

4.5. Conducted Band Edge and Spurious Emission Measurement

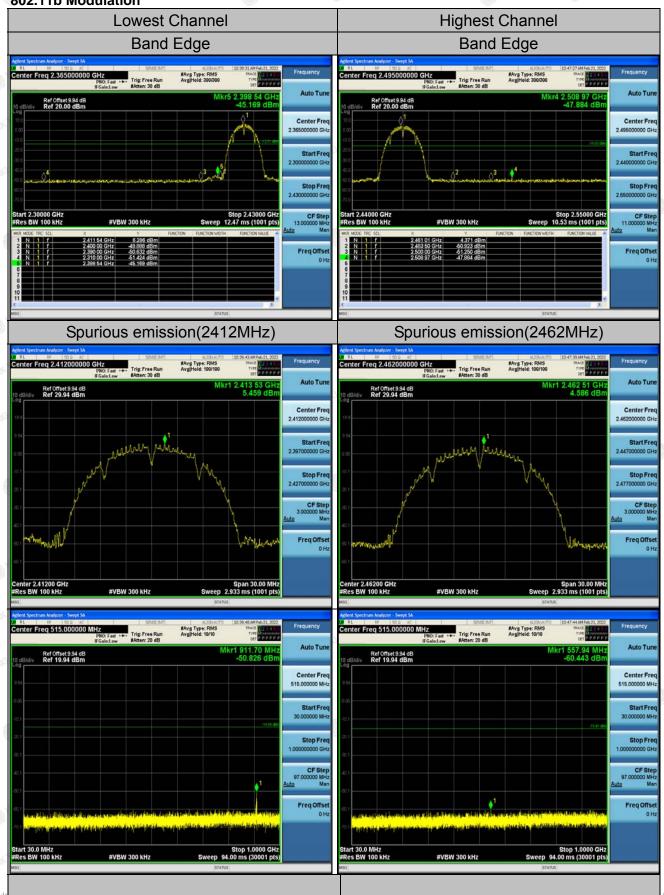
4.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (d)					
Test Method:	KDB558074	HIAKTESTIME	HUAKTESTIN				
Limit:	In any 100 kHz bandwidth outside of the authorize frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB 30dB relative to the maximum PSD level in 100 kHz RF conducted measurement and radiated emission which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).						
Test Setup:	Spectrum Analyzer	EUT	HUAKTESTA				
Test Mode:	Transmitting mode with r	modulation	-				
Test Procedure:	 The testing follows FC D01 15.247 Meas Gt The RF output of EUT analyzer by RF cable was compensated to measurement. Set to the maximum p EUT transmit continu Set RBW = 100 kHz, V Unwanted Emissions bandwidth outside of shall be attenuated b maximum in-band pe maximum peak condused. If the transmitter power limits based or a time interval, the at paragraph shall be 30 15.247(d). Measure and record the against the limit line in the state of the period o	was connected to the and attenuator. The the results for each ower setting and enabusly. WBW=300 kHz, Peak measured in any 10 the authorized frequery at least 20 dB relational power per complies with the continuation required under the use of RMS avertenuation required under the test in the t	be spectrum path loss able the Detector. 0 kHz ency band ive to the kHz when procedure is conducted traging over inder this a per report. excluded				
Test Result:	PASS	TING	TIN				

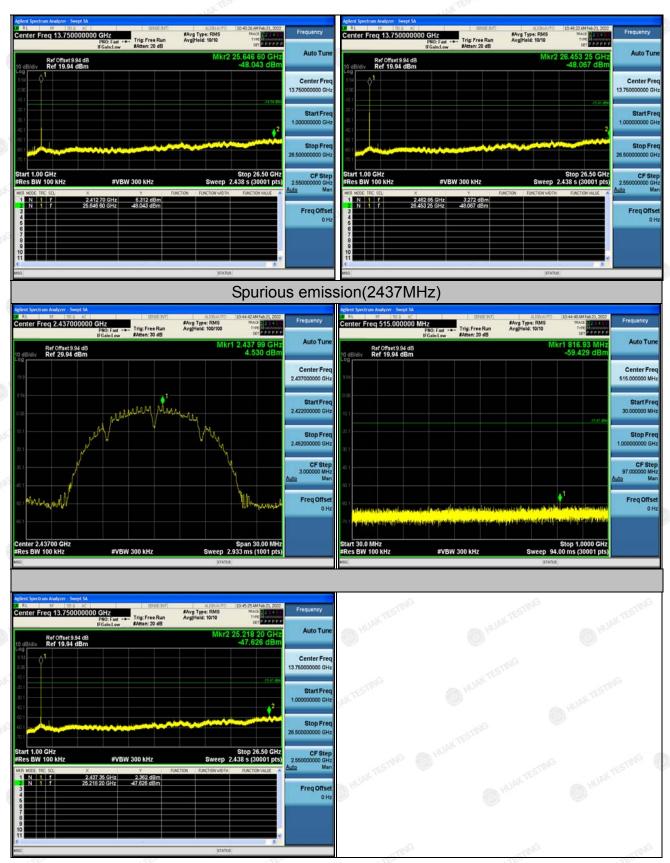
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

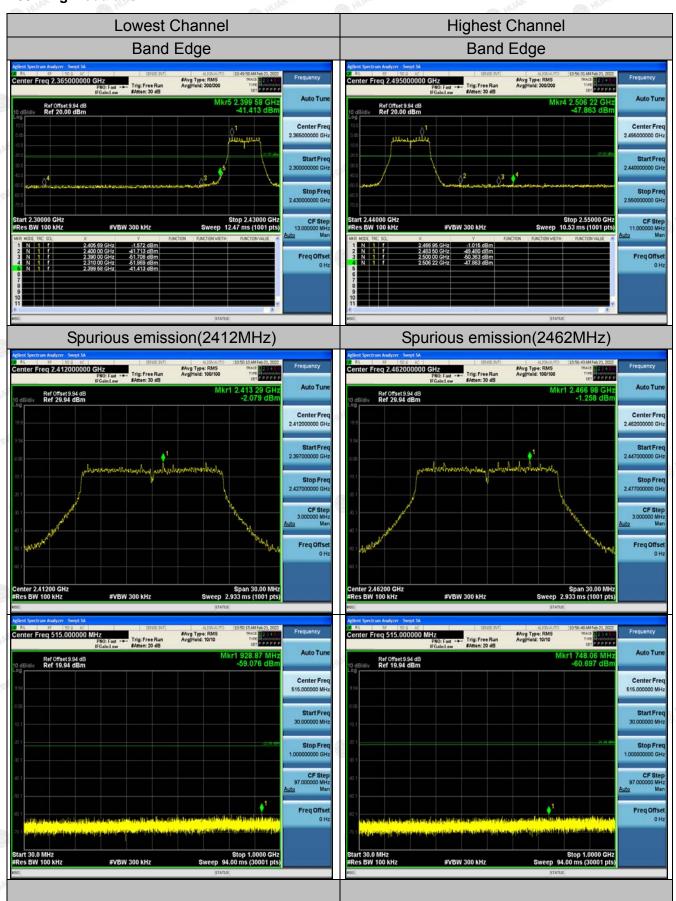
4.5.2. Test Instruments

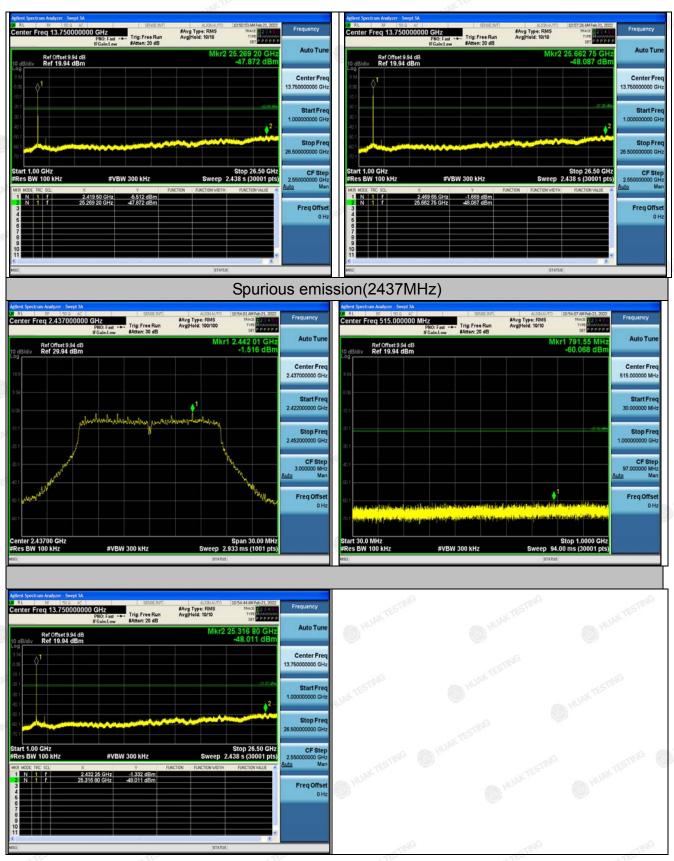

	RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022					
Signal generator	Agilent	N5183A	HKE-071	Dec. 09, 2021	Dec. 08, 2022					
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 09, 2021	Dec. 08, 2022					
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

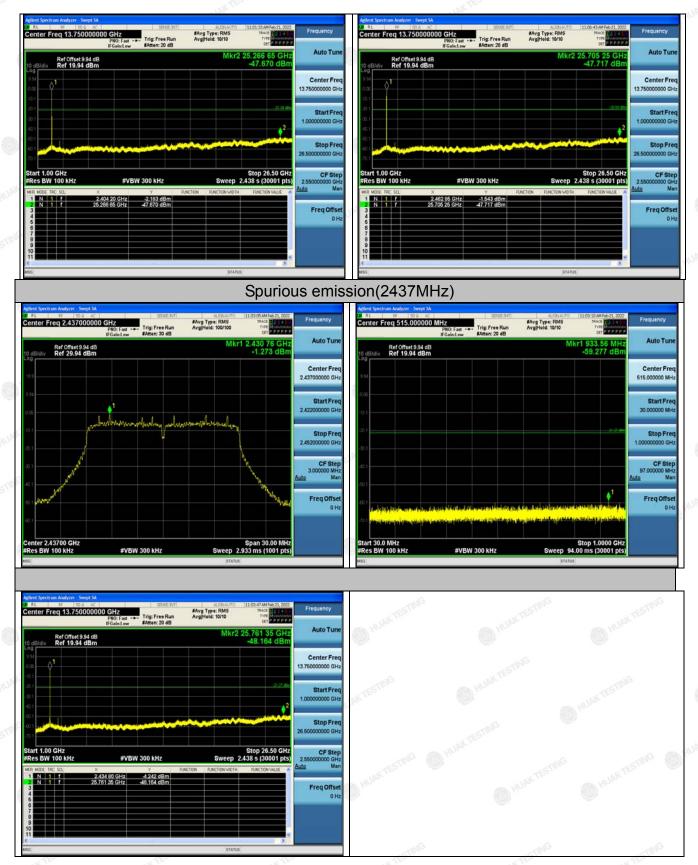
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

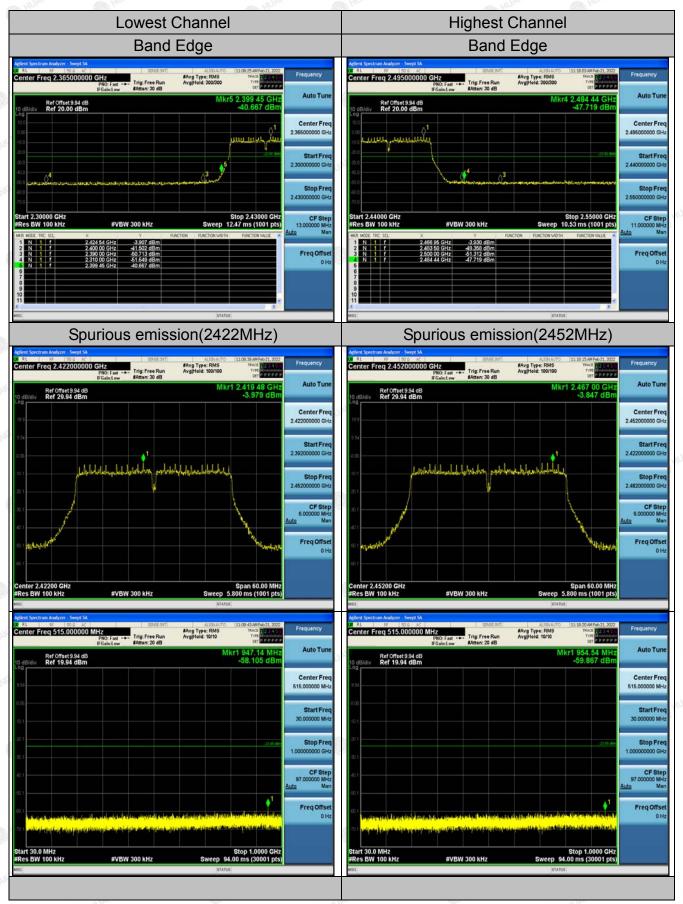

4.5.3. Test Data Chain 1 802.11b Modulation

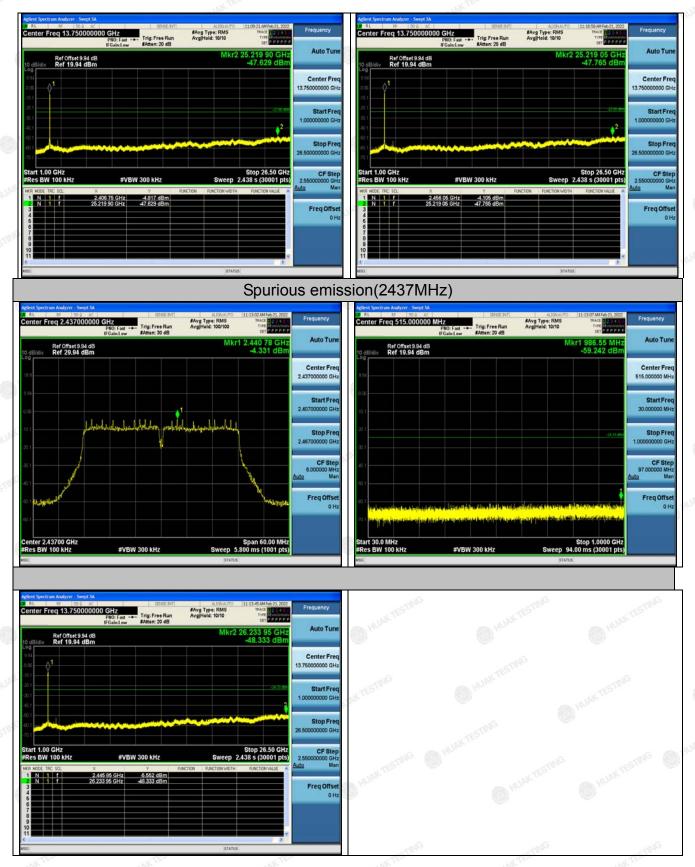


this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

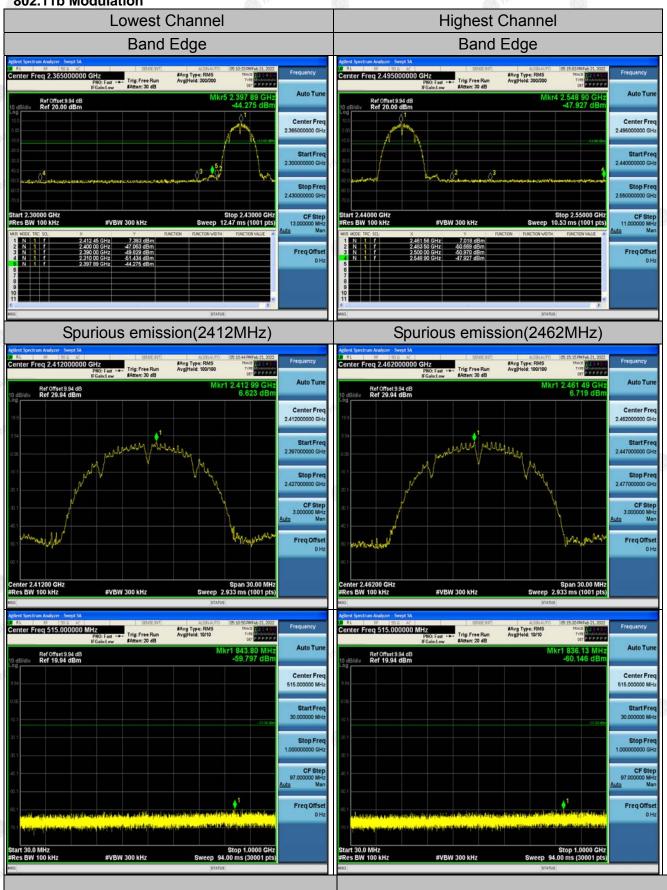


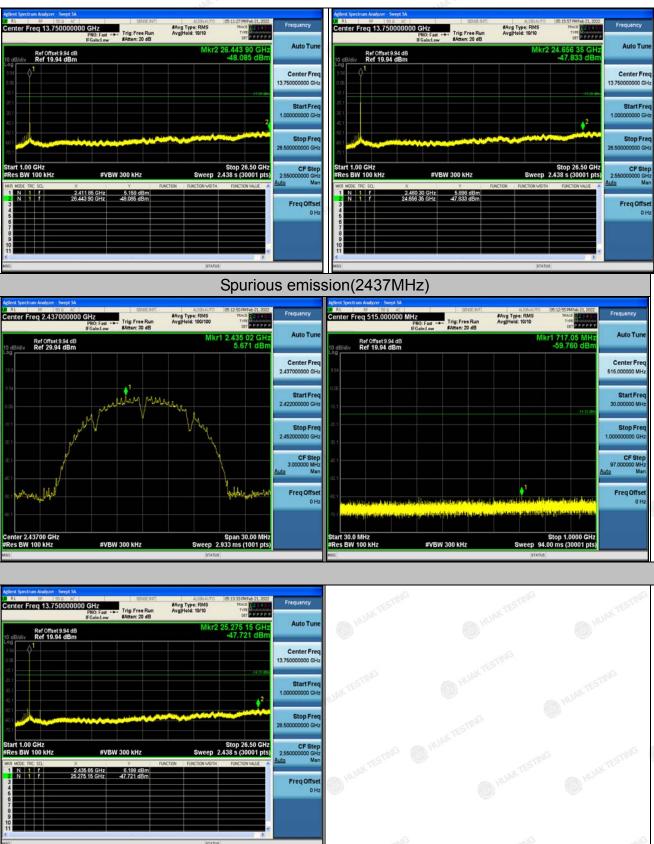

802.11g Modulation


802.11n (HT20) Modulation

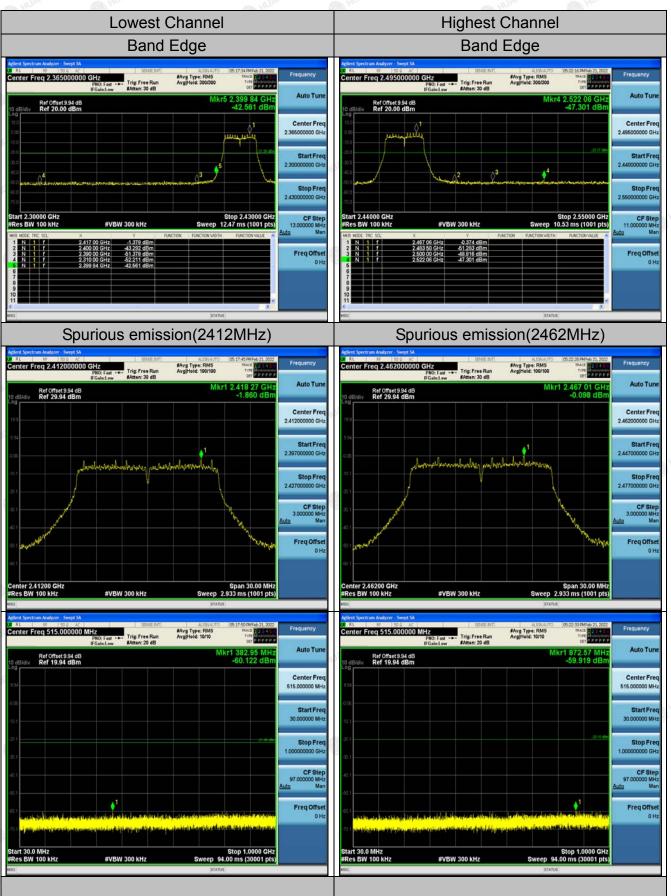


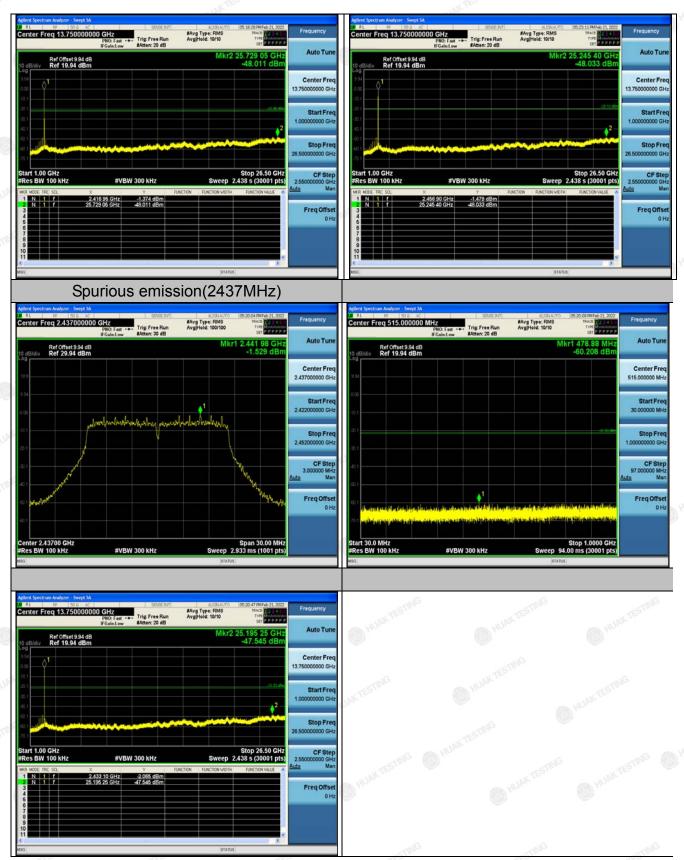
NG


802.11n (HT40) Modulation



Chain 2 802.11b Modulation

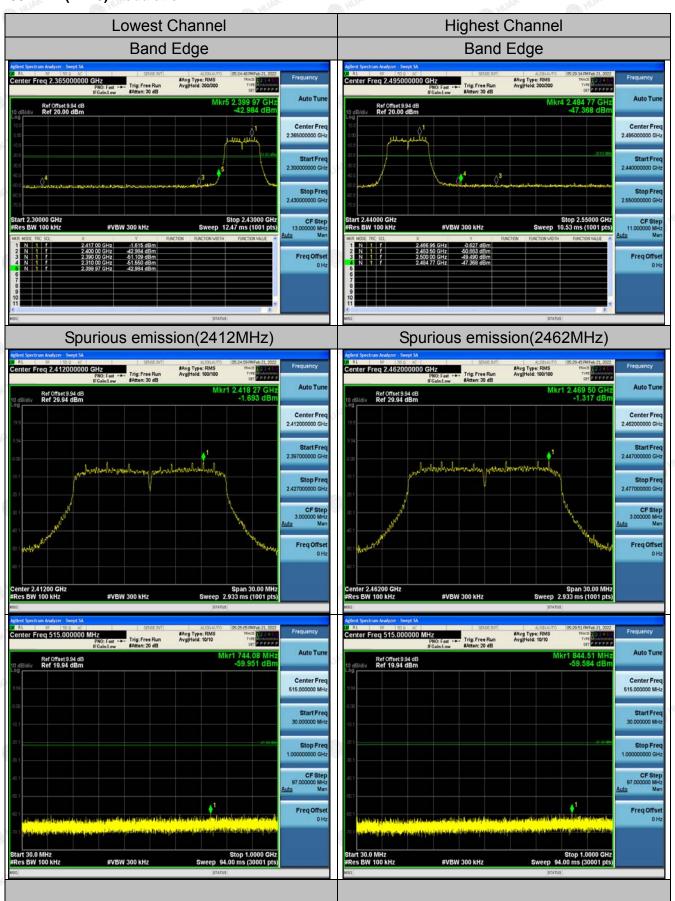


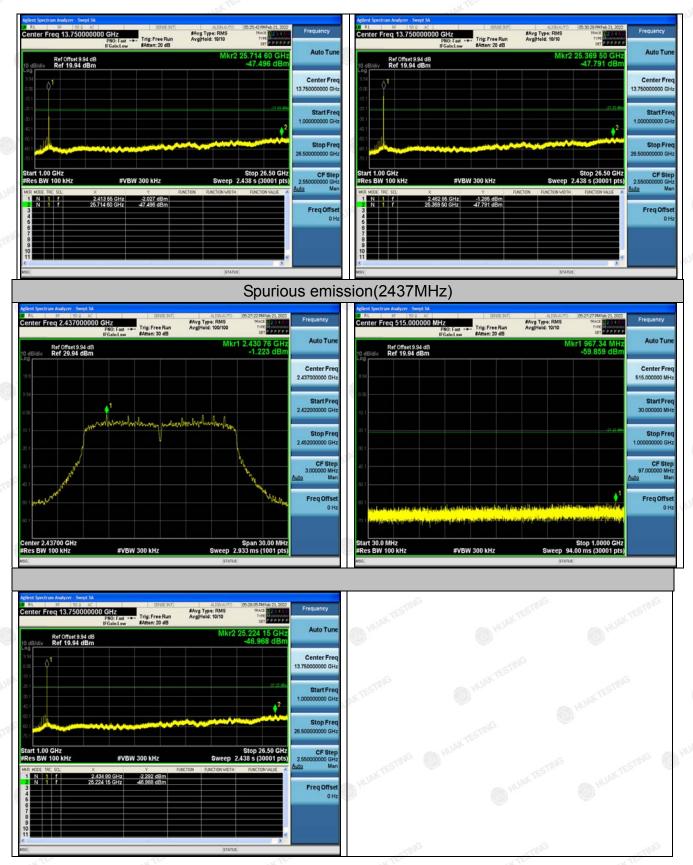


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

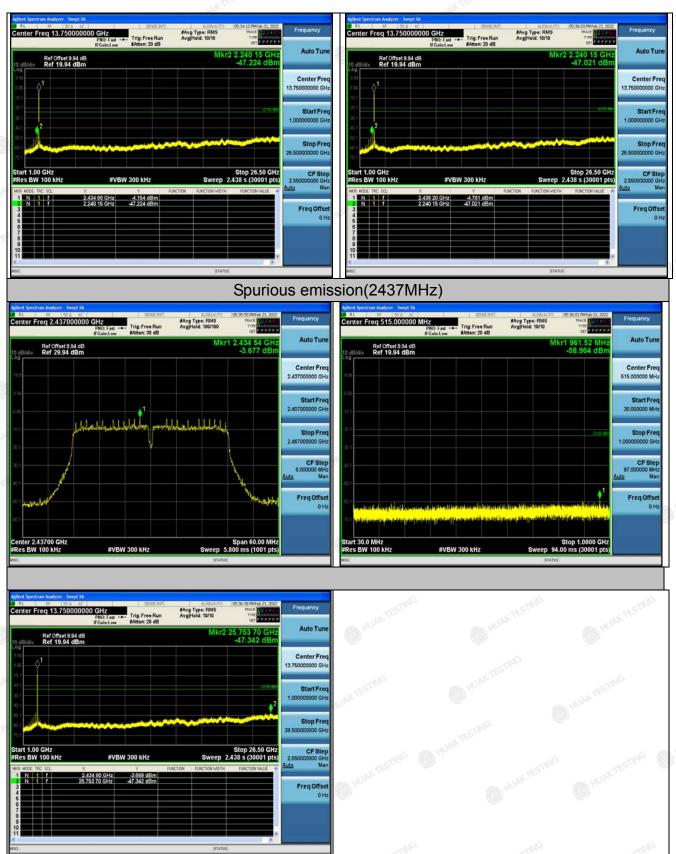
802.11g Modulation





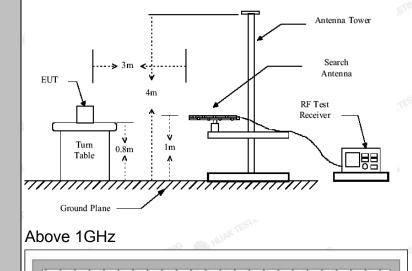
NG

802.11n (HT20) Modulation



802.11n (HT40) Modulation

TESTING


Report No.: HK2202170428-1E

4.6. Radiated Spurious Emission Measurement

4.6.1. Test Specification

Test Requirement:	FCC Part15	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10	0: 2013	(HUAR		HUAN	
Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz					
Measurement Distance:	3 m	3 m				TESTING	
Antenna Polarization:	Horizontal &	Vertical			0	HOUR	
Operation mode:	Transmitting	mode w	ith modulat	ion			
	Frequency 9kHz- 150kHz	Detecto Quasi-pe		VBW 1kHz		Remark si-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-pe		30kHz		si-peak Value	
	30MHz-1GHz	Quasi-pe	- 1	300KHz		si-peak Value	
	Above 1GHz	Peak	1MHz	3MHz		eak Value	
	AUANG	Peak	1MHz	10Hz	Ave	erage Value	
	Frequen	псу	Field Stre (microvolts	- 1(7)		asurement nce (meters)	
	0.009-0.4	. 75 %	2400/F(F	2400/F(KHz)		300	
	0.490-1.7		,	24000/F(KHz) 30		30	
		1.705-30		ING.		30	
	30-88		100			3	
Limit:	88-216 216-960		150 200		TING	3	
Lillit.	175		500		9,,,	3	
	7,5000						
	II Frequency I		eld Strength rovolts/meter)	Measure Distan (mete	се	Detector	
	Above 1GHz	WAK TE	500		,	Average	
	Above IGHZ	2 (1)	5000 3			Peak	
	For radiated	emission	ns below 30)MHz	i .	- <ting< th=""></ting<>	
	+	→			Compute		
Test setup:	EUT 0.8m	Turn table	\bigcup \lceil	Pre -A	mplifier	KTESTING	
	V	Grou	and Plane	Re	eceiver		
	30MHz to 10	3Hz Jacob					

Antenna Tower Ground Reference Plane Test Receiver Controller

1. For the radiated emission test below 1GHz:

Test Procedure:

The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which

he results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HOAK, his document cannot be report will be confirmed at http://www.cer-mark.com

4.6.2. Test Instruments

	Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Receiver	R&S	ESR-7	HKE-010	Dec. 09, 2021	Dec. 08, 2022					
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022					
Preamplifier	EMCI	EMC051845 SE	HKE-015	Dec. 09, 2021	Dec. 08, 2022					
Preamplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	Dec. 08, 2022					
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 09, 2021	Dec. 08, 2022					
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 09, 2021	Dec. 08, 2022					
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 09, 2021	Dec. 08, 2022					
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A					
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 09, 2021	Dec. 08, 2022					
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A HUMTE					
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A					
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022					
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 09, 2021	Dec. 08, 2022					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



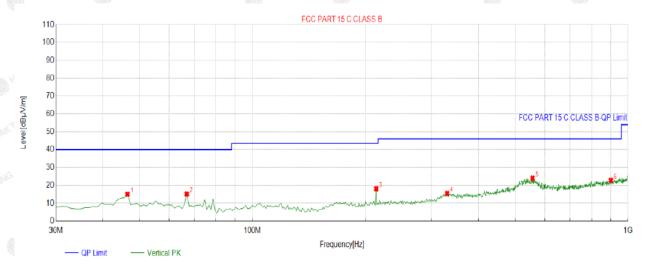
4.6.3. Test Data

Please refer to following diagram for individual Below 1GHz

All the test modes completed for test. only the worst result of 802.11b at 2412MHz was reported as below:

Horizontal

QP Detector


Suspected List										
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	103.7938	-15.41	24.55	9.14	43.50	34.36	100	336	Horizontal	
2	202.8328	-14.99	31.60	16.61	43.50	26.89	100	288	Horizontal	
3	226.1361	-14.41	32.46	18.05	46.00	27.95	100	257	Horizontal	
4	320.3203	-12.08	34.03	21.95	46.00	24.05	100	3	Horizontal	
5	570.8308	-6.42	29.13	22.71	46.00	23.29	100	123	Horizontal	
6	653.3634	-5.61	28.97	23.36	46.00	22.64	100	126	Horizontal	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Vertical

QP Detector

		• QF Detector									
	Suspected List										
Į.	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
	1	46.5065	-13.65	28.70	15.05	40.00	24.95	100	324	Vertical	
<	2	66.8969	-16.89	32.08	15.19	40.00	24.81	100	111	Vertical	
	3	213.5135	-14.72	32.89	18.17	43.50	25.33	100	103	Vertical	
	4	330.0300	-11.59	27.12	15.53	46.00	30.47	100	119	Vertical	
	5	557.2372	-6.76	30.83	24.07	46.00	21.93	100	316	Vertical	
	6	899.9900	-1.78	24.62	22.84	46.00	23.16	100	96	Vertical	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.31	-3.64	55.67	74	-18.33	peak
4824	46.15	-3.64	42.51	54	-11.49	AVG
7236	57.24	-0.95	56.29	74	-17.71	peak
7236	43.25	-0.95	42.3	_s 54	-11.7	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	58.47	-3.64	54.83	74	-19.17	peak
4824	46.32	-3.64	42.68	54	-11.32	AVG
7236	56.98	-0.95	56.03	74	-17.97	peak
7236	44.17	-0.95	43.22	√ ⁶ 54	-10.78	AVG

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.32	-3.51	55.81	74	-18.19	peak
4874	48.25	-3.51	44.74	54	-9.26	AVG
7311	58.22	-0.82	57.4	74 TESTING	-16.6	peak
7311	43.39	-0.82	42.57	54	-11.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

1-	100	133-	100		133	1155
Frequency	Meter Reading	Factor	Emission Level	Limits (Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.49	-3.51	54.98	74	-19.02	peak
4874	45.02	-3.51	41.51	54	-12.49	AVG
7311	56.98	-0.82	56.16	74	-17.84	peak
7311	43.25	-0.82	42.43	54	-11.57	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.34	-3.43	55.91	74	-18.09	peak
4924	42.58	-3.43	39.15	54	-14.85	AVG
7386	56.21	-0.75	55.46	74	-18.54	peak
7386	43.74	-0.75	42.99	54	-11.01	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier.	HUN	-NG	- CTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	58.19	-3.43	54.76	74	-19.24	peak
4924	44.62	-3.43	41.19	54	-12.81	AVG
7386	56.31	-0.75	55.56	74	-18.44	peak
7386	41.14	-0.75	40.39	54	-13.61	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions of ANT.1 are reported.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	59.64	-3.64	56	74	-18	peak
4824	43.16	-3.64	39.52	54	-14.48	AVG
7236	56.87	-0.95	55.92	74	-18.08	peak
7236	42.35	-0.95	41.4	54	-12.6	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.02	-3.64	55.38	74	-18.62	peak
4824	44.61	-3.64	40.97	54	-13.03	AVG
7236	58.58	-0.95	57.63	74	-16.37	peak
7236	44.61	-0.95	43.66	54	-10.34	AVG
						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.64	-3.51	55.13	74	-18.87	peak
4874	46.16	-3.51	42.65	54	-11.35	AVG
7311	58.32	-0.82	57.5	74	-16.5	peak
7311	42.35	-0.82	41.53	54	-12.47	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.32	-3.51	55.81	74	-18.19	peak
4874	46.16	-3.51	42.65	54	-11.35	AVG
7311	56.32	-0.82	55.5	74	-18.5	peak
7311	44.82	-0.82	44	54	-10	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	^{(G} (dBμV/m)	(dB)	Туре
4924	58.76	-3.43	55.33	74	-18.67	peak
4924	45.61	-3.43	42.18	54	-11.82	AVG
7386	57.28	-0.75	56.53	74	-17.47	peak
7386	44.19	-0.75	43.44	54	-10.56	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.34	-3.43	55.91	74	-18.09	peak
4924	45.12	-3.43	41.69	54	-12.31	AVG
7386	56.31	-0.75	55.56	74	-18.44	peak
7386	42.35	-0.75	41.6	54	-12.4	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions of ANT.1 are reported.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.46	-3.64	54.82	74	-19.18	peak
4824	46.19	-3.64	42.55	54	-11.45	AVG
7236	58.47	-0.95	57.52	74	-16.48	peak
7236	43.33	-0.95	42.38	54	-11.62	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.98	-3.64	54.34	74	-19.66	peak
4824	47.25	-3.64	43.61	54	-10.39	AVG
7236	58.64	-0.95	57.69	74	-16.31	peak
7236	43.19	-0.95	42.24	54	-11.76	AVG
anto.	-11142 (1818)		THE STATE	(0.93)	1013	-This

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	58.14	-3.51	54.63	74.00	-19.37	peak
4874.00	46.13	-3.51	42.62	54.00	-11.38	AVG
7311.00	56.28	-0.82	55.46	74.00	-18.54	peak
7311.00	44.31	-0.82	43.49	54.00	-10.51	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874.00	59.34	-3.51	55.83	74.00	-18.17	peak
4874.00	46.16	-3.51	42.65	54.00	-11.35	AVG
7311.00	55.27	-0.82	54.45	74.00	-19.55	peak
7311.00	42.68	-0.82	41.86	54.00	-12.14	AVG

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	59.16	-3.43	55.73	74	-18.27	peak
4924	45.16	-3.43	41.73	54	-12.27	AVG
7386	58.34	-0.75	57.59	74	-16.41	peak
7386	43.16	-0.75	42.41	54	-11.59	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAR
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	58.92	-3.43	55.49	74 MILE	-18.51	peak
4924	46.34	-3.43	42.91	54	-11.09	AVG
7386	57.14	-0.75	56.39	74	-17.61	peak
7386	41.99	-0.75	41.24	54	-12.76	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions of ANT.1 are reported.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Part atom Tumo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.64	-3.63	55.01	74	-18.99	peak
4844	46.19	-3.63	42.56	54	-11.44	AVG
7266	56.28	-0.94	55.34	74	-18.66	peak
7266	45.17	-0.94	44.23	54	-9.77	AVG

Vertical:

					CIO.	and UV
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	59.34	-3.63	55.71	74	-18.29	peak
4844	45.16	-3.63	41.53	54	-12.47	AVG
7266	56.28	-0.94	55.34	74	-18.66	peak
7266	41.25	-0.94	40.31	54	-13.69	AVG

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at W. T. us a
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	58.49	-3.51	54.98	74	-19.02	peak
4874	45.61	-3.51	42.1	54	-11.9	AVG
7311	56.87	-0.82	56.05	74	-17.95	peak
7311	43.16	-0.82	42.34	54	-11.66	AVG

Vertical:

~C,O ,	-C-D .	~6.0.	All a	3.	-C'O	~6.0
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	58.94	-3.51	55.43	74 A	-18.57	peak
4874	43.16	-3.51	39.65	54	-14.35	AVG
7311	56.34	-0.82	55.52	74	-18.48	peak
7311	42.67	-0.82	41.85	54	-12.15	AVG
(6)	8	(50)	(0.93)		(303)	(0.9)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH9 (802.11n/H40 Mode)/2452 Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.17	-3.43	54.74	74	-19.26	peak
4904	43.16	-3.43	39.73	54	-14.27	AVG
7356	56.28	-0.75	55.53	74	-18.47	peak
7356	42.35	-0.75	41.6	54 KTEST	-12.4	AVG
Remark: Factor	= Antenna Factor	+ Cahle I oss	– Pre-amplifier	NG PHOTO	-alG	TING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	59.37	-3.43	55.94	74	-18.06	peak
4904	47.15	-3.43	43.72	54	-10.28	AVG
7356	56.32	-0.75	55.57	74	-18.43	peak
7356	42.35	-0.75	41.6	54 KTEST	-12.4	AVG
	a man Ho	IK .		C ME HUAK		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed. (7)All modes of operation were investigated and the worst-case emissions of MIMO are reported.

Test Result of Radiated Spurious at Band edges

Report No.: HK2202170428-1E

All modes of operation were investigated and the worst-case of ANT.1 are reported.

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.01	-5.81	51.2	74	-22.8	peak
2310	STING WHUR	-5.81	TNG / STING	54	THE	AVG
2390	56.68	-5.84	50.84	74	-23.16	peak
2390	1	-5.84	1	54	1	AVG
2400	56.49	-5.84	50.65	₃₆ 74	-23.35	peak
2400	HUAK TEL	-5.84	HUAKTE	54	WAKTES	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.16	-5.81	51.35	74	-22.65	peak
2310	I G	-5.81	ug /	_{NG} 54	TING	AVG
2390	56.94	-5.84	51.1	74	-22.9	peak
2390	I	-5.84	1	54	mic 1	AVG
2400	57.34	-5.84	51.5	74	-22.5	peak
2400	1	-5.84	HURN	54	1 🚳	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	58.61	-5.65	52.96	74	-21.04	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	58.02	-5.65	52.37	74	-21.63	peak
2500.00	A DEAK TO	-5.65	NUAR	54	HUAKTES	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Freq	uency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(M	Hz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
248	3.50	56.37	-5.65	50.72	74	-23.28	peak
248	3.50	TESTAG ON	-5.65	STING /	54	/ STING	AVG
250	0.00	56.14	-5.65	50.49	74	-23.51	peak
250	0.00	1	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	TETING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.92	-5.81	51.11	74	-22.89	peak
2310	de la	-5.81	LAKESTING	54	1	AVG
2390	57.34	-5.84	51.5	74	-22.5	peak
2390	ME MINALT	-5.84	- I	54	1	AVG
2400	56.44	-5.84	50.6	74	-23.4	peak
2400	1	-5.84	1	54	<i>"</i>	AVG

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	OK TESTING
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.14	-5.81	51.33	74	-22.67	peak
HAKTE 1	-5.81	AUAKTE	54	HUAKTESI	AVG
58.39	-5.84	52.55	74	-21.45	peak
TING	-5.84	ig 1	_{NG} 54	TING	AVG
57.16	-5.84	51.32	74	-22.68	peak
1	-5.84	1	54	THE !	AVG
	(dBµV) 57.14 / 58.39	(dBµV) (dB) 57.14 -5.81 / -5.81 58.39 -5.84 / -5.84 57.16 -5.84	(dBμV) (dB) (dBμV/m) 57.14 -5.81 51.33 / -5.81 / 58.39 -5.84 52.55 / -5.84 / 57.16 -5.84 51.32	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.14 -5.81 51.33 74 / -5.81 / 54 58.39 -5.84 52.55 74 / -5.84 / 54 57.16 -5.84 51.32 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.14 -5.81 51.33 74 -22.67 / -5.81 / 54 / 58.39 -5.84 52.55 74 -21.45 / -5.84 / 54 / 57.16 -5.84 51.32 74 -22.68

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	58.64	-5.65	52.99	74	-21.01	peak
2483.50	1	-5.65	MIAK!	54	1	AVG
2500.00	57.16	-5.65	51.51	74	-22.49	peak
2500.00	W. TESTING	-5.65	S'NG / KTESTING	54	TSTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.16	-5.65	51.51	74	-22.49	peak
2483.50	1	-5.65	I	54	1	AVG
2500.00	56.48	-5.65	50.83	74	-23.17	peak
2500.00	1	-5.65	1	54		AVG

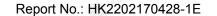
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	DALKUAK TES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.89	-5.81	50.08	74	-23.92	peak
2310	1	-5.81	HUAK	54	1	AVG
2390	56.37	-5.84	50.53	74	-23.47	peak
2390	NESTING OF HE	-5.84	STANG / NESTANS	54	TESTING	AVG
2400	56.13	-5.84	50.29	74	-23.71	peak
2400	/	-5.84	/	54	1	AVG
emark: Factor	r = Antenna Factor	+ Cable Loss	Pre-amplifier.	NG	ESTING	ESTING


Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	JAKTED
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.64	-5.81	52.83	74	-21.17	peak
1	-5.81	(a) Maria	54	HUAK	AVG
57.16	-5.84	51.32	74	-22.68	peak
TSTN/3	-5.84	1G /	^{NG} 54	ESTI	AVG
56.31	-5.84	50.47	74	-23.53	peak
1	-5.84	/	54	STING /	AVG
	(dBµV) 58.64 / 57.16	(dBµV) (dB) 58.64 -5.81 / -5.81 57.16 -5.84 / -5.84 56.31 -5.84	(dBμV) (dB) (dBμV/m) 58.64 -5.81 52.83 / -5.81 / 57.16 -5.84 51.32 / -5.84 / 56.31 -5.84 50.47	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.64 -5.81 52.83 74 / -5.81 / 54 57.16 -5.84 51.32 74 / -5.84 / 54 56.31 -5.84 50.47 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.64 -5.81 52.83 74 -21.17 / -5.81 / 54 / 57.16 -5.84 51.32 74 -22.68 / -5.84 / 54 / 56.31 -5.84 50.47 74 -23.53

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Operation Mode: TX CH High (2462MHz)

Horizontal

Meter Reading	Factor	Emission Level	Limits 💮	Margin	Dotostor Typo
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.19	-5.65	51.54	74	-22.46	peak
1	-5.65	1	54	1	AVG
56.32	-5.65	50.67	74	-23.33	peak
1 1000	-5.65	NAK	54	HUAKTES	AVG
	(dBµV) 57.19	(dBµV) (dB) 57.19 -5.65 / -5.65 56.32 -5.65	(dBμV) (dB) (dBμV/m) 57.19 -5.65 51.54 / -5.65 / 56.32 -5.65 50.67	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.19 -5.65 51.54 74 / -5.65 / 54 56.32 -5.65 50.67 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.19 -5.65 51.54 74 -22.46 / -5.65 / 54 / 56.32 -5.65 50.67 74 -23.33

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.99	-5.65	52.34	74 TESTIN	-21.66	peak
2483.50	TESTINY WHU	-5.65	ESTING / TESTIN	54	1 TING	AVG
2500.00	58.25	-5.65	52.6	74	-21.4	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

-nIG	-m/G	and the same of th	iG	uG.	-mG	-mIG
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tyra
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.16	-5.81	51.35	74	-22.65	peak
2310	/	-5.81	O HUAN	54	1	AVG
2390	56.34	-5.84	50.5	74	-23.5	peak
2390	WAK TESTING	-5.84	STANG / MAX TESTAN	54	LOK TSTING	AVG
2400	57.08	-5.84	51.24	74	-22.76	peak
2400	1	-5.84	/	54	1	AVG
Remark: Factor	r = Antenna Factor +	Cable Loss	– Pre-amplifier.	Me	X TESTINE	W. TESTINE

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data dan Turu
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.82	-5.81	51.01	74	-22.99	peak
2310	1	-5.81	1	54	1	AVG
2390	57.49	-5.84	51.65	74	-22.35	peak
2390	HUAKTED /	-5.84	HUAKTE	54	WAXTES /	AVG
2400	59.34	-5.84	53.5	74	-20.5	peak
2400	STING /	-5.84	LESTING	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.14	-5.65	51.49	74	-22.51	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	56.22	-5.65	50.57	74	-23.43	peak
2500.00	HJAN I	-5.65	MAK	54	HUAKTES	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Free	quency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(1)	MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
24	83.50	57.16	-5.65	51.51	74	-22.49	peak
24	83.50	TESTIG ON	-5.65	STING /	54	/ STING	AVG
25	00.00	56.34	-5.65	50.69	74	-23.31	peak
25	00.00	1	-5.65	1	54	1	AVG

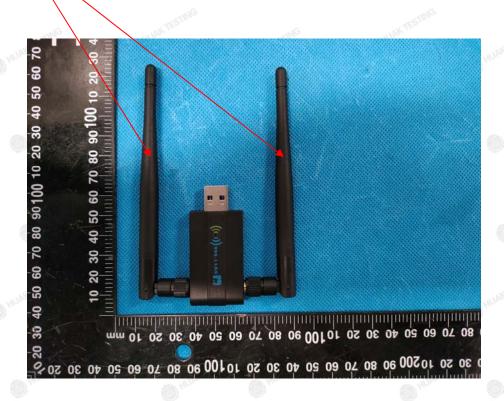
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.7. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

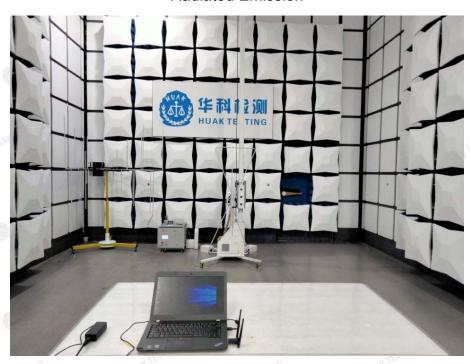

Refer to statement below for compliance.

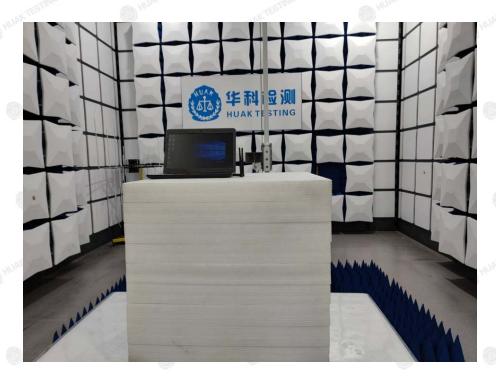
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a External Antenna, which permanently attached. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1:3.5dBi and Antenna port 2:3.5dBi.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



PHOTOGRAPH OF TEST

Report No.: HK2202170428-1E

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

*****End of Report*****