Humidity (%RH) | 25-75 | 60 | | | Barometric pressure (mbar) | 860-1060 | 990 | | | Temperature (°C) | 15-35 | 26 | | Radiated Emission | Humidity (%RH) | 25-75 | 60 | | | Barometric pressure (mbar) | 860-1060 | 990 | Rev.01 # 2 **EUT Description** | Applicant | Plasma Cloud Limited 5/F, Yat Chau Building 262 Des Voeux Road Central Hong Kong | | |--------------------------------|---|--| | Manufacturer | Emplus Technologies, Inc.
Bldg. B, 10F., No.209, Sec. 1, Nangang Rd., Nangang Dist., Taipei City 11568, Taiwan | | | Product Type | WiFi Access Point | | | Trade Name | Plasma Cloud | | | Model Number | PA1200 | | | I/O Ports | Refer to User Manual | | | Highest Operating
Frequency | 5825 MHz | | #### **EUT Modify Description:** Modify Description: (1)Change the applicant, applicant address, manufacturer address, product type, trade name, model number, FCC ID and the appearance. (2) Change accessories to configuration of test adapter. (Adapter Models: PA1015-120HUB125, DSA-12PFT-12 FUS 120100, PS1012-120HUB100) (3)Add a configuration of test adapter(Adapter Model: PA1024-3HU) After our evaluation, AC Power Conducted Emission need to test AC adapter: PA1024-3HU and its results are in the modify report. The others refer to the Original Report. Original Report : 1803FE23-01 Modify: 1905FE24 Rev.01 # 3 Test Methodology ### 3.1. Decision of Test Mode ### 3.1.1. The following test mode(s) were scanned during the preliminary test: | Pre-Test Mode | |---| | G + Wi-Fi 5 G + LAN link with AC Adapter mode
G + Wi-Fi 5 G + LAN link with POE Adapter mode | # 3.1.2. After the preliminary scan, the following test mode was final mode and found to produce the highest emission level. | Final Test Mode | | | | | |-----------------|--------------------|-------------|--------|--| | | Conducted Emission | | Mode 1 | | | Emission | Dedicted Engineer | Below 1 GHz | Mode 1 | | | | Radiated Emission | Above 1 GHz | Mode 1 | | The above highest emission mode of the configuration of the EUT and cable was chosen for all final test items. ### 3.2. EUT Exercise Software | 1 | Setup the EUT and simulators as shown on 3.3. | |---|--| | 2 | Turn on the power of all equipment. | | 3 | Notebook link to EUT by LAN. | | 4 | Notebook link to EUT by Wi-Fi. | | 5 | Data will be communicated between Notebook and Notebook through EUT that is connected to LAN port. | | 6 | Start to test get the worst reading. | | Mea | Measurement Software | | | | | |-----|---------------------------------|--------|---------|--|--| | No. | . Description Software Version | | | | | | 1 | Conducted Emission | EZ EMC | 1.1.4.3 | | | | 2 | Radiated Emission _ Below 1 GHz | EZ EMC | 1.1.4.2 | | | | 3 | Radiated Emission _ Above 1 GHz | EZ EMC | 1.1.4.4 | | | # 3.3. Configuration of Test System Details | | Devices Description | | | | | | |---------|---------------------|-----------------------------|------------------|---------------|-----------------------------------|--| | Product | | Manufacturer/
Trade | Model Number | Serial Number | Power Cord | | | (1) | HDD | WD | My Passport | WX71AA3L2366 | Power by EUT | | | (2) | Notebook | DELL | LAPTITU E5440 | 6699565657 | Non-Shielded, 1.8 m | | | (3) | Notebook | DELL | LATITUDE 7370 | 10811202626 | Non-Shielded, 1.8 m | | | (4) | AC Adapter | Powertron Electronics Corp. | PS1012-120HUB100 | N/A | Non-Shielded, 1.5 m with one core | | | (5) | AC Adapter | Powertron Electronics Corp. | PA1024-3HU | N/A | Non-Shielded, 1.5 m with one core | | Rev.01 ### 3.4. Test Instruments Test Period : Mar. 20, 2018, Aug. 05, 2019 | Conducted Emission test site | | | | | | | | | | | |---|-----|--------|--------|--------------------------|--------|--|--|--|--|--| | Equipment Manufacturer Model Number Serial Number Cal. Date Cal. Peri | | | | | | | | | | | | Test Receiver | R&S | ESCI | 100367 | 05/18/2017
05/23/2019 | 1 year | | | | | | | LISN | R&S | ENV216 | 101040 | 04/01/2017
04/03/2019 | 1 year | | | | | | | Test Site | ATL | TE02 | TE02 | N.C.R. | | | | | | | Test Period : Mar. 19, 2018 | | Radiated Er | mission - 10 Meter C | Chamber | | | |-------------------|--------------------------------|----------------------|---------------|------------|-------------| | Equipment | Manufacturer | Model Number | Serial Number | Cal. Date | Cal. Period | | Amplifier | Amplifier EMCI | | 980298 | 02/09/2018 | 1 year | | Amplifier | EMCI | EMC9135 | 980299 | 02/17/2018 | 1 year | | Test Receiver | R&S | ESCI | 100722 | 11/01/2017 | 1 year | | Test Receiver | R&S | ESCI | 101000 | 12/19/2017 | 1 year | | Broadband Antenna | SCHWARZBECK
MESS-ELEKTRONIK | VULB 9168 | 670 | 02/13/2018 | 1 year | | Broadband Antenna | SCHWARZBECK
MESS-ELEKTRONIK | VULB 9168 | 671 | 03/01/2018 | 1 year | | Test Site | ATL | TE06 | TE06 | 10/30/2017 | 1 year | Test Period: Mar. 21, 2018 | | Radiated Emission - 3 Meter Chamber | | | | | | | | | | | |----------------------------|-------------------------------------|--------------|---------------|------------|-------------|--|--|--|--|--|--| | Equipment | Manufacturer | Model Number | Serial Number | Cal. Date | Cal. Period | | | | | | | | EXA Spectrum Amalyzer | Agilent | N9010A | MY48030518 | 11/04/2017 | 1 year | | | | | | | | Amplifier | Agilent | 8449B | 3008A02237 | 10/16/2017 | 1 year | | | | | | | | Preamplifier EMCI | | EMC2654045 | 980028 | 08/21/2017 | 1 year | | | | | | | | Horn Antenna
(1~18GHz) | | | 9120D-550 | 06/20/2017 | 1 year | | | | | | | | Horn Antenna
(18~40GHz) | ETS | 3116 | 00086467 | 09/18/2017 | 1 year | | | | | | | | Test Site | ATL | TE09 | TE09 | 04/21/2017 | 1 year | | | | | | | Note: N.C.R. = No Calibration Request. ### 4 Measurement Procedure ### 4.1. Conducted Emission ### ■ Test Setup Rev.01 #### ■ Test Procedure The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 Ω // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 Ω // 50 uH coupling impedance with 50ohm termination. Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80 cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary. The AMN shall be placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0,8 m from the AMN. If the mains power cable is longer than 1m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument. If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored. ### 4.2. Radiated Emission ### ■ Test Setup Below 1 GHz Above 1 GHz Test arrangement for radiated emissions of tabletop equipment. Rev.01 #### **■** Test Procedure #### Below 1 GHz The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. When the EUT is floor-standing equipment, it is placed on the ground plane which has a 12 mm non-conductive covering to insulate the EUT from the ground plane. The turn table is 0.8 m height and 2.0 m wide x 1.0 m deep size. It can rotate 360 degrees to determine the position of the maximum emission level. The spcing between the each equipment was 10cm. The mains cables are dropped to floor and are round to recepatacle. Interconnecting cables of table top equipment that hang closer than 0.4 m to the ground plane are folded back and forth forming a bundle 0.3 m to 0.4 m long, hanging approximately in the middle between ground plane and table. The EUT was positioned such that the distance from antenna to the EUT was 10 meters and the receive antenna was moved from 1 m to 4 m to investigate maximum highest emission at least 6 points over the frequency range from 30 MHz to1 GHz using a resolution bandwidth of 120 kHz and measured by the quasi-peak detector. According to this standard paragraph 15.109, as an alternative to the radiated emission limits, digital devices may be shown to comply with the standards contained in Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement". #### Above 1 GHz The Setup is same as Below 1 GHz placement. The turn table is 0.8 m height and 1.8 m wide x 1.0 m deep size. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meter for above 1 GHz, the highest frequency performed according to internal source frequency of the EUT, the specification was below: | Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz) | | | | |---|---|--|--|--| | Below 1.705 | 30 | | | | | 1.705 - 108 | 1000 | | | | | 108 - 500 | 2000 | | | | | 500 - 1000 | 5000 | | | | | Above 1000 | 5th harmonic of the highest frequency or 40 GHz, whichever is lower | | | | Absorber shall be spread between floor of a turn table and a receive antenna shown in 4.2.3. The antenna used boresight antenna master from 1 meter and 4 meters to find out the maximum emission level and find the highest emission at least 6 points. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated on radiated measurement. Radiated emissions were applied to above 1 GHz using a resolution bandwidth of 1 MHz and measured by the peak and average detector which antenna to the EUT distance was 3meters. If the EUT was meet both limits and measurement with the average detector receiver is unnecessary. Rev.01 # 5 Test Results ### 5.1. Conducted Emission #### ■ Limit | Froguency (MHz) | Class A | (dBuV) | Class B (dBuV) | | | |------------------|------------|---------|----------------|---------|--| | Frequency (MHz) | Quasi-peak | Average | Quasi-peak | Average | | | 0.15 - 0.5 | 79 | 66 | 66 - 56 | 56 - 46 | | | 0.50 - 5.0 | 73 | 60 | 56 | 46 | | | 5.0 - 30.0 | 73 | 60 | 60 | 50 | | Note: (1) The lower limit shall apply at the transition frequencies. (2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz. Rev.01 ### ■ Test Result Test Standard: FCC Part 15B Power Line: L1 Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Description: AC adapter: PS1012-120HUB100 | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1580 | 37.93 | 19.52 | 9.68 | 47.61 | 29.20 | 65.57 | 55.57 | -17.96 | -26.37 | Pass | | 2 | 0.1700 | 40.25 | 25.48 | 9.68 | 49.93 | 35.16 | 64.96 | 54.96 | -15.03 | -19.80 | Pass | | 3 | 0.2060 | 36.32 | 22.08 | 9.67 | 45.99 | 31.75 | 63.37 | 53.37 | -17.38 | -21.62 | Pass | | 4 | 0.2740 | 34.61 | 24.67 | 9.67 | 44.28 | 34.34 | 61.00 | 51.00 | -16.72 | -16.66 | Pass | | 5 | 7.2700 | 26.12 | 15.64 | 9.87 | 35.99 | 25.51 | 60.00 | 50.00 | -24.01 | -24.49 | Pass | | 6 | 9.8140 | 23.08 | 14.69 | 9.92 | 33.00 | 24.61 | 60.00 | 50.00 | -27.00 | -25.39 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). Rev.01 Test Standard: FCC Part 15B Power Line: N Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Description: AC adapter: PS1012-120HUB100 | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1740 | 40.59 | 26.99 | 9.68 | 50.27 | 36.67 | 64.77 | 54.77 | -14.50 | -18.10 | Pass | | 2 | 0.1940 | 30.16 | 12.80 | 9.68 | 39.84 | 22.48 | 63.86 | 53.86 | -24.02 | -31.38 | Pass | | 3 | 0.2140 | 29.92 | 17.10 | 9.68 | 39.60 | 26.78 | 63.05 | 53.05 | -23.45 | -26.27 | Pass | | 4 | 0.2700 | 34.31 | 25.00 | 9.68 | 43.99 | 34.68 | 61.12 | 51.12 | -17.13 | -16.44 | Pass | | 5 | 0.5700 | 26.65 | 13.84 | 9.68 | 36.33 | 23.52 | 56.00 | 46.00 | -19.67 | -22.48 | Pass | | 6 | 7.3540 | 25.75 | 15.76 | 9.89 | 35.64 | 25.65 | 60.00 | 50.00 | -24.36 | -24.35 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). Rev.01 Test Standard: FCC Part 15B Power Line: L1 Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Description: AC adapter: PA1024-3HU | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1900 | 40.73 | 26.01 | 9.64 | 50.37 | 35.65 | 64.04 | 54.04 | -13.67 | -18.39 | Pass | | 2 | 1.0420 | 24.84 | 17.10 | 9.68 | 34.52 | 26.78 | 56.00 | 46.00 | -21.48 | -19.22 | Pass | | 3 | 3.9740 | 27.55 | 19.13 | 9.77 | 37.32 | 28.90 | 56.00 | 46.00 | -18.68 | -17.10 | Pass | | 4 | 8.5020 | 36.72 | 29.22 | 9.88 | 46.60 | 39.10 | 60.00 | 50.00 | -13.40 | -10.90 | Pass | | 5 | 9.3420 | 39.81 | 32.75 | 9.88 | 49.69 | 42.63 | 60.00 | 50.00 | -10.31 | -7.37 | Pass | | 6 | 9.5580 | 40.04 | 34.09 | 9.90 | 49.94 | 43.99 | 60.00 | 50.00 | -10.06 | -6.01 | Pass | | 7 | 9.8940 | 39.02 | 32.38 | 9.90 | 48.92 | 42.28 | 60.00 | 50.00 | -11.08 | -7.72 | Pass | | 8 | 10.4580 | 35.74 | 29.09 | 9.91 | 45.65 | 39.00 | 60.00 | 50.00 | -14.35 | -11.00 | Pass | | 9 | 10.7420 | 34.25 | 27.53 | 9.91 | 44.16 | 37.44 | 60.00 | 50.00 | -15.84 | -12.56 | Pass | | 10 | 24.1180 | 25.14 | 18.82 | 10.03 | 35.17 | 28.85 | 60.00 | 50.00 | -24.83 | -21.15 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). Rev.01 Test Standard: FCC Part 15B Power Line: N Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Description: AC adapter: PA1024-3HU | No. | Frequency | QP | AVG | Correction | QP | AVG | QP | AVG | QP | AVG | Remark | |-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------| | | | reading | reading | factor | result | result | limit | limit | margin | margin | | | | (MHz) | (dBuV) | (dBuV) | (dB) | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB) | (dB) | | | 1 | 0.1500 | 46.17 | 29.81 | 9.68 | 55.85 | 39.49 | 66.00 | 56.00 | -10.15 | -16.51 | Pass | | 2 | 0.1900 | 40.59 | 27.57 | 9.67 | 50.26 | 37.24 | 64.04 | 54.04 | -13.78 | -16.80 | Pass | | 3 | 0.4100 | 26.75 | 13.80 | 9.68 | 36.43 | 23.48 | 57.65 | 47.65 | -21.22 | -24.17 | Pass | | 4 | 2.2780 | 27.21 | 19.62 | 9.75 | 36.96 | 29.37 | 56.00 | 46.00 | -19.04 | -16.63 | Pass | | 5 | 4.6180 | 27.70 | 19.90 | 9.82 | 37.52 | 29.72 | 56.00 | 46.00 | -18.48 | -16.28 | Pass | | 6 | 7.9540 | 29.46 | 22.93 | 9.91 | 39.37 | 32.84 | 60.00 | 50.00 | -20.63 | -17.16 | Pass | | 7 | 24.0300 | 23.35 | 16.84 | 10.23 | 33.58 | 27.07 | 60.00 | 50.00 | -26.42 | -22.93 | Pass | Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV). Rev.01 #### 5.2. Radiated Emission #### **■** Limit Under 1 GHz test shall not exceed following value | Officer 1 GHZ test shall not exceed following value | | | | | | | | | | | |---|--------------|--------|--------------|--------|--|--|--|--|--|--| | FCC 47 CFR PART 15 SUBPART B | | | | | | | | | | | | Frequency range | Clas | ss A | Class B | | | | | | | | | (MHz) | Distance (m) | dBuV/m | Distance (m) | dBuV/m | | | | | | | | 30 to 88 | 10 | 39 | 3 | 40 | | | | | | | | 88 to 216 | 10 | 43.5 | 3 | 43.5 | | | | | | | | 216 to 960 | 10 | 46.4 | 3 | 46 | | | | | | | | Above 960 | 10 | 49.5 | 3 | 54 | | | | | | | | CISPR 22 | | | | | | | | | | |-----------------|--------------|--------|--------------|--------|--|--|--|--|--| | Frequency range | Clas | ss A | Class B | | | | | | | | (MHz) | Distance (m) | dBuV/m | Distance (m) | dBuV/m | | | | | | | 30 to 230 | 10 | 40 | 10 | 30 | | | | | | | 230 to 1000 | 10 | 47 | 10 | 37 | | | | | | Above 1 GHz test shall not exceed following value | Frequency
(MHz) | dBuV/m (Distance 3m) | | | | | | | |---------------------|----------------------|------|---------|------|--|--|--| | | Clas | ss A | Class B | | | | | | (12) | Average | Peak | Average | Peak | | | | | 1000 ~ 40000 | 60 | 80 | 54 | 74 | | | | Remark: - 1. The tighter limit shall apply at the edge between two frequency bands. - 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. - 3. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m) - 4. Peak detector limit is corresponding to 20 dB above the maximum permitted average limit. According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table: | Highest frequency generated or used in the device or in which the device operated or tunes (MHz) | Upper frequency of measurement range
(MHz) | |---|---| | Below 1.75 | 30 | | 1.75-108 | 1000 | | 108-500 | 2000 | | 500-1000 | 5000 | | Above 1000 | 5th harmonic of the highest frequency or 40 GHz, whichever is lower | Rev.01 #### ■ Test Result Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Measurement Range: 30 MHz~1 GHz Ant.Polar.: Horizontal | No | Frequency | Reading | Correct Factor | Result | Limit | Margin | Height | Degree | Domork | |-----|-----------|---------|----------------|----------|----------|--------|--------|--------|--------| | No. | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | (cm) | (°) | Remark | | 1 | 80.0806 | 39.38 | -20.68 | 18.70 | 30.00 | -11.30 | 200 | 260 | QP | | 2 | 100.5806 | 42.02 | -20.92 | 21.10 | 30.00 | -8.90 | 400 | 359 | QP | | 3 | 204.9551 | 44.23 | -18.93 | 25.30 | 30.00 | -4.70 | 300 | 133 | QP | | 4 | 497.6765 | 38.39 | -10.49 | 27.90 | 37.00 | -9.10 | 100 | 360 | QP | | 5 | 515.4374 | 40.07 | -10.17 | 29.90 | 37.00 | -7.10 | 274 | 360 | QP | | 6 | 909.6667 | 31.27 | -4.27 | 27.00 | 37.00 | -10.00 | 100 | 213 | QP | Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV). Example: 18.70 = -20.68 + 39.38 2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB). Rev.01 Test Standard: FCC Part 15B (limit use CISPR 22) Test Distance: 10 m Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Measurement Range: 30 MHz~1 GHz Ant.Polar.: Vertical | No | Frequency | Reading | Correct Factor | Result | Limit | Margin | Height | Degree | Domark | |-----|-----------|---------|----------------|----------|----------|--------|--------|--------|--------| | No. | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | (cm) | (°) | Remark | | 1 | 47.1600 | 37.43 | -15.83 | 21.60 | 30.00 | -8.40 | 100 | 0 | QP | | 2 | 80.6442 | 38.26 | -20.26 | 18.00 | 30.00 | -12.00 | 299 | 206 | QP | | 3 | 95.7622 | 37.35 | -20.65 | 16.70 | 30.00 | -13.30 | 400 | 351 | QP | | 4 | 136.4598 | 38.07 | -15.77 | 22.30 | 30.00 | -7.70 | 100 | 0 | QP | | 5 | 176.8878 | 44.95 | -15.65 | 29.30 | 30.00 | -0.70 | 100 | 89 | QP | | 6 | 204.9551 | 44.86 | -17.56 | 27.30 | 30.00 | -2.70 | 100 | 311 | QP | Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV). Example: 21.60 = -15.83 + 37.43 2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB). Rev.01 Test Standard: FCC Part 15B Test Distance: 3 m Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Measurement Range: 1 GHz~40 GHz Ant.Polar.: Horizontal | No | Frequency | Reading | Correct Factor | Result | Limit | Margin | Height | Degree | Domark | |-----|-----------|---------|----------------|----------|----------|--------|--------|--------|--------| | No. | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | (cm) | (°) | Remark | | 1 | 1969.000 | 48.96 | -3.47 | 45.49 | 74.00 | -28.51 | 100 | 45 | peak | | 2 | 2224.000 | 52.64 | -2.46 | 50.18 | 74.00 | -23.82 | 100 | 102 | peak | | 3 | 3006.000 | 43.75 | 0.09 | 43.84 | 74.00 | -30.16 | 100 | 171 | peak | | 4 | 4927.000 | 40.68 | 5.32 | 46.00 | 74.00 | -28.00 | 100 | 11 | peak | | 5 | 5743.000 | 38.88 | 6.81 | 45.69 | 74.00 | -28.31 | 100 | 217 | peak | | 6 | 7392.000 | 47.58 | 11.66 | 59.24 | 74.00 | -14.76 | 200 | 212 | peak | | 7 | 7392.000 | 25.70 | 11.66 | 37.36 | 54.00 | -16.64 | 200 | 212 | AVG | Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV). Example: 45.49 = -3.47 + 48.96 2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB). Rev.01 Test Standard: FCC Part 15B Test Distance: 3 m Test Mode: Mode 1 Test Power: AC 120 V/60 Hz Measurement Range: 1 GHz~40 GHz Ant.Polar.: Vertical | NI- | Frequency | Reading | Correct Factor | Result | Limit | Margin | Height | Degree | Damada | |-----|-----------|---------|----------------|----------|----------|--------|--------|--------|--------| | No. | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | (cm) | (°) | Remark | | 1 | 1952.000 | 45.28 | -3.56 | 41.72 | 74.00 | -32.28 | 200 | 234 | peak | | 2 | 2224.000 | 56.34 | -2.46 | 53.88 | 74.00 | -20.12 | 200 | 108 | peak | | 3 | 2224.000 | 26.69 | -2.46 | 24.23 | 54.00 | -29.77 | 200 | 108 | AVG | | 4 | 2717.000 | 49.95 | -0.76 | 49.19 | 74.00 | -24.81 | 100 | 85 | peak | | 5 | 4927.000 | 41.11 | 5.32 | 46.43 | 74.00 | -27.57 | 100 | 61 | peak | | 6 | 7392.000 | 45.83 | 11.66 | 57.49 | 74.00 | -16.51 | 200 | 240 | peak | | 7 | 7392.000 | 25.55 | 11.66 | 37.21 | 54.00 | -16.79 | 200 | 240 | AVG | | 8 | 15552.000 | 50.02 | 18.32 | 68.34 | 74.00 | -5.66 | 112 | 0 | peak | | 9 | 15552.000 | 21.56 | 18.32 | 39.88 | 54.00 | -14.12 | 112 | 0 | AVG | Note: 1. Result (dBuV/m) = Correction factor (dB/m) + Reading(dBuV). Example: 41.72 = -3.56 + 45.28 2. Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).Z