

CERTIFICATION TEST REPORT

Report Number.: 12727679-E3V1

- Applicant : WARMBOARD INC 8035 SOQUEL DR APTOS, CA 95003, U.S.A.
 - Model : WTS-01
 - FCC ID : 2ASM7-WTS01
 - IC : 24839-WTS01
- EUT Description : THERMOSTAT WITH LORA WIRELESS COMMUNICATION
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue: April 08, 2019

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	4/8/2019	Initial Issue	

Page 2 of 46

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS
2.	TES	ST METHODOLOGY
3.	FAG	CILITIES AND ACCREDITATION
4.	CA	LIBRATION AND UNCERTAINTY
4.	.1.	MEASURING INSTRUMENT CALIBRATION
4.	.2.	SAMPLE CALCULATION
4.	.3.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
5.	.1.	EUT DESCRIPTION
5.	.2.	MAXIMUM OUTPUT POWER9
5.	3.	DESCRIPTION OF AVAILABLE ANTENNAS
5.	.4.	SOFTWARE AND FIRMWARE
5.	5.	WORST-CASE CONFIGURATION AND MODE9
5.	6.	DESCRIPTION OF TEST SETUP10
6.	ME	ASUREMENT METHOD13
7.	TES	ST AND MEASUREMENT EQUIPMENT14
8.	AN'	TENNA PORT TEST RESULTS15
8.	.1.	ON TIME AND DUTY CYCLE15
8.		
	.2.	99% BANDWIDTH16
8.	.2. .3.	99% BANDWIDTH
-		
8.	.3.	6 dB BANDWIDTH17
8. 8.	.3. .4.	6 dB BANDWIDTH
8. 8. 8.	.3. .4. .5.	6 dB BANDWIDTH
8. 8. 8. 8.	.3. .4. .5. .6. .7.	6 dB BANDWIDTH
8. 8. 8. 8. 9.	.3. .4. .5. .6. .7.	6 dB BANDWIDTH
8. 8. 8. 8. 9. 9.	.3. .4. .5. .6. .7. RA	6 dB BANDWIDTH
8. 8. 8. 9. 9. 9.	.3. .4. .5. .6. .7. RA I	6 dB BANDWIDTH
8. 8. 8. 9. 9. 9. 9.	.3. .4. .5. .6. .7. RA .1. .2.	6 dB BANDWIDTH

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	WARMBOARD INC 8035 SOQUEL DR APTOS, CA 95003, U.S.A.		
EUT DESCRIPTION:	THERMOSTAT WITH LORA WIRELESS COMMUNICATION		
MODEL:	WTS-01		
SERIAL NUMBER: FCC-LoRa Output (CONDUCTED) TWS-KEUNING A6 (RADIATED)			
DATE TESTED:	MARCH 15, 2019 TO MARCH 28, 20	019	
	APPLICABLE STANDARDS		
ST	ANDARD	TEST RESULTS	
CFR 47 P	art 15 Subpart C	Complies	
ISED RS	SS-247 Issue 2	Complies	
ISED RS	S-GEN Issue 5	Complies	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 46

Approved & Released For UL Verification Services Inc. By:

ino de Auok

FRANCISCO DE ANDA PROJECT LEAD UL Verification Services Inc.

Reviewed By:

TINA CHU SENIOR PROJECT ENGINEER UL Verification Services Inc.

Prepared By:

ERIC YU TEST ENGINEER UL Verification Services Inc.

Page 6 of 46

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
□ Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	□ Chamber I (ISED: 2324A-5)
□ Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED: 2324A-6)
□ Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	□ Chamber K (ISED: 2324A-1)
	Chamber G (ISED:22541-4)	Chamber L (ISED: 2324A-3)
	Chamber H (ISED:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

Page 7 of 46

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a thermostat with LoRa 915 MHz wireless communication, and is categorized as Digital Transmission System (DTS).

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
903 - 927	LoRa	17.21	52.60

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB trace antenna with a maximum gain of -10.76 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was Version 022419 The firmware installed in the EUT during testing was Version 022419

5.5. WORST-CASE CONFIGURATION AND MODE

Band edge and radiated emissions were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The EUT is mounted on wall at Z-Portrait orientation only. Therefore, all final radiated testing was performed with the EUT in Z-Portrait orientation.

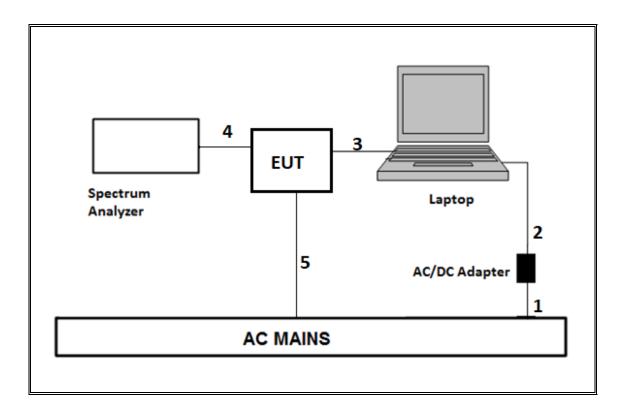
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID/DoC
Laptop	Sony	PCG-31113L	54042658 0003472	DoC
Laptop AC/DC adapter	Sony	VGP-AC19V32	148095531 0289840	DoC

I/O CABLES (CONDUCTED TEST)

I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Туре	Туре	Length			
		Ports			m			
1	AC	1	AC	Unshielded	1.5	AC Mains to AC/DC adapter		
2	DC	1	DC	Unshielded	1.8	AC/DC adapter to laptop		
3	USB	1	Serial ports	Shielded	0.95	Laptop to EUT		
4	Antenna	1	SMA	Unshielded	0.18	To spectrum analyzer		
5	AC	1	2-prong	Unshielded	1.8	To EUT		

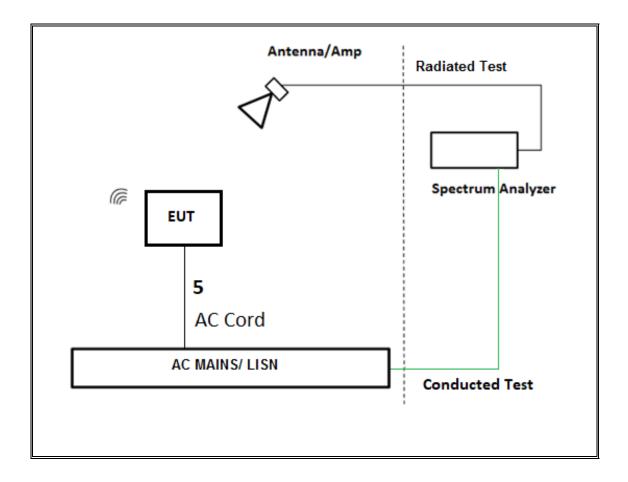

I/O CABLES (RADIATED TEST AND AC POWER LINE TEST)

	I/O CABLE LIST								
CablePort# ofConnectorCableCableRemarksNo.IdenticalTypeTypeLengthPortsmm									
5	AC	1	2-prong	Unshielded	1.5	To EUT			

Page 10 of 46

TEST SETUP-CONDUCTED TEST

The EUT is AC powered. Test software exercised the EUT. **SETUP DIAGRAM**



Page 11 of 46

TEST SETUP- RADIATED TEST AND AC POWER LINE TEST

The EUT is AC powered. Test software exercised the EUT. Laptop was removed after test script was started.

SETUP DIAGRAM

Page 12 of 46

6. MEASUREMENT METHOD

6 dB BW: ANSI C63.10 Subclause -11.8.1

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

<u>Average Output Power:</u>ANSI C63.10 Subclause -11.9.2.3.2 Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.4 Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal			
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1262	1/31/2020	1/31/2019			
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1223	2/25/2020	2/25/2019			
Loop Antenna 30Hz-1MHz	Electro Metrics	EM-6871	PRE0179465	5/22/2019	5/22/2018			
Loop Antenna 100KHz-30MHz	Electro Metrics	EM-6872	PRE0179467	5/22/2019	5/22/2018			
Amplifier, 9KHz to 1GHz, 32dB	Sonoma Instrument	310	PRE0180174	5/31/2019	5/31/2018			
Hybrid Antenna, 30MHz to 3GHz	SunAR rf motion	JB3	PRE0181575	8/1/2019	8/1/2018			
Antenna, Horn 1-18GHz	AR	AMPL- ATH1G18	PRE0189055	4/20/2019	4/20/2018			
Amplifier, 1 to 18GHz, 35dB	Amplifier, 1 to 18GHz, 35dB AMPLICAL		T1571	7/30/2019	7/30/2018			
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179372	5/4/2019	5/4/2018			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T917	1/24/2020	1/24/2019			
Filter, BRF 902 to 928MHz	MICRO-TRONICS	BRC50722	T1846	8/16/2019	8/16/2018			
Filter, Highpass 1.2GHz	MICRO-TRONICS	HPM50108	PRE0182423	9/4/2019	9/4/2018			
	AC Line Co	nducted						
EMI Receiver	Rohde & Schwarz	ESR	T1436	2/14/2020	2/14/2019			
LISN for Conducted Emissions CISPR-16	FCC INC.	FCC LISN 50/250	T1310	6/15/2019	6/15/2018			
Test Software List								
Radiated Software	UL	UL E	MC	Ver 9.5, Jan	11, 2019			
Antenna Port Software	UL	UL	RF	Ver 9.4.1, Fe	eb 19, 2019			
AC Line Conducted Software	UL	UL E	MC	Ver 9.5, May	26, 2015			

Page 14 of 46

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

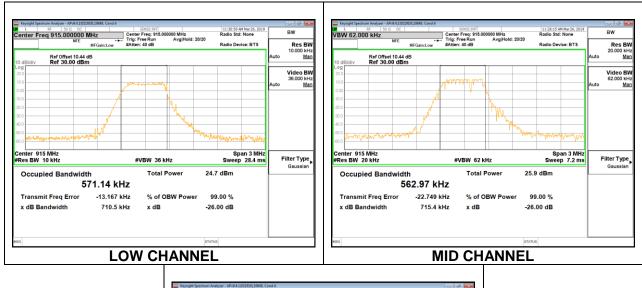
KDB 558074 Zero-Span Spectrum Analyzer Method.

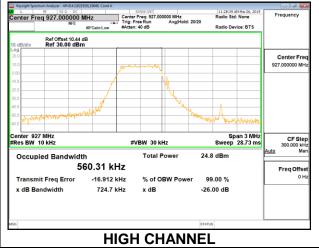
RESULTS

Date:	3/15/2019
Test Engineer:	10649 JR

ON TIME AND DUTY CYCLE RESULTS							
Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B	
	В		x	Cycle	Correction Factor	Minimum VBW	
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)	
LoRa	15.396	17.096	0.901	90.05%	0.45	0.065	
			0.001	00.0070	0.10	0.000	
APv9.3.2(010719),452							
MultiView 🕄 Spectrum							
Ref Level 97.00 dBµV		SPR) 1 MHz			SGL		
	ms ■ VBW Off Notch	50 MHz Off			Frequenc	903.000000 MHz	
1 Zero Span						• 1Pk Clrw D2[1] 1.46 dB	
90 dBµV						17.09589 ms	
						M1[1] 58.65 dBµV	
80 dBμV						28.65983 ms	
70 dBµV							
70 UBHV							
ъ́д,¢дыМаналана ала са	A	******	,	M1	. A. S. Maraka and a state of the		
50 dBµV							
40 dBµV							
30 dBµV						AN PARA	
200-4				The state		<mark>titur bit</mark>	
20 dBµV				•			
10 dBµV							
0 dBµV							
CF 903.0 MHz 2 Marker Table			8000 pts			5.0 ms/	
Type Ref Trc	X-Value		Y-Value	Fun	ction	Function Result	
	55983 ms 39567 ms	58	.65 dBµV 1.32 dB				
	09589 ms		1.46 dB				
rre deviation from self alignment. Consider 0.3 dB additional level ur 🔹 Ready 🗰 15.03.2019 (Ref Level RBW) 07:58:03							
07:58:03 15.03.2019							
DUTY CYCLE PLOTS							

Page 15 of 46


8.2. 99% **BANDWIDTH**


<u>LIMITS</u>

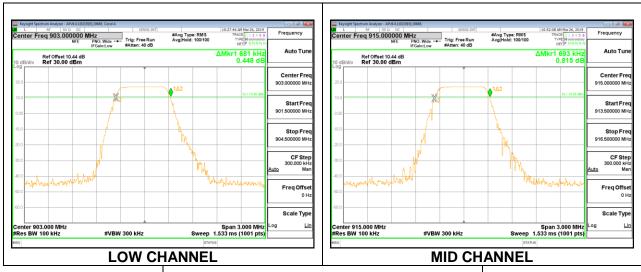
None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	903	0.5711
Middle	915	0.5630
High	927	0.5603

Page 16 of 46

8.3. 6 dB BANDWIDTH


LIMITS

FCC §15.247 (a) (2) RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	903	0.681	0.5
Middle	915	0.693	0.5
High	927	0.684	0.5

Page 17 of 46

8.4. OUTPUT POWER

<u>LIMITS</u>

FCC §15.247 (b) (3) RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.44 dB (including 10 dB pad and 0.44 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

Tested By:	10649 JR
Date:	3/22/2019

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	903	17.15	30	-12.85
Middle	915	17.18	30	-12.82
High	927	17.21	30	-12.79

Page 18 of 46

8.5. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.44dB (including 10 dB pad and 0.44 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

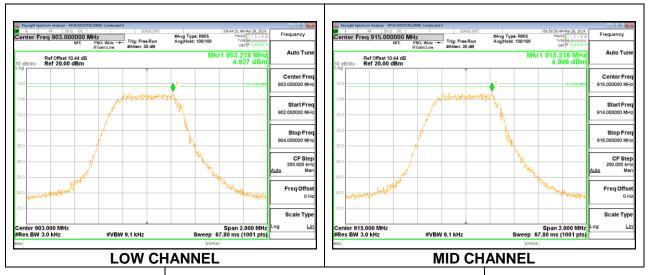
RESULTS

Tested By:	10649 JR
Date:	3/22/2019

Channel	Frequency (MHz)	AV power (dBm)
Low	903	17.02
Middle	915	17.06
High	927	17.09

Page 19 of 46

8.6. POWER SPECTRAL DENSITY


LIMITS

FCC §15.247 (e) RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

<u>RESULTS</u>

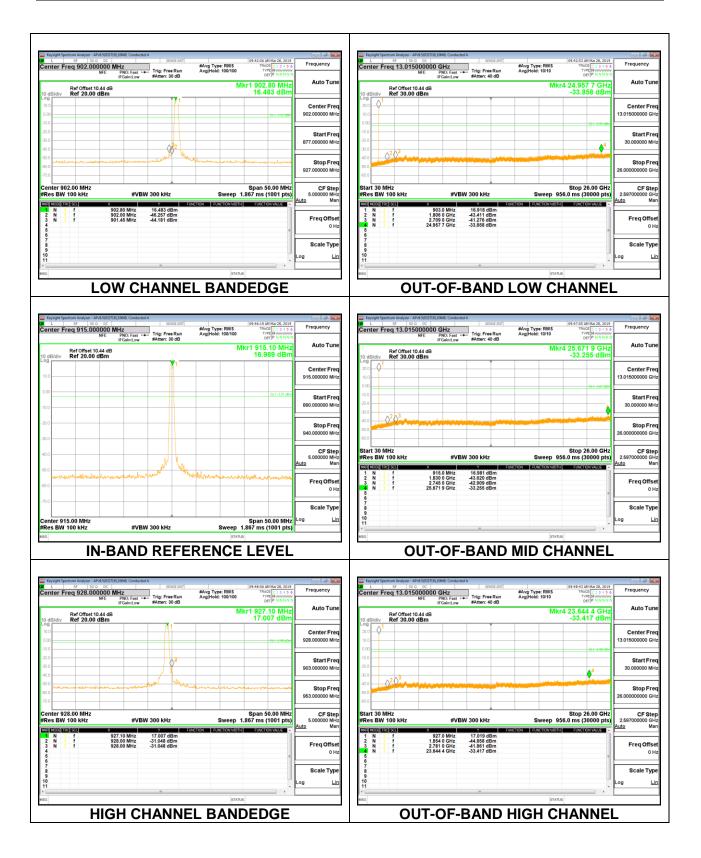
Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)	
			(UBIII/SKHZ)	(UD)	
Low	903	4.93	8	-3.07	
Middle	915	5.00	8	-3.00	
High	927	5.02	8	-2.98	

Page 20 of 46

8.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)


RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 22 of 46

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209 RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.

Page 23 of 46

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 24 of 46

9.2. TRANSMITTER BELOW 1 GHz

-20 dBc BANDEDGE WITHOUT NOTCH FILTER AND PRE-AMPLIFIER (LOW CHANNEL)

HORIZONTAL RESULT	
-------------------	--

Pv9.3.2(010719),452						
MultiView 🕄 Spectrur	m					
Ref Level -10.00 dBm Att 10 dB SV Input 1 DC PS	● RBW 1 ₩T 100 ms ● VBW 3 5 Off Notch)		Frequenc	cy 900.0000000 MH
1 Frequency Sweep						●1Pk Max ●2Pk Max
-20 dBm						M5[1] -80.01 dBr 936.560 MH
-20 dBm						M1[1] -44.27 dBr 903.200 MH
-30 dBm						5051200 1011
-40 dBm			M1 7			
-50 dBm						
-60 dBm						
-70 dBm						
.80 demanna an anna an an an an an an an an an	Mantal and and and the second	Mercan and an and a second and a	MZ	мз М5		
-90 dBm		and the state of the second of the	and particular	www.wheelewand.	Marian Maria Marian Marian Mariana Mariana M	with the and the the second
-90 (BM						
-100 dBm						
CF 900.0 MHz		1001 pts		20.0 MHz/		Span 200.0 MH
2 Marker Table						
Type Ref Trc M1 1 M2 1 M3 1 M4 1 M5 1	X-Value 903.2 MHz 902.0 MHz 928.0 MHz 897.8 MHz 936.56 MHz	Y-Value -44.27 dBm -81.51 dBm -81.12 dBm -80.48 dBm -80.01 dBm		Function		Function Result
ıre deviatio	on from self alignment. Co	onsider 0.2 dB additional leve	ur 🔹 Measurir	ıg A A A A A	15.03.2019 08:48:02	
8:48:02 15.03.2019						

Page 25 of 46

VERTICAL RESULT

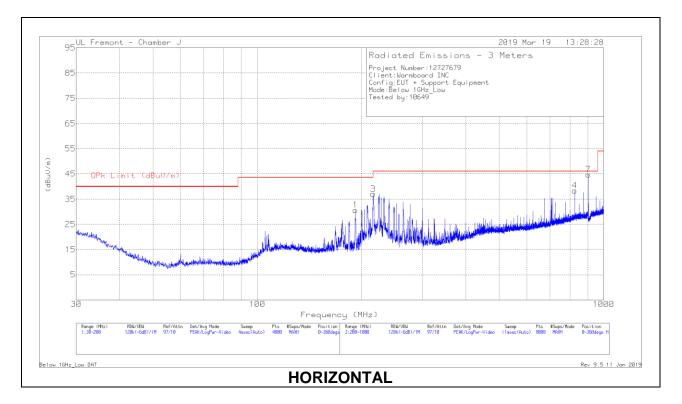
APv9.3.2(010719),4	452									
MultiView 😁 S	Spectrum	ר								
	dBm 0 dB = SWT 100 1 DC PS	RBW 1 ms • VBW 3 Off Notch		de Auto Sweep)			Frequ	iency 900.00	000000 MHz
1 Frequency Swee		on noton	011						⊙1Pk M	iax 🍳 2Pk Max 📄
-20 dBm									M5[1]	-81,42 dBm 934,390 MHz
-20 dBm									M1[1]	-35.71 dBm 903.000 MHz
-30 dBm					M1					903.000 MHZ
-40 dBm					\square					
-50 dBm										
-60 dBm	55.710 dBm									
-70 dBm										
v=80.d8m v=r.Masra a		and and a second and	and the second	M4		wanterway	M3 M5	Mangalan	and an and a strain and the	water and the country of the
-90 dBm										
-100 dBm										
100 0.00										
CF 900.0 MHz			1001 pts			20).0 MHz/		Sp	an 200.0 MHz
2 Marker Table Type Ref 1	Trc	K-Value		Y-Value			Function		Function Re	esult
M1 M2 M3	1 90 1 90 1 92	03.0 MHz 02.0 MHz 28.0 MHz	-8 -8	5.71 dBm 1.34 dBm 0.78 dBm			- anoton		- anotori - a	
M4 M5		2.21 MHz 1.39 MHz		1.18 dBm 1.42 dBm						
	re deviation from	self alignment. C	onsider 0.2 dB	additional level	l ur 🔻	Measuring	(## 15.03.2 08:4		RBW
08:40:38 15.03.20	19									

Page 26 of 46

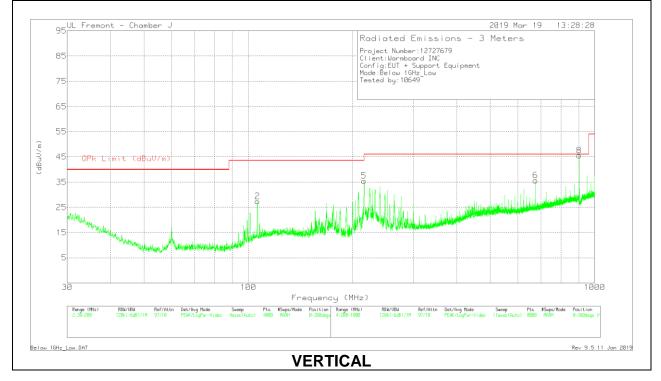
-20 dBc BANDEDGE WITHOUT NOTCH FILTER AND PRE-AMPLIFIER (HIGH CHANNEL)

-20 dBm MS[1] -78.74 -20 dBm M1[1] -41.94 -30 dBm M1[1] -41.94 -40 dBm M1 - -50 dBm M1 - -50 dBm - - -60 dBm - - -70 dBm - - -100 dBm - - M1 <t< th=""><th>\Pv9.3.2(010719</th><th>),452</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	\Pv9.3.2(010719),452								
Att 10 dB • SWI 100 m • VBW 300 kHz Mode Auto Sweep Frequency 900.0000000 I Frequency Sweep III IIII -78.38 951.39 951.39 951.39 -20 dBm IIIII -78.48 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MultiView 😁	Spectrum								
1 Frequency Sweep Image: state of the	Att	10 dB 🖷 SWT :	100 ms 🖷 VBW	/ 300 kHz M	ode Auto Sweep			Freque	ency 900.00	00000 MH:
-20 dBm			011100							●1Pk Max
-20 dBm M1[1]41.94 -30 dBm M1[1]41.94 927.170 -40 dBm M1 M1 M1 M1 -50 dBm M1	· · · ·								M5[1]	-78,74 dBm
-20 dBm										951.380 MHz
-30 dBm	-20 dBm								M1[1]	-41.94 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -100 dBm										
-50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -101 pts -100	-30 dBm									927.170 MHz
-50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -101 pts -100										
-50 dBm -60 dBm -70	-40 dBm						M1			
-60 dBm -60 dBm -70	io upin									
-60 dBm -70										
Index 2700 Gbm Index 2700 Gbm -70 dBm Index 2700 Gbm -80 dBm Index 2700 Gbm -90 dBm Index 2700 Gbm -100 dBm Index 2700 Gbm 2 Marker Table Y-Value Type Ref Trc X-Value Y-Value Function M2 1 927.17 MHz -41.94 dBm M3 1 928.0 MHz -81.23 dBm M4 1 892.21 MHz -79.63 dBm	-50 dBm									
IN-227/01 citim Image: Citim <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
-70 dBm -70 dBm -70 dBm -80 dBm -90 dBm -100 dBm -		co zco dos								
ABD (dBm M4 M2 M3 M5 M6 -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -100 dBm -100 lpts 20.0 MHz/ Span 200.0 2 Marker Table -90 dBm -90 dBm -90 dBm -90 dBm 100 lpts 20.0 MHz/ Span 200.0 2 Marker Table -90 dBm -90 dBm Function Result M1 1 927.17 MHz -41.94 dBm M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -79.63 dBm	<u>50</u>	-62.760 dBm								
ABD (dBm M4 M2 M3 M5 M6 -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -100 dBm -100 lpts 20.0 MHz/ Span 200.0 2 Marker Table -90 dBm -90 dBm -90 dBm -90 dBm 100 lpts 20.0 MHz/ Span 200.0 2 Marker Table -90 dBm -90 dBm Function Result M1 1 927.17 MHz -41.94 dBm M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -79.63 dBm	-70 dBm									
ABUILDER ABUILDER ABUILDER ABUILDER ABUILDER -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm M1 1 90 dBm -90 dBm -90 dBm M2 1 90 dBm -90 dBm -90 dBm M3 1 92 8.0 MHz -79 dG dBm M4 1 89 2.21 MHz -79 dG dBm								MS		
-90 dBm -100 dBm -100 dBm -100 lpts 20.0 MHz/ Span 200.0 2 Marker Table -100 lpts 20.0 MHz/ Span 200.0 Type Ref Trc X-Value Y-Value M1 1 927.17 MHz -41.94 dBm M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -79.63 dBm	100 dom 110					T	M3	· · · · · · · · · · · · · · · · · · ·		
Image: 100 dBm Span 200.0 CF 900.0 MHz 1001 pts 20.0 MHz/ Span 200.0 2 Marker Table Trc X-Value Y-Value Function M1 1 927.17 MHz -41.94 dBm M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -81.23 dBm M4 1 892.21 MHz -79.63 dBm	all horibit (Manuscharter	In the second	1000 000 000 000 000 000 000 000 000 00	Contraction Contraction Contraction of Contraction Contraction Contraction Contraction Contraction Contraction	and account allowing the second	mann	were and and a second	mmont	Marin Marin Marin	www.www.
100 dBm 100 lbm 100 lpm Span 200.0 2F 900.0 MHz 1001 pts 20.0 MHz/ Span 200.0 2 Marker Table Trope Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm -81.23 dBm Hunch and an and an and an and an and and an an an and an and an										
CF 900.0 MHz 1001 pts 20.0 MHz/ Span 200.0 2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Function Function Result M3 1 928.0 MHz -81.23 dBm Function Function	-90 dBm									
CF 900.0 MHz 1001 pts 20.0 MHz/ Span 200.0 2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Amount Amount Function Result M3 1 928.0 MHz -81.23 dBm Amount Amount Amount M4 1 892.21 MHz -79.63 dBm Function Function Function										
2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Function Function Result M3 1 928.0 MHz -81.23 dBm Function Function Result M4 1 892.21 MHz -79.63 dBm Function Function Result	-100 dBm									
2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Function Function Result M3 1 928.0 MHz -81.23 dBm Function Function Result M4 1 892.21 MHz -79.63 dBm Function Function Result										
Z Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Function Function Result M3 1 928.0 MHz -81.23 dBm Function Function Result M4 1 892.21 MHz -79.63 dBm Function Function Result										
Type Ref Trc X-Value Y-Value Function Function Result M1 1 927.17 MHz -41.94 dBm Function Function Result M2 1 902.0 MHz -80.19 dBm Function Function Result M3 1 928.0 MHz -81.23 dBm Function Function Result M4 1 892.21 MHz -79.63 dBm Function Function Result	CF 900.0 MHz			1001 pt	S	20	0.0 MHz/		Sp	an 200.0 MHz
M1 1 927.17 MHz -41.94 dBm M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -81.23 dBm M4 1 892.21 MHz -79.63 dBm	2 Marker Table									
M2 1 902.0 MHz -80.19 dBm M3 1 928.0 MHz -81.23 dBm M4 1 892.21 MHz -79.63 dBm	Type Ref						Function		Function Re	sult
M3 1 928.0 MHz -81.23 dBm M4 1 892.21 MHz -79.63 dBm										
M4 1 892.21 MHz -79.63 dBm										
M5 1 951.38 MHz -78.74 dBm										
	- CIVI	y	51.56 MHZ	-	, u bill			04		
ure deviation from self alignment. Consider 0.3 dB additional level ur 🔹 Measuring 📲 💷 21.03.2019 🛛 🥵 21.03.2019		ire deviation fro	om self alignmen	t. Consider 0.3 d	IB additional level u	Ir 🗾 Measuring				RBW
								14.00		

HORIZONTAL RESULT


Page 27 of 46

VERTICAL RESULT


APv9.3.2(010719	9),452								
MultiView 88									
Ref Level -10.0 Att Input	10 dB • SW 1 DC PS	● RB₩ T 100 ms ● VB₩ Off Note		de Auto Sweep			Frequ	ency 900.00	000000 MHz
1 Frequency Sw	eep								●1Pk Max
-20 dBm								M4[1]	-79.26 dBm 900.000 MHz
20 0011								M1[1]	-37.74 dBm
-30 dBm									927.170 MHz
00 0011						M1			
-40 dBm						7			
10 0.011									
-50 dBm									
-60 dBm-	1 -57.770 dBm								
00 0011									
-70 dBm									
10 0.011				N	4			M5	
			No. 41 4 10 10 1 4 10		M2	MЗ			
and an and a considerable	2		and a constraint of the second se	and the second	warmen and when we	and a community	an harden and a star a	Manun Barlen	when the bold of the should be
-90 dBm									
50 abiii									
-100 dBm									
100 000									
CF 900.0 MHz			1001 pts		20	0.0 MHz/		Sp	an 200.0 MHz
2 Marker Table									
Type Ref	Trc	X-Value 927.17 MHz		Y-Value 7.74 dBm		Function		Function Re	esult
M1 M2	1	902.0 MHz		0.44 dBm					
M3	1	928.0 MHz	-8	1.72 dBm					
M4	1	900.0 MHz		9.26 dBm					
M5	1	961.57 MHz	-/	9.18 dBm					
	ire deviation	from self alignmer	t. Consider 0.3 dE	additional level	ur 🗾 Measuring		🚧 21.03.2 14:0		RBW
14:04:31 21.03.	2019								

Page 28 of 46

HARMONICS AND SPURIOUS EMISSIONS WITH A NOTCH FILTER

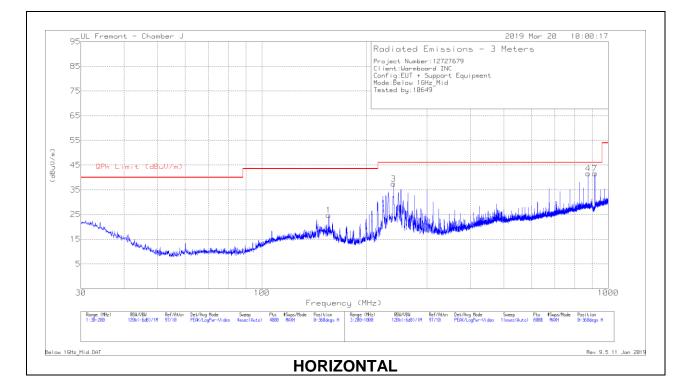
LOW CHANNEL RESULTS

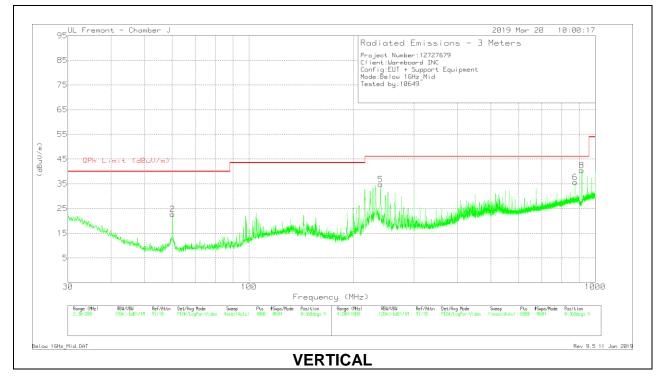
Page 29 of 46

RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	192.0094	43.77	Pk	17.4	-30.5	0.5	31.17	43.52	-12.35	0-360	99	Н
	191.9965	37.27	Qp	17.4	-30.5	0.5	24.67	43.52	-18.85	82	196	Н
2	106.2647	40.3	Pk	18	-30.9	0.5	27.9	43.52	-15.62	0-360	101	V
	106.2604	22	Qp	18	-30.9	0.5	9.6	43.52	-33.92	317	320	V
3	216.1021	50.96	Pk	16.4	-30.3	0.5	37.56	46.02	-8.46	0-360	101	Н
	216.0029	49.13	Qp	16.4	-30.3	0.5	35.73	46.02	-10.29	129	148	Н
4	824.9812	38.91	Pk	27.6	-28.1	0.5	38.91	46.02	-7.11	0-360	101	Н
	825.0258	30.64	Qp	27.6	-28.1	0.5	30.64	46.02	-15.38	173	102	Н
5	215.9021	49.41	Pk	16.4	-30.3	0.5	36.01	43.52	-7.51	0-360	198	V
	216.0239	43.29	Qp	16.4	-30.3	0.5	29.89	46.02	-16.13	251	139	V
6	674.9617	38.67	Pk	25.7	-28.7	0.5	36.17	46.02	-9.85	0-360	101	V
	675.0015	36.83	Qp	25.7	-28.7	0.5	34.33	46.02	-11.69	185	116	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector


Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.

Page 30 of 46

MID CHANNEL RESULTS

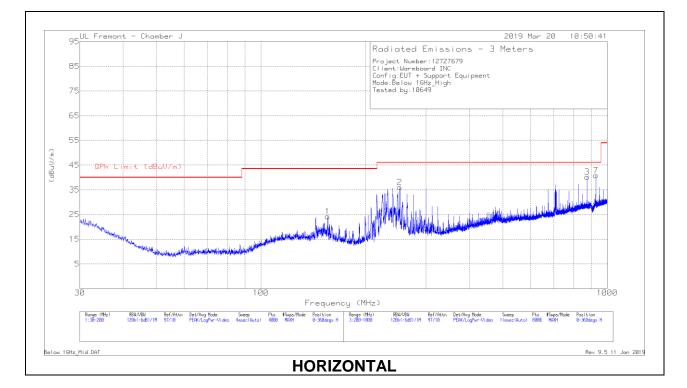
Page 31 of 46

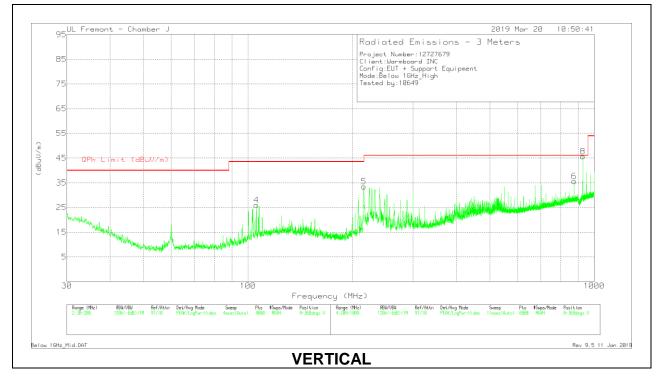
RADIATED EMISSIONS

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	156.0026	37	Pk	18.3	-30.6	0.5	25.2	43.52	-18.32	0-360	299	Н
	155.9863	35.54	Qp	18.3	-30.6	0.5	23.74	43.52	-19.78	246	169	Н
2	60.0978	40.56	Pk	13.3	-31.2	0.5	23.16	40	-16.84	0-360	101	V
	60.0312	26.51	Qp	13.3	-31.2	0.5	9.11	40	-30.89	50	107	V
3	239.9052	50.16	Pk	17.5	-30.2	0.5	37.96	46.02	-8.06	0-360	101	Н
	239.77021	42.09	Qp	17.5	-30.2	0.5	29.89	46.02	-16.13	237	100	Н
4	874.9877	41.24	Pk	27.8	-27.5	0.5	42.04	46.02	-3.98	0-360	101	Н
	874.9997	41.48	Qp	27.8	-27.5	0.5	42.28	46.02	-3.74	182	103	Н
5	239.9052	47.39	Pk	17.5	-30.2	0.5	35.19	46.02	-10.83	0-360	198	V
	* 240.0049	44.54	Qp	17.5	-30.2	0.5	32.34	46.02	-13.68	110	113	V
6	874.9877	35.31	Pk	27.8	-27.5	0.5	36.11	46.02	-9.91	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Pk - Peak detector


Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.

Page 32 of 46

HIGH CHANNEL RESULTS

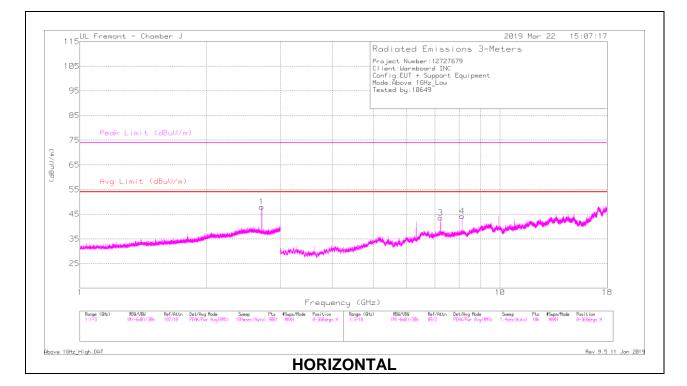
Page 33 of 46

RADIATED EMISSIONS

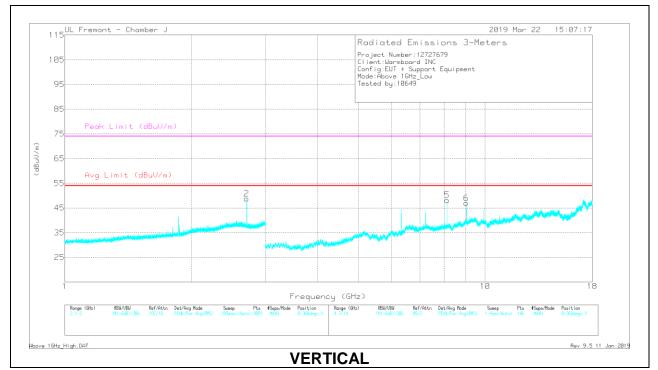
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF PRE0181575 (dB/m)	Amp Cbl (dB)	Filter T1846 (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	156.0026	36.53	Pk	18.3	-30.6	0.5	24.73	43.52	-18.79	0-360	198	Н
	156.0084	35.5	Qp	18.3	-30.6	0.5	23.7	43.52	-19.82	242	161	Н
4	105.8396	39.04	Pk	17.9	-30.9	0.5	26.54	43.52	-16.98	0-360	101	V
	105.713	22.31	Qp	17.8	-30.9	0.5	9.71	43.52	-33.81	360	203	V
2	* 251.9067	48.78	Pk	17.4	-30.2	0.5	36.48	46.02	-9.54	0-360	101	Н
	* 251.9988	47.06	Qp	17.4	-30.2	0.5	34.76	46.02	-11.26	94	145	Н
3	874.9877	39.85	Pk	27.8	-27.5	0.5	40.65	46.02	-5.37	0-360	101	Н
	875.0131	33.99	Qp	27.8	-27.5	0.5	34.79	46.02	-11.23	26	165	Н
5	216.0021	47.36	Pk	16.4	-30.3	0.5	33.96	46.02	-12.06	0-360	198	V
	215.9959	44.42	Qp	16.4	-30.3	0.5	31.02	43.52	-12.5	163	210	V
6	874.9877	35.28	Pk	27.8	-27.5	0.5	36.08	46.02	-9.94	0-360	101	V
	875.0194	32.49	Qp	27.8	-27.5	0.5	33.29	46.02	-12.73	139	201	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

Qp - Quasi-Peak detector


Note:

1. Marker 7 and 8 are fundamental signal of EUT.


Page 34 of 46

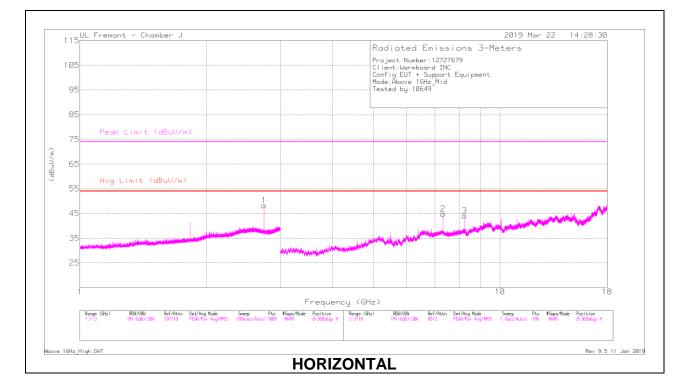
9.3. TRANSMITTER ABOVE 1 GHz

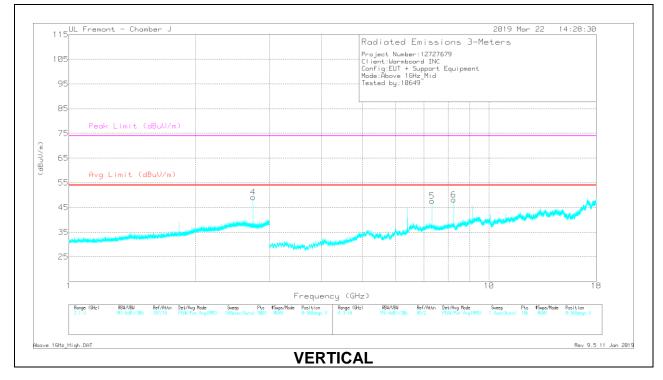
HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

Page 35 of 46

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


RADIATED EMISSIONS

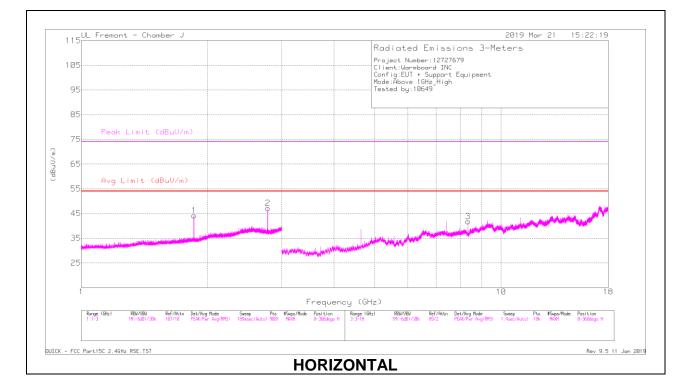

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE01890 55 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	DC Corr (dB)	Filter PRE0182 423 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.708	47.52	PK2	29.6	-25.5	0	1	52.62	-	-	74	-21.38	134	217	Н
	* 2.709	40.17	MAv1	29.6	-25.5	0.45	1	45.72	54	-8.28	-	-	134	217	Н
2	* 2.709	47.07	PK2	29.6	-25.5	0	1	52.17	-	-	74	-21.83	119	105	V
	* 2.709	39.27	MAv1	29.6	-25.5	0.45	1	44.82	54	-9.18	-	-	119	105	V
3	7.223	38.21	PK2	38.2	-27.6	0	1	49.81	-	-	-	-	67	110	Н
4	* 8.125	38.87	PK2	37.9	-26.8	0	1	50.97	-	-	74	-23.03	60	254	Н
	* 8.127	27.37	MAv1	37.9	-26.9	0.45	1	39.82	54	-14.18	-	-	60	254	Н
5	* 8.129	40.59	PK2	37.9	-26.8	0	1	52.69	-	-	74	-21.31	80	258	V
	* 8.129	28.2	MAv1	37.9	-26.8	0.45	1	40.75	54	-13.25	-	-	80	258	V
6	* 9.032	37.02	PK2	38.9	-24.7	0	1	52.22	-	-	74	-21.78	91	126	V
	* 9.032	26.63	MAv1	38.9	-24.7	0.45	1	42.28	54	-11.72	-	-	91	126	V

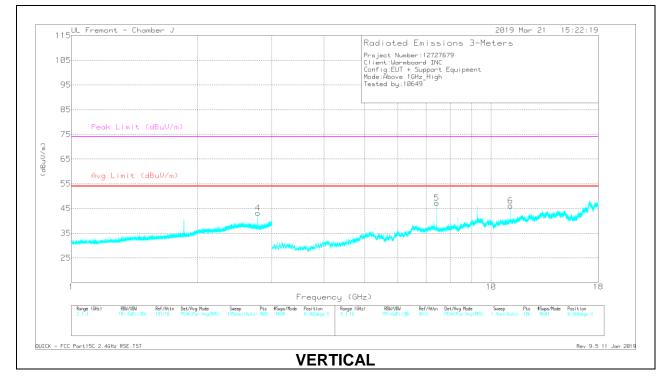
* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 36 of 46

MID CHANNEL RESULTS

Page 37 of 46


RADIATED EMISSIONS


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE018905 5 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Filter PRE018242 3 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.744	46.76	PK2	29.4	-25.5	0	1	51.66	-	-	74	-22.34	26	103	Н
	* 2.745	38.6	MAv1	29.4	-25.5	0.45	1	43.95	54	-10.05	-	-	26	103	Н
4	* 2.745	47.31	PK2	29.4	-25.5	0	1	52.21	-	-	74	-21.79	117	136	V
	* 2.745	40.41	MAv1	29.4	-25.5	0.45	1	45.76	54	-8.24	-	-	117	136	V
2	* 7.319	38.86	PK2	38	-27.5	0	1	50.36	-	-	74	-23.64	72	120	Н
	* 7.319	28.12	MAv1	38	-27.5	0.45	1	40.07	54	-13.93	-	-	72	120	н
3	* 8.233	37.03	PK2	38.4	-26.6	0	1	49.83	-	-	74	-24.17	60	105	Н
	* 8.235	27.01	MAv1	38.4	-26.6	0.45	1	40.26	54	-13.74	-	-	60	105	Н
5	* 7.319	40.41	PK2	38	-27.5	0	1	51.91	-	-	74	-22.09	98	131	V
	* 7.319	29.19	MAv1	38	-27.5	0.45	1	41.14	54	-12.86	-	-	98	131	V
6	* 8.235	39.41	PK2	38.4	-26.6	0	1	52.21	-	-	74	-21.79	82	144	V
	* 8.235	27.85	MAv1	38.4	-26.6	0.45	1	41.1	54	-12.9	-	-	82	144	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

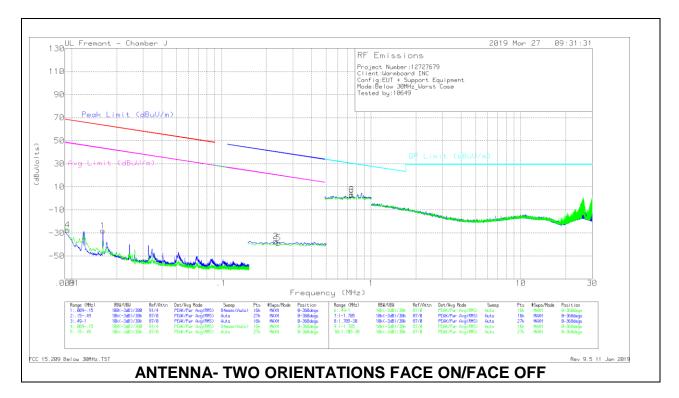
Page 38 of 46

HIGH CHANNEL RESULTS

Page 39 of 46

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF PRE018905 5 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Filter PRE0182423 (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarit y
1	1.854	47.41	PK2	26.5	-26.1	0	1	48.81	-	-	-	-	86	148	Н
2	* 2.781	46.84	PK2	29.3	-25.5	0	1	51.64	-	-	74	-22.36	104	124	Н
	* 2.781	37.8	MAv1	29.3	-25.5	0.45	1	43.05	54	-10.95	-	-	104	124	Н
4	* 2.78	46.93	PK2	29.3	-25.5	0	1	51.73	-	-	74	-22.27	185	103	V
	* 2.781	38.23	MAv1	29.3	-25.5	.45	1	43.48	54	-10.52	-	-	185	103	V
3	* 8.343	36.15	PK2	37.7	-26.5	0	1	48.35	-	-	74	-25.65	36	102	Н
	* 8.343	25.92	MAv1	37.7	-26.5	0.45	1	38.57	54	-15.43	-	-	36	102	Н
5	* 7.416	40.75	PK2	37.7	-27.6	0	1	51.85	-	-	74	-22.15	110	253	V
	* 7.415	28.47	MAv1	37.7	-27.6	.45	1	40.02	54	-13.98	-	-	110	253	V
6	* 11.127	35.31	PK2	39.1	-23.3	0	1	52.11	-	-	74	-21.89	165	169	V
	* 11.124	24.8	MAv1	39.1	-23.3	.45	1	42.05	54	-11.95	-	-	165	169	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 40 of 46

9.4. WORST CASE BELOW 30MHz

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

Below 30MHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
1	.01615	21.06	Pk	59.5	-28.5	-80	-27.94	63.42	-91.36	43.42	-71.36	-	-	-	-	0-360
2	.23104	14.91	Pk	56.3	-28.5	-80	-37.29	-		-	-	40.34	-77.63	20.34	-57.63	0-360
4	.00939	20.46	Pk	60.9	-28.5	-80	-27.14	68.13	-95.27	48.13	-75.27	-	-	-	-	0-360
5	.24042	13.66	Pk	56.3	-28.5	-80	-38.54	-		-	-	40	-78.54	20	-58.54	0-360

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna (ACF)	Amp/Cbl (dB)	Dist Corr 30m (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	.74144	15.35	Pk	56.3	-28.5	-40	3.15	30.21	-27.06	0-360
6	.74144	15.16	Pk	56.3	-28.5	-40	2.96	30.21	-27.25	0-360

Pk - Peak detector

Page 41 of 46

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

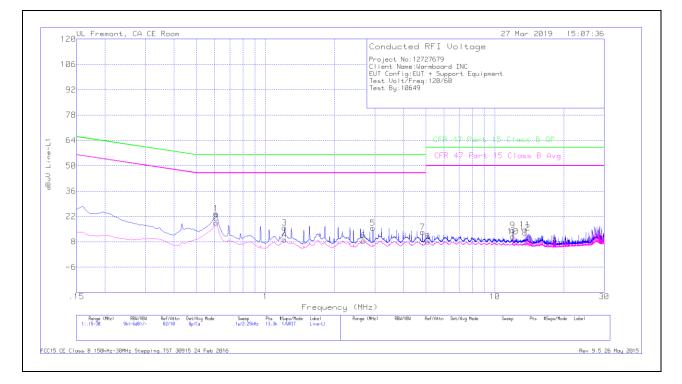
RSS-Gen 8.8

Eroquency of Emission (MHz)	Conducted	Limit (dBµV)
Frequency of Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

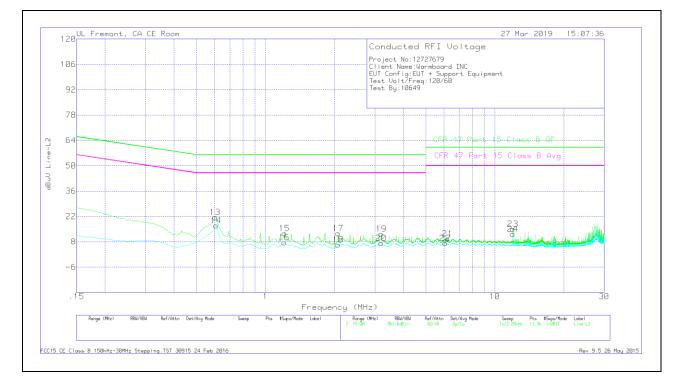

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

<u>RESULTS</u>

Page 42 of 46

LINE 1 RESULTS


Rang	e 1: Line-L1	1.15 - 30)MHz								
Marker	Frequency (MHz)	Meter Readin g (dBuV)	Det	LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR)Margin (dB)
1	.609	13.48	Qp	0	0	10.1	23.58	56	-32.42	-	-
2	.609	8.49	Ca	0	0	10.1	18.59	-	-	46	-27.41
3	1.212	5.62	Qp	0	.1	10.1	15.82	56	-40.18	-	-
4	1.212	-1.02	Ca	0	.1	10.1	9.18	-	-	46	-36.82
5	2.94225	5.43	Qp	0	.1	10.1	15.63	56	-40.37	-	-
6	2.68125	-1.61	Ca	0	.1	10.1	8.59	-	-	46	-37.41
7	4.84575	3.13	Qp	0	.1	10.1	13.33	56	-42.67	-	-
8	5.1045	-2.07	Ca	0	.1	10.1	8.13	-	-	50	-41.87
9	12.00075	3.87	Qp	.1	.2	10.2	14.37	60	-45.63	-	-
10	12.00075	.35	Ca	.1	.2	10.2	10.85	-	-	50	-39.15
11	13.56	4.27	Qp	.1	.2	10.2	14.77	60	-45.23	-	-
12	13.56	2.47	Ca	.1	.2	10.2	12.97	-	-	50	-37.03

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 43 of 46

LINE 2 RESULTS

Rang	e 2: Line-L2	2 .15 - 30)MHz								
Marker	Frequency (MHz)	Meter Readin g (dBuV)	Det	LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR)Margin (dB)
13	.6045	11.39	Qp	0	0	10.1	21.49	56	-34.51	-	-
14	.609	6.81	Ca	0	0	10.1	16.91	-	-	46	-29.09
15	1.212	2.44	Qp	0	.1	10.1	12.64	56	-43.36	-	-
16	1.20975	-2.57	Ca	0	.1	10.1	7.63	-	-	46	-38.37
17	2.076	2.4	Qp	0	.1	10.1	12.6	56	-43.4	-	-
18	2.076	-3.8	Ca	0	.1	10.1	6.4	-	-	46	-39.6
19	3.201	2	Qp	0	.1	10.1	12.2	56	-43.8	-	-
20	3.201	-2.97	Ca	0	.1	10.1	7.23	-	-	46	-38.77
21	6.2295	68	Qp	0	.2	10.2	9.72	60	-50.28	-	-
22	6.0765	-3.18	Ca	0	.2	10.2	7.22	-	-	50	-42.78
23	12.00075	4.51	Qp	.1	.2	10.2	15.01	60	-44.99	-	-
24	12.00075	1.82	Ca	.1	.2	10.2	12.32	-	-	50	-37.68

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 44 of 46