

TEST REPORT FCC ID:2BBGK-CP8

Product	: PORTABLE CAR SCREEN
Model Name	CP8 DO TO
Brand	N/A
Report No.	: NCT24048715E1-4
C	10
NET	Prepared for

Shenzhen Xincheng Times Technology Co.,Ltd

104-105, Block C, Donghai Wang Building, No. 369 Bulong Road, Ma'antang Community, Bantian Street, Longgang District, Shenzhen, China

Prepared by

Shenzhen NCT Testing Technology Co., Ltd.

A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China

TEL: 400-8868-419

FAX: 86-755-27790922

Hotline: 400-8868-419

Fax: 86-755-27790922

Page 1 of 64 http://www.ncttesting.cn

Report No.: NCT24048715E1-4

1 TEST RESULT CERTIFICATION

Applicant's name	:	Shenzhen Xincheng Times Technology Co.,Ltd				
Address	:	104-105, Block C, Donghai Wang Building, No. 369 Bulong Road, Ma'antang Community, Bantian Street, Longgang District, Shenzhen, China				
Manufacture's name		Shenzhen Xincheng Times Technology Co.,Ltd				
Address	 104-105, Block C, Donghai Wang Building, No. 369 Bulong Road Ma'antang Community, Bantian Street, Longgang District, Shenzhen, China 					
Product name	(PORTABLE CAR SCREEN				
Model name	:	CP8				
Standards		FCC CFR Title 47 Part 15 Subpart C Section 15.407 ANSI C63.10:2020 KDB 789033 D02 v02r01				
Test procedure	:	ANSI C63.10:2020				
Test Date	2	Nov. 28, 2024-Jan. 13, 2025				
Date of Issue		Jan. 14, 2025				
Test Result		Jan. 14, 2025 Pass				

This device described above has been tested by NCT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NCT, this document may be altered or revised by NCT, personal only, and shall be noted in the revision of the document.

Test Engineer:

Technical Manager:

Keven Wu / Eng Henry Wang / Ma

Contents

Page

1 TEST RESULT CERTIFICATION
2 TEST SUMMARY
3 TEST FACILITY
4 GENERAL INFORMATION
4.1 General Description of E.U.T
4.2 Test Setup Configuration
4.3 Test Mode
5 EQUIPMENT DURING TEST
5.1 Equipments List
5.2 Measurement Uncertainty
5.3 DESCRIPTION OF SUPPORT UNITS
6 CONDUCTED EMISSION
6.1 E.U.T. OPERATION
6.2 EUT Setup
6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)
6.4 Measurement Procedure:
6.5 CONDUCTED EMISSION LIMIT
6.6 MEASUREMENT DESCRIPTION
6.7 CONDUCTED EMISSION TEST RESULT
7 RADIATED SPURIOUS EMISSIONS
7.1 EUT OPERATION
7.2 TEST SETUP
7.3 Spectrum Analyzer Setup
7.4 TEST PROCEDURE
7.5 SUMMARY OF TEST RESULTS
8 POWER SPECTRAL DENSITY TEST
8.1 Test Standard and Limit
8.2 TEST SETUP
8.3 TEST PROCEDURE

NCT Technology

	Report No.: NCT24048715	<u>E1-4</u>
	8.4 Test Data	42
9 2	6DB & 6DB & 99% EMISSION BANDWIDTH TEST	43
	9.1 Test Standard	43
	9.2 TEST SETUP	43
	9.3 TEST PROCEDURE	43
	9.4 Test Data	44
10	MAXIMUM CONDUCTED OUTPUT POWER	
	10.1 Test Standard and Limit	45
	10.2 Test Setup	46
	10.3 Test Procedure	46
	10.4 Test Data	48
11	OUT OF BAND EMISSIONS AND SPURIOUS EMISSION	49
	11.1 Test Standard and Limit	49
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Test Data	50
12	FREQUENCY STABILITY MEASUREMENT	51
	12.1 Test Standard and Limit	51
	12.2 TEST SETUP	51
	12.3 Test Procedure	51
	12.4 Test Data	52
13	ANTENNA REQUIREMENT	
	13.1 TEST STANDARD AND REQUIREMENT	
	13.2 ANTENNA CONNECTED CONSTRUCTION	
14		
	14.1 DFS TEST REQUIREMENT	
	14.2 DFS DETECTION THRESHOLDS	
	14.2 DFS DETECTION THRESHOLDS	
	14.3 RADAR TEST WAVEFORMS	
45	TEST SETUP & EUT PHOTOGRAPH	
15		04

2 Test Summary

FCC Part15 (15.407) , Subpart E							
Standard Section	Test Item	Judgment	Remark				
Part 15.203	Antenna requirement	Pass					
47 CFR Part 15.207(a)	Conducted Emission at AC power line	N/A					
47 CFR Part 15.407(a)	Maximum conducted output power	Pass					
47 CFR Part 15.407(a)	Power spectral density	Pass					
47 CFR Part 15.407(e)	Emission bandwidth and occupied bandwidth	Pass	9				
47 CFR Part 15.407(h)(2)(ii)	Channel Availability Check Time	N/A	0				
47 CFR Part 15.407(h)(2)	U-NII Detection Bandwidth	N/A	0				
KDB 905462 D02, Clause 5.1 Table 2	Statistical Performance Check	N/A					
47 CFR Part 15.407(h)(2)(iii)	Channel Move Time, Channel Closing Transmission Time	Pass	The test results are reflected in				
47 CFR Part 15.407(h)(2)(iv)	Non-Occupancy Period Test	Pass	the DFS report				
KDB 905462 D02, Clause 5.2 Table 3	DFS Detection Thresholds	N/A					
47 CFR Part 15.407(b)	Band edge emissions	Pass					
47 CFR Part 15.407(b)	Undesirable emission limits	Pass					

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

3 TEST FACILITY

Site Description

EMC Lab.

: Accredited by CNAS, 2022-09-27

The certificate is valid until 2028.01.07

The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2017) 20109Y

The Certificate Registration Number is L8251

Designation Number: CN1347

Test Firm Registration Number: 894804

Accredited by A2LA, June 14, 2023

The Certificate Registration Number is 6837.01

Shenzhen NCT Testing Technology Co., Ltd.

Accredited by Industry Canada, November 09, 2018

The Conformity Assessment Body Identifier is CN0150

Company Number: 30806

Name of Firm

Site Location

A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China

4 General Information

4.1 General Description of E.U.T.

Product Name:	PORTABLE CAR SCREEN					
Model No.:	CP8					
HVIN:	24048715-001#					
Sample ID	Engineer sample					
Operation Frequency Range:	U-NII Band 1: 5.18~5.24 GHz U-NII Band 2A: 5.26~5.32 GHz U-NII Band 2C: 5.50~5.70 GHz U-NII Band 3: 5.745~5.825 GHz					
Frequency Block	U-NII Band 1: 5.15~5.25 GHz U-NII Band 2A: 5.25~5.35 GHz U-NII Band 2C: 5.47~5.725 GHz U-NII Band 3: 5.725~5.85 GHz					
Modulation type:	OFDM with BPSK/QPSK/16QAM/64QAM for 802.11a/n					
Antenna Type:	Internal Antenna					
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz					
TPC:	Supported Unspported					
Channel Puncturing Function:	Supported D Unspported					
Support RU:	Full RU Dertial RU					
Antenna gain:	4.03 dBi(WIFI5.2G) ; 3.03 dBi(WIFI5.3G) 3.09 dBi(WIFI5.6G); 3.43 dBi(WIFI5.8G)					
Power supply	DC 12V					
Hardware Version:	N/A					
Software Version:	N/A					
Remark:	the Antenna gain is provided by customer from Antenna spec. and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.					

⊠ Wifi 5G with U-NII - 1

Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220		
40	5200	48	5240		

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	0/AS		2XUA	0
46	5230				19

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Fr	requency	Middle F	requency	Highes	t Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	40	5200	48	5240

Test Frequency and channel for 802.11n (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	N/A	N/A	46	5230

☑ Wifi 5G with U-NII -2A

Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300		
56	5280	64	5320		

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	VAS			0
62	5310				19

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Fi	requency	Middle F	Frequency	Highes	t Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300	64	5320

Test Frequency and channel for 802.11n (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	N/A	N/A	62	5310

⊠ Wifi 5G with U-NII -2C

Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	116	5580	132	5660
104	5520	120	5600	136	5680
108	5540	124	5620	140	5700
112	5560	128	5640		0

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670
110	5550	126	5630		

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	120	5600	140	5700

Test Frequency and channel for 802.11n (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670

t

$\boxtimes~$ Wifi 5G with U-NII -3

Frequency and Channel list for 802.11a/n (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785	165	5825
153	5765	161	5805	-	

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	VIC		N/	i Q
159	5795	8	1		\sim

Test Frequency and Channel for 802.11a/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785	165	5825

Test Frequency and channel for 802.11n (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	N/A	N/A	159	5795

4.2 Test Setup Configuration

Radiated Emission	
AC Line EUT	DC Line EUT
Radiated Spurious	asting lead
AC Line Notebo	DC Line EUT
Conducted Spurious	
AC Line Notebo	
4.3 Test Mode	
Transmitting mode	Keep the EUT in continuously transmitting mode.
	test, the test voltage was tuned from 85% to 115% of the nominal rated supply hat the worst case was under the nominal rated supply condition. So the report just i's data.
0	
	est Software FCC RF-Test
Po	ower level setup 0

5 Equipment During Test

5.1 Equipments List

Conducted emission Test Equipment

Name	Model No.	Serial No.	Manufacturer	Date of Cal.	Due Date
944 Shielded Room	944 Room	1	EMToni	2022/5/31	2025/5/30
EMI Test Receiver	ESPI	101604	Rohde & Schwarz	2024/6/17	2025/6/16
LISN	ENV 216	102796	Rohde & Schwarz	2024/6/17	2025/6/16
LISN	VN1-13S	004023	CRANAGE	2024/6/17	2025/6/16
Cable	RG223- 1500MM	NA	RG	2024/6/17	2025/6/16

Radiated emission & Radio Frequency Test Equipment

Name	Model No.	Serial No.	Manufacturer	Date of Cal.	Due Date
966 Shielded Room	966 Room		EMToni	2022/5/31	2025/5/30
EMI Test Receiver	ESCI	101178	Rohde & Schwarz	2024/6/17	2025/6/16
Amplifi (30MHz-1GHz)	BBV 9743 B	00374	SCHNWARZBECK	2024/6/17	2025/6/16
Bilog Antenna (30MHz-1GHz)	VULB9162	00473	SCHNWARZBECK	2023/3/19	2025/3/18
Horn antenna (1GHz-18GHz)	BBHA 9120 D	02622	SCHNWARZBECK	2023/3/19	2025/3/18
Pream plifier (1GHz-18GHz)	BBV 9718D	0024	SCHNWARZBECK	2024/6/17	2025/6/16
Spectrum Analyze (10Hz-40GHz)	FSV 40	100952	Rohde & Schwarz	2024/6/17	2025/6/16
Pream plifier (18GHz-40GHz)	BBV 9721	0056	SCHNWARZBECK	2024/6/17	2025/6/16
Double Ridge Guide Horn Antenna (18GHz-40GHz)	SAS-574	588	A.H.System	2023/3/19	2025/3/18
Loop Antenna (9KHz-30MHz)	FMZB 1513-60	00115	SCHNWARZBECK	2024/6/17	2025/6/16
Amplifier (9KHz-30MHz)	BBV 9745	00109	CHNWARZBECK	2024/6/17	2025/6/16

Report No.: NCT24048715E1-4

MXG Signal Analyzer	N9020A	MY50510202	Agilent	2024/6/17	2025/6/16
MXG Vector Signal Generator	N5182A	MY50140020	Agilent	2024/6/17	2025/6/16
MXG Analog Signal Generator	N5181A	MY47420919	Agilent	2024/6/17	2025/6/16
Power Sensor	TR1029-2	512364	Techoy	2024/6/17	2025/6/16
RF Swith	TR1029-1	512364	Techoy	2024/6/17	2025/6/16
Cable	DA800- 4000MM	NA	DA	2024/6/17	2025/6/16
Cable	DA800- 11000MM	NA	DA	2024/6/17	2025/6/16
Other				6	

ltem	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	AUDIX	e3	6.120718
2	EMC radiation test system	AUDIX	e3	6.120718
3	RF test system	TACHOY	RFTest	V1.0.0
4	RF communication test system	TACHOY	RFTest	V1.0.0

5.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(9KHz~30MHz)	±4.51dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Radiated Emission(25GHz~40GHz)	±3.38dB

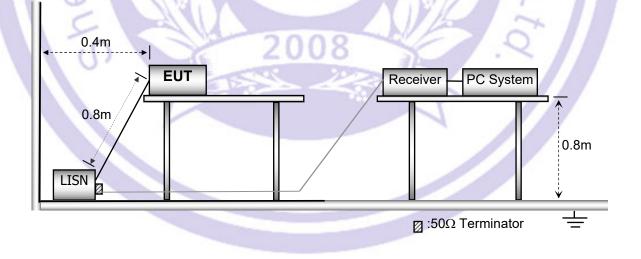
5.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

2008

			2000		
Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
					AT
E-1	PORTABLE CAR	N/A	CP8	N/A	EUT
	SCREEN		0.0		
E-2	Battery	RITAR	RA12-75	N/A	Auxiliary
	Dationy		1011210		, turtinen y

Note:


- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.

6 Conducted Emission

Test Requirement:	: FCC CFR 47 Part 15 Section 15.207
Test Method:	: ANSI C63.10:2020
Test Result:	: PASS
Frequency Range:	: 150kHz to 30MHz
Class/Severity:	: Class B
Detector:	: Peak for pre-scan (9kHz Resolution Bandwidth)
6.1 E.U.T. Operation Operating Environment :	102-201 20-
Temperature:	: 23.2°C
Humidity:	: 51 % RH
Atmospheric Pressure:	: 101.12 kPa
Test Voltage	: AC 120V/60Hz
6.2 EUT Setup	

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2020

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56	56-46	0
0.5-5.0	56	46	~
5.0-30.0	60	50	

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

6.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.7 Conducted Emission Test Result

N/A

7 Radiated Spurious Emissions

Test Requirement	•	FCC CFR47 Part 15 Section 15.209 & 15.407 RSS-Gen §8.9, RSS-Gen §8.10				
Test Method	: A	NSI C63.10:	2020			
Test Result : PASS						
Measurement Distance	e : 31	m				
Limit	: S	ee the follow	/ table			
	Field Stren	ngth	Field Strength Limit at	3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

FCC Part 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(10) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

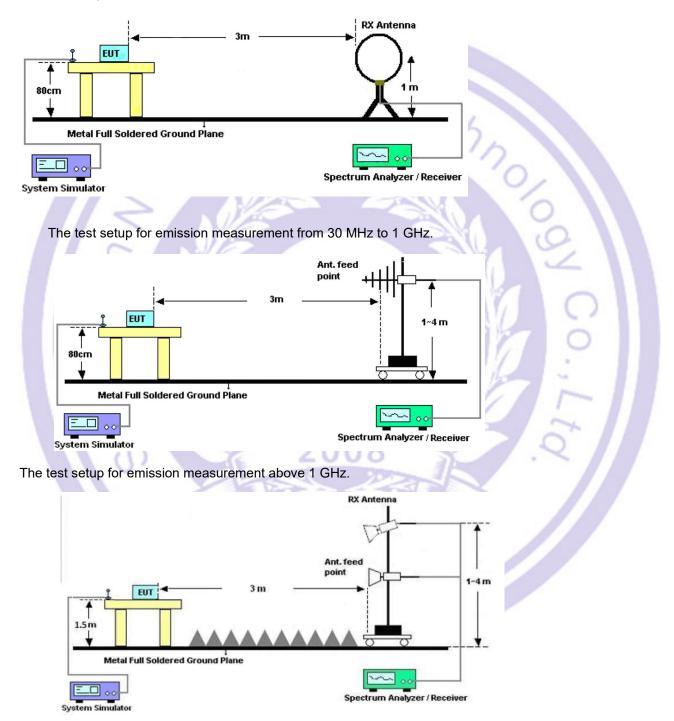
(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating solely in the 5.725-5.850 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of ie chholog 27 dBm/MHz at the band edge.

7.1 EUT Operation

Operating Environment: Temperature Humidity **Atmospheric Pressure Test Voltage**


henzh

24.5 °C 55.5% RH 101.3kPa AC 120V60Hz

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / <i>10Hz</i> for Average		

Receiver Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP		
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

7.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2020.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
			-	>20
		tipo		

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots, Low Channel Worst case 802.11a for record:

Report No.: NCT24048715E1-4

Temper	ature:	26 ℃		R	elative Humi	dity: 54%	⁄₀	
Pressur	e:	101kPa		P	olarization:	Hor	rizontal	
Test Vo	ltage:	DC 12V						
80	0.0 dBuV/	/m					6	
70	0							
60	o							
50	n				FL M	CC Part15 RE-Clas argin -6-dP	\$\$ B_30-1000	Hz
40	0							
30	0	6		1 I hall	M MW	Anter		peak
20	0		A. Mul		laven da i i		WW M	Ψ
10	Wind Water	marking was also a feature of the	w Yuur - mir	W				
0								
-1 -2								
	30.000	60.00		(MHz)	30	0.00		1000.000
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	194.4533	50.79	-16.67	34.12	43.50	-9.38	QP
	2	225.3080	52.57	-15.47	37.10	46.00	-8.90	QP

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

50.44

45.65

44.70

42.67

3

4

5

6

270.3747

556.7743

668.1422

854.0247

-14.38

-8.88

-6.97

-4.10

36.06

36.77

37.73

38.57

46.00

46.00

46.00

46.00

-9.94

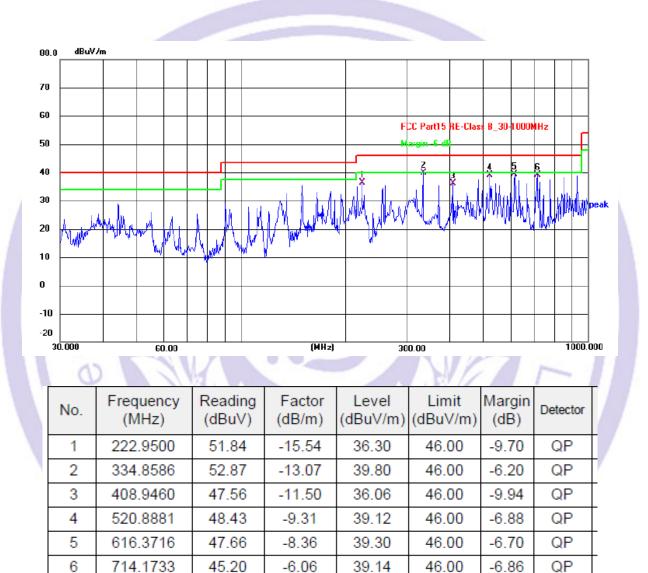
-9.23

-8.27

-7.43

QP

QP


QP

QP

Report No.: NCT24048715E1-4

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Vertical
Test Voltage:	DC 12V		

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency 1GHz-40GHz

802.11a

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			(a.S	ow Chan	nel:5180MH	2001			
V	10360	44.56	32.7	7.72	38.59	58.17	74.00	-15.83	PK
V	10360	23.15	32.7	7.72	38.59	36.76	54.00	-17.24	AV
V	15540	42.35	31.74	9.44	39.29	59.34	68.20	-8.86	РК
V	15540	16.89	31.74	9.44	39.29	33.88	54.00	-20.12	AV
V	20720	41.78	26.93	6.64	37.94	59.43	68.20	-8.77	РК
V	20720	18.58	26.93	6.64	37.94	36.23	54.00	-17.77	AV
V	25900	35.63	27.1	7.9	39.32	55.75	74.00	-18.25	РК
V	25900	21.15	27.1	7.9	39.32	41.27	54.00	-12.73	AV
н	10360	37.58	32.7	7.72	38.59	51.19	74.00	-22.81	РК
н	10360	21.78	32.7	7.72	38.59	35.39	54.00	-18.61	AV
н	15540	38.03	31.74	9.44	39.29	55.02	68.20	-13.18	РК
н	15540	22.59	31.74	9.44	39.29	39.58	54.00	-14.42	AV
Н	20720	41.23	26.93	6.64	37.94	58.88	68.20	-9.32	РК
Н	20720	16.16	26.93	6.64	37.94	33.81	54.00	-20.19	AV
Н	25900	38.36	27.1	7.9	39.32	58.48	74.00	-15.52	РК
Н	25900	19.85	27.1	7.9	39.32	39.97	54.00	-14.03	AV

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			М	iddle Cha	nnel:5200M	Hz			
V	10400	43.55	32.69	7.73	38.62	57.21	74.00	-16.79	РК
V	10400	24.78	32.69	7.73	38.62	38.44	54.00	-15.56	AV
V	15600	39.66	31.72	9.45	39.28	56.67	68.20	-11.53	РК
V	15600	19.83	31.72	9.45	39.28	36.84	54.00	-17.16	AV
V	20800	37.18	26.93	6.73	37.96	54.94	68.20	-13.26	РК
V	20800	20.28	26.93	6.73	37.96	38.04	54.00	-15.96	AV
V	26000	37.69	27.1	7.94	39.3	57.83	74.00	-16.17	РК
V	26000	15.88	27.1	7.94	39.3	36.02	54.00	-17.98	AV
Н	10400	41.67	32.69	7.73	38.62	55.33	74.00	-18.67	РК
н	10400	20.66	32.69	7.73	38.62	34.32	54.00	-19.68	AV
н	15600	38.75	31.72	9.45	39.28	55.76	68.20	-12.44	РК
н	15600	20.66	31.72	9.45	39.28	37.67	54.00	-16.33	AV
н	20800	38.78	26.93	6.73	37.96	56.54	68.20	-11.66	РК
н	20800	18.23	26.93	6.73	37.96	35.99	54.00	-18.01	AV
н	26000	37.13	27.1	7.94	39.3	57.27	74.00	-16.73	РК
н	26000	15.75	27.1	7.94	39.3	35.89	54.00	-18.11	AV

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			ŀ	ligh Char	nel:5240MH	z			
V	10480	40.02	32.66	7.74	38.68	53.78	74.00	-20.22	PK
V	10480	24.25	32.66	7.74	38.68	38.01	54.00	-15.99	AV
V	15720	36.63	31.68	9.48	39.26	53.69	68.20	-14.51	РК
V	15720	17.25	31.68	9.48	39.26	34.31	54.00	-19.69	AV
V	20960	37.25	26.94	6.91	37.99	55.21	68.20	-12.99	РК
V	20960	19.88	26.94	6.91	37.99	37.84	54.00	-16.16	AV
V	26200	37.66	27.1	7.89	39.5	57.95	74.00	-16.05	РК
V	26200	15.03	27.1	7.89	39.5	35.32	54.00	-18.68	AV
Н	10480	44.78	32.66	7.74	38.68	58.54	74.00	-15.46	РК
н	10480	23.25	32.66	7.74	38.68	37.01	54.00	-16.99	AV
Н	15720	39.99	31.68	9.48	39.26	57.05	68.20	-11.15	РК
Н	15720	20.36	31.68	9.48	39.26	37.42	54.00	-16.58	AV
н	20960	38.21	26.94	6.91	37.99	56.17	68.20	-12.03	РК
н	20960	20.23	26.94	6.91	37.99	38.19	54.00	-15.81	AV
Н	26200	34.56	27.1	7.89	39.5	54.85	74.00	-19.15	РК
Н	26200	17.89	27.1	7.89	39.5	38.18	54.00	-15.82	AV

Report No.: NCT24048715E1-4

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	· · · · · ·			Low Char	nel:5260M	Hz			
V	10520	43.66	32.64	7.75	38.70	57.47	74.00	-16.53	PK
V	10520	21.16	32.64	7.75	38.70	34.97	54.00	-19.03	AV
V	15780	36.98	31.67	9.49	39.24	54.04	68.20	-14.16	РК
V	15780	15.53	31.67	9.49	39.24	32.59	54.00	-21.41	AV
Н	10520	34.69	32.64	7.75	38.70	48.50	74.00	-25.50	РК
н	10520	14.62	32.64	7.75	38.70	28.43	54.00	-25.57	AV
н	15780	35.02	31.67	9.49	39.24	52.08	68.20	-16.12	РК
н	15780	14.96	31.67	9.49	39.24	32.02	54.00	-21.98	AV
	μZ				5		SK	0	

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	10.		The	Low Chan	nel:5300MH	lz			1
V	10600	44.07	32.61	7.77	38.72	57.95	68.20	-10.25	РК
V	10600	26.36	32.61	7.77	38.72	40.24	54.00	-13.76	AV
V	15900	42.57	31.63	9.51	39.22	59.67	68.20	- <mark>8.5</mark> 3	РК
V	15900	26.02	31.63	9.51	39.22	43.12	54.00	-10.88	AV
Н	10600	43.29	32.61	7.77	38.72	57.17	68.20	-11.03	РК
Н	10600	25.43	32.61	7.77	38.72	39.31	54.00	-14.69	AV
Н	15900	41.63	31.63	9.51	39.22	58.73	68.20	-9.47	РК
Н	15900	24.95	31.63	9.51	39.22	42.05	54.00	-11.95	AV

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
				Low Chan	nel:5320MH	lz			
V	10640	43.01	32.60	7.78	38.73	56.92	68.20	-11.28	PK
V	10640	27.79	32.60	7.78	38.73	41.70	54.00	-12.30	AV
V	15960	44.56	31.61	9.52	39.21	61.68	68.20	-6.52	РК
V	15960	21.54	31.61	9.52	39.21	38.66	54.00	-15.34	AV
н	10640	40.75	32.60	7.78	38.73	54.66	68.20	-13.54	PK
н	10640	24.56	32.60	7.78	38.73	38.47	54.00	-15.53	AV
н	15960	42.01	31.61	9.52	39.21	59.13	68.20	-9.07	PK
н	15960	26.38	31.61	9.52	39.21	43.50	54.00	-10.50	AV
	L L	Ĵ.		N					

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
		5	1	Low Chan	nel:5500MH	łz	2		
V	11000	41.44	32.47	7.85	38.80	55.62	68.20	-12.58	РК
V	11000	25.66	32.47	7.85	38.80	39.84	54.00	-14.16	AV
V	16500	38.12	31.50	9.52	39.60	55.74	74.00	-18.26	РК
V	16500	25.15	31.50	9.52	39.60	42.77	54.00	-11.23	AV
Н	11000	44.03	32.47	7.85	38.80	58.21	68.20	-9.99	РК
Н	11000	27.92	32.47	7.85	38.80	42.10	54.00	-11.90	AV
Н	16500	41.93	31.50	9.52	39.60	59.55	74.00	-14.45	РК

Report No.: NCT24048715E1-4

H 16500 26.50 31.50 9.52 39.60 44.12 54.00 -9.88 AV

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
			05	Low Chan	nel:5600MH	lz			
V	11200	43.59	32.39	8.07	38.84	58.11	68.20	-10.09	PK
V	11200	26.74	32.39	8.07	38.84	41.26	54.00	-12.74	AV
V	16800	44.83	31.44	9.51	39.78	62.68	74.00	-11.32	РК
V	16800	27.96	31.44	9.51	39.78	45.81	54.00	-8.19	AV
н	11200	45.31	32.39	8.07	38.84	59.83	68.20	-8.37	РК
н	11200	28.30	32.39	8.07	38.84	42.82	54.00	-11.18	AV
н	16800	42.61	31.44	9.51	39.78	60.46	74.00	-13.54	РК
н	16800	23.44	31.44	9.51	39.78	41.29	54.00	-12.71	AV

Polar	Frequency		Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)		(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
				Low Cha	annel:5700	ИНz	5		
V	11400	44.98	32.32	8.29	38.88	59.83	68.20	-8.37	PK
V	11400	26.75	32.32	8.29	38.88	41.60	54.00	-12.40	AV
V	17100	41.75	31.31	9.56	40.10	60.10	74.00	-13.90	PK
V	17100	29.46	31.31	9.56	40.10	47.81	54.00	-6.19	AV
Н	11400	39.10	32.32	8.29	38.88	53.95	68.20	-14.25	РК
Н	11400	22.88	32.32	8.29	38.88	37.73	54.00	-16.27	AV

Report No.: NCT24048715E1-4

н	17100	43.14	31.31	9.56	40.10	61.49	74.00	-12.51	РК
Н	17100	26.27	31.31	9.56	40.10	44.62	54.00	-9.38	AV

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		G		Low Chan	nel:5745MH	z	0		
V	11490	41.69	32.29	8.39	38.9	56.69	68.20	11.51	PK
V	11490	19.89	32.29	8.39	38.9	34.89	54.00	-19.11	AV
V	17235	36.58	31.19	9.62	40.37	55.38	74.00	-18.62	РК
V	17235	19.78	31.19	9.62	40.37	38.58	54.00	-15.42	AV
V	22980	37.89	27.02	7.2	38.98	57.05	68.20	11.15	РК
V	22980	17.78	27.02	7.2	38.98	36.94	54.00	-17.06	AV
V	28725	35.88	27.1	7.56	40.18	56.52	74.00	-17.48	РК
V	28725	15.98	27.1	7.56	40.18	36.62	54.00	-17.38	AV
н	11490	41.69	32.29	8.39	38.9	56.69	68.20	-11.51	РК
н	11490	20.96	32.29	8.39	38.9	35.96	54.00	-18.04	AV
Н	17235	37.78	31.19	9.62	40.37	56.58	74.00	-17.42	РК
Н	17235	17.57	31.19	9.62	40.37	36.37	54.00	-17.63	AV
Н	22980	35.13	27.02	7.2	38.98	54.29	68.20	-13.91	РК
Н	22980	18.88	27.02	7.2	38.98	38.04	54.00	-15.96	AV
Н	28725	36.58	27.1	7.56	40.18	57.22	74.00	-16.78	РК
Н	28725	14.78	27.1	7.56	40.18	35.42	54.00	-18.58	AV

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			М	iddle Cha	nnel:5785M	Hz			
V	11570	40.77	32.26	8.48	38.9	55.89	68.20	-12.31	PK
V	11570	16.82	32.26	8.48	38.9	31.94	54.00	-22.06	AV
V	17355	36.17	31.08	9.67	40.61	55.37	74.00	-18.63	РК
V	17355	15.23	31.08	9.67	40.61	34.43	54.00	-19.57	AV
V	23140	34.78	27.03	7.24	39.03	54.02	74.00	-19.98	PK
V	23140	15.25	27.03	7.24	39.03	34.49	54.00	-19.51	AV
V	28925	34.83	27.1	7.58	40.34	55.65	74.00	-18.35	РК
V	28925	15.86	27.1	7.58	40.34	36.68	54.00	-17.32	AV
н	11570	36.96	32.26	8.48	38.9	52.08	68.20	-16.12	РК
н	11570	18.57	32.26	8.48	38.9	33.69	54.00	-20.31	AV
н	17355	34.69	31.08	9.67	40.61	53.89	74.00	-20.11	РК
н	17355	14.43	31.08	9.67	40.61	33.63	54.00	-20.37	AV
н	23140	34.59	27.03	7.24	39.03	53.83	74.00	-20.17	РК
н	23140	15.38	27.03	7.24	39.03	34.62	54.00	-19.38	AV
Н	28925	34.79	27.1	7.58	40.34	55.61	74.00	-18.39	РК
Н	28925	12.73	27.1	7.58	40.34	33.55	54.00	-20.45	AV
Н	28925	12.73	27.1	7.58	40.34	33.55	54.00	-20.45	

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
				ligh Chan	nel:5825MH	z			
V	11650	43.69	32.23	8.56	38.9	58.92	68.20	-9.28	РК
V	11650	30.58	32.23	8.56	38.9	45.81	54.00	-8.19	AV
V	17473.3	42.18	30.97	9.73	40.85	61.79	74.00	-12.21	РК
V	17473.3	27.23	30.97	9.73	40.85	46.84	54.00	-7.16	AV
V	23300	40.58	27.03	7.26	39.06	59.87	74.00	-14.13	РК
V	23300	23.12	27.03	7.26	39.06	42.41	54.00	-11.59	AV
V	29123.3	40.06	27.1	7.61	40.4	60.97	74.00	-13.03	РК
V	29123.3	22.36	27.1	7.61	40.4	43.27	54.00	-10.73	AV
н	11650	43.78	32.23	8.56	38.9	59.01	68.20	-9.19	РК
Н	11650	29.25	32.23	8.56	38.9	44.48	54.00	-9.52	AV
н	17473.3	43.16	30.97	9.73	40.85	62.77	74.00	-11.23	РК
н	17473.3	26.58	30.97	9.73	40.85	46.19	54.00	-7.81	AV
н	23300	43.36	27.03	7.26	39.06	62.65	74.00	-11.35	РК
н	23300	22.68	27.03	7.26	39.06	41.97	54.00	-12.03	AV
н	29123.3	36.78	27.1	7.61	40.4	57.69	74.00	-16.31	РК
н	29123.3	23.25	27.1	7.61	40.4	44.16	54.00	-9.84	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11a, only the worst data is recorded.

Restricted bands:

Report No.: NCT24048715E1-4

Frequency	Meter Reading	antenna Factor	cable loss	preamp factor	Emission Level	Limit	Margin	Polar	Detector Type	Result
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(H/V)		
				802.	11a:5180MI	Hz				
5150	52.76	33.14	5.29	33.88	57.31	74	-16.69	V	РК	Pass
5150	34.14	33.14	5.29	33.88	38.69	54	-15.31	V	AV	Pass
5145	52.21	33.14	5.29	33.88	56.76	74	-17.24	V	РК	Pass
5145	34.70	33.14	5.29	33.88	39.25	54	-14.75	V	AV	Pass
5150	53.15	33.14	5.29	33.88	57.70	74	-16.30	Эн	РК	Pass
5150	33.69	33.14	5.29	33.88	38.24	54	-15.76	G	AV	Pass
5145	50.50	33.14	5.29	33.88	55.05	74	-18.95	Н	РК	Pass
5145	33.12	33.14	5.29	33.88	37.67	54	-16.33	H	AV	Pass
	NN	SID		802.	11a:5240MI	Hz	17	0		
5350	54.79	33.06	5.44	33.72	59.57	74	-14.43	V	РК	Pass
5350	35.52	33.06	5.44	33.72	40.30	54	-13.70	V	AV	Pass
5370	50.70	33.05	5.45	33.70	55.50	74	-18.5	V	РК	Pass
5370	34.04	33.05	5.45	33.70	38.84	54	-15.16	v	AV	Pass
5350	54.69	33.06	5.44	33.72	59.47	74	-14.53	н	РК	Pass
5350	37.29	33.06	5.44	33.72	42.07	54	-11.93	Н	AV	Pass
5370	52.96	33.05	5.45	33.70	57.76	74	-16.24	н	РК	Pass
5370	33.69	33.05	5.45	33.70	38.49	54	-15.51	Н	AV	Pass
	1			802.1	1n20:5180N	/Hz			1	1
5150	52.92	33.14	5.29	33.88	57.47	74	-16.53	V	РК	Pass
5150	35.48	33.14	5.29	33.88	40.03	54	-13.97	V	AV	Pass

Report No.: NCT24048715E1-4

5145	52.87	33.14	5.29	33.88	57.42	74	-16.58	v	РК	Pass
5145	34.29	33.14	5.29	33.88	38.84	54	-15.16	V	AV	Pass
5150	53.81	33.14	5.29	33.88	58.36	74	-15.64	Н	РК	Pass
5150	35.91	33.14	5.29	33.88	40.46	54	-13.54	Н	AV	Pass
5145	52.52	33.14	5.29	33.88	57.07	74	-16.93	Н	РК	Pass
5145	34.68	33.14	5.29	33.88	39.23	54	-14.77	н	AV	Pass
		1	65	802.1	1n20:5240N	/Hz	26			
5350	55.15	33.06	5.44	33.72	59.93	74	-14.07	V	РК	Pass
5350	38.22	33.06	5.44	33.72	43.00	54	-11.00	V	AV	Pass
5370	51.66	33.05	5.45	33.70	56.46	74	-17.54	V	РК	Pass
5370	35.35	33.05	5.45	33.70	40.15	54	-13.85	V	AV	Pass
5350	53.49	33.06	5.44	33.72	58.27	74	-15.73	н	РК	Pass
5350	41.27	33.06	5.44	33.72	46.05	54	-7.95	н	AV	Pass
5370	53.36	33.05	5.45	33.70	58.16	74	-15.84	н	РК	Pass
5370	36.67	33.05	5.45	33.70	41.47	54	-12.53	T	AV	Pass
	S	A.	W.	802.1	1n40:5190N	I 1Hz		7		
5150	53.76	33.14	5.29	33.88	58.31	74	-15.69	V	РК	Pass
5150	39.40	33.14	5.29	33.88	43.95	54	-10.05	V	AV	Pass
5145	50.38	33.14	5.29	33.88	54.93	74	-19.07	V	РК	Pass
5145	37.30	33.14	5.29	33.88	41.85	54	-12.15	V	AV	Pass
5150	54.91	33.14	5.29	33.88	59.46	74	-14.54	н	РК	Pass
5150	41.48	33.14	5.29	33.88	46.03	54	-7.97	Н	AV	Pass
5145	54.58	33.14	5.29	33.88	59.13	74	-14.87	Н	РК	Pass
5145	37.55	33.14	5.29	33.88	42.10	54	-11.90	Н	AV	Pass
				802.1						

5350	54.58	33.06	5.44	33.72	59.36	74	-14.64	V	PK	Pass
5350	37.47	33.06	5.44	33.72	42.25	54	-11.75	V	AV	Pass
5370	54.06	33.05	5.45	33.70	58.86	74	-15.14	V	РК	Pass
5370	33.19	33.05	5.45	33.70	37.99	54	-16.01	V	AV	Pass
5350	53.63	33.06	5.44	33.72	58.41	74	-15.59	Н	РК	Pass
5350	40.70	33.06	5.44	33.72	45.48	54	-8.52	н	AV	Pass
5370	54.05	33.05	5.45	33.70	58.85	74	-15.15	н	РК	Pass
5370	34.43	33.05	5.45	33.70	39.23	54	-14.77	н	AV	Pass
5370	34.43	33.05	5.45	33.70	39.23	54	-14.77	H	AV	F

Frequency	Meter Reading	antenna Factor	cable loss	preamp factor	Emission Level	Limit	Margin	Polar	Detector Type	Result
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(H/V)	2	
	802.11a:5500MHz									
5450	55.59	33.03	5.47	33.91	60.18	74	-13.82	V	РК	Pass
5450	33.25	33.03	5.47	33.91	37.84	54	-16.16	V	AV	Pass
5460	54.20	33.03	5.47	33.91	58.79	74	-15.21	V	PK	Pass
5460	34.58	33.03	5.47	33.91	39.17	54	-14.83	V	AV	Pass
5450	53.07	33.03	5.47	33.91	57.66	74	-16.34	H	РК	Pass
5450	39.62	33.03	5.47	33.91	44.21	54	-9.79	Н	AV	Pass
5460	54.63	33.03	5.47	33.91	59.22	74	-14.78	Н	РК	Pass
5460	32.40	33.03	5.47	33.91	36.99	54	-17.01	Н	AV	Pass
	802.11n20:5500MHz									

5450	54.10	33.03	5.47	33.91	58.69	74	-15.31	V	РК	Pass
5450	38.00	33.03	5.47	33.91	42.59	54	-11.41	V	AV	Pass
5460	55.52	33.03	5.47	33.91	60.11	74	-13.89	V	РК	Pass
5460	34.31	33.03	5.47	33.91	38.90	54	-15.10	V	AV	Pass
5450	55.60	33.03	5.47	33.91	60.19	74	-13.81	Н	РК	Pass
5450	36.50	33.03	5.47	33.91	41.09	54	-12.91	Н	AV	Pass
5460	51.73	33.03	5.47	33.91	56.32	74	-17.68	н	РК	Pass
5460	37.17	33.03	5.47	33.91	41.76	54	-12.24	Н	AV	Pass
	7		15	802.11	.n40:5510N	IHz		2		
5450	52.71	33.03	5.47	33.91	57.30	74	-16.70	V	РК	Pass
5450	35.52	33.03	5.47	33.91	40.11	54	-13.89	V	AV	Pass
5460	52.47	33.03	5.47	33.91	57.06	74	-16.94	V	РК	Pass
5460	30.32	33.03	5.47	33.91	34.91	54	-19.09	V	AV	Pass
5450	50.76	33.03	5.47	33.91	55.35	74	-18.65	1	РК	Pass
5450	38.50	33.03	5.47	33.91	43.09	54	-10.91	The second	AV	Pass
5460	52.90	33.03	5.47	33.91	57.49	74	-16.51	H.	РК	Pass
5460	32.67	33.03	5.47	33.91	37.26	54	-16.74	н	AV	Pass
		P		802.11	.n40:5510N	IHz			7	1
5450	54.06	33.03	5.47	33.91	58.65	74	-15.35	V	РК	Pass
5450	36.05	33.03	5.47	33.91	40.64	54	-13.36	V	AV	Pass
5460	50.19	33.03	5.47	33.91	54.78	74	-19.22	V	РК	Pass
5460	34.13	33.03	5.47	33.91	38.72	54	-15.28	V	AV	Pass
5450	51.93	33.03	5.47	33.91	56.52	74	-17.48	Н	РК	Pass
	1	1	1		1	1	1	1	1	1

5450	38.89	33.03	5.47	33.91	43.48	54	-10.52	Н	AV	Pass
5460	52.92	33.03	5.47	33.91	57.51	74	-16.49	Н	РК	Pass
5460	35.62	33.03	5.47	33.91	40.21	54	-13.79	Н	AV	Pass

Remark:

plifie. Pre-amplifier, 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss -Margin= Emission Level - Limit

Hotline: 400-8868-419

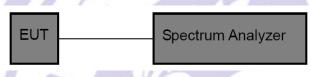
henzhen

8 POWER SPECTRAL DENSITY TEST

8.1 Test Standard and Limit

According to FCC §15.407(3)

(1) For the band 5.15-5.25 GHz.


- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

00

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-tomultipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Test Setup

8.3 Test Procedure

a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)

b) Use the peak search function on the instrument to find the peak of the spectrum.

c) Make the following adjustments to the peak value of the spectrum, if applicable:

1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

d) The result is the PPSD.

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

1) Set RBW $\geq 1 / T$, where T is defined in 12.2 a).

2) Set VBW >= $[3 \times RBW]$.

3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

8.4 Test Data

Please Refer to Appendix data 5.2G and 5.3G and 5.6G and 5.8G for Details.

9 26DB & 6DB & 99% Emission Bandwidth Test

9.1 Test Standard

Test Standard	FCC Part15 C Section 15.407		
	The maximum power spectral density is measured as a conducted emissio		
	by direct connection of a calibrated test instrument to the equipment under		
	test. If the device cannot be connected directly, alternative techniques		
	acceptable to the Commission may be used. Measurements in the 5.725-		
	5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices		
	shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35		
	GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz		
	or the 26 dB emission bandwidth of the device, whichever is less. A		
narrower resolution bandwidth can be used, provided that the measur			
	power is integrated over the full reference bandwidth.		

9.2 Test Setup

Spectrum Analyzer

9.3 Test Procedure

Emission bandwidth:

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Occupied bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,

and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are

recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6 dB emission bandwidth:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Data

Please Refer to Appendix data 5.2G and 5.3G and 5.6G and 5.8G for Details.

10 Maximum Conducted Output Power

10.1 Test Standard and Limit

For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.

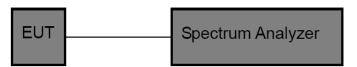
Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna


exceeds 6 dBi.

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-tomultipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Power meter

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle \geq 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

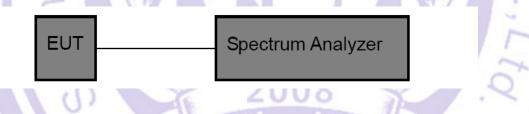
10.4 Test Data

Please Refer to Appendix data 5.2G and 5.3G and 5.6G and 5.8G for Details.

11 Out of Band Emissions and Spurious Emission

11.1 Test Standard and Limit

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

11.2 Test Setup

11.3 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect

its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

5. Repeat above procedures until all measured frequencies were complete.

11.4 Test Data

Please Refer to Appendix data 5.2G and 5.3G and 5.6G and 5.8G for Details.

12 Frequency Stability Measurement

12.1 Test Standard and Limit

FCC

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

IC

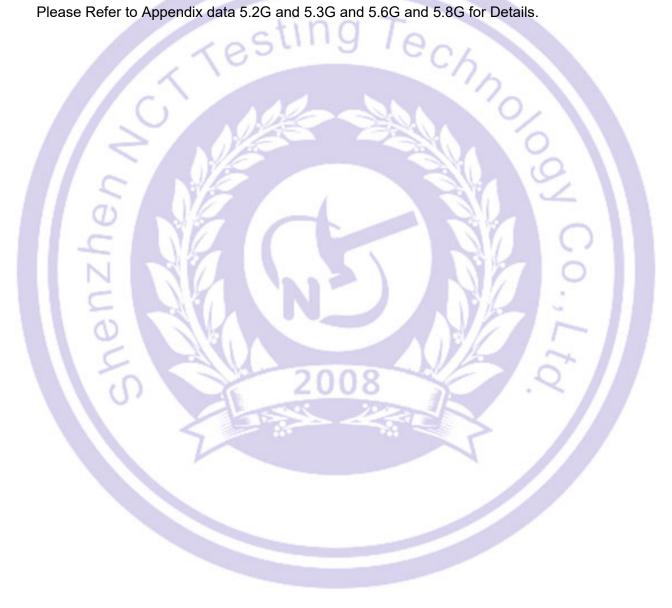
If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In addition, its occupied bandwidth shall be entirely outside the restricted bands and the prohibited TV bands of 54 72 MHz, 76-88 MHz, 174-216 MHz, and 470-602 MHz, unless otherwise indicated.

12.2 Test Setup

12.3 Test Procedure

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and

the limit is less than ±20ppm (IEEE 802.11nspecification).


6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the

nominal value

7. Extreme temperature is -20°C~50°C.

12.4 Test Data

Please Refer to Appendix data 5.2G and 5.3G and 5.6G and 5.8G for Details.

13 Antenna Requirement

13.1 Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
	According to RSS-GEN section 6.8
Requirement	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).
	When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.
	The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

13.2 Antenna Connected Construction

The antenna is External Antenna which permanently attached, and the best case gain of the antenna is 2.51 dBi. It complies with the standard requirement.

14 DFS TEST

14.1 DFS test Requirement

The following table from FCC KDB905462 D02 UNII DFS Compliance procedures new rules list the applicable requirements for the DFS testing.

	Operational Mo	Operational Mode					
Requirement	Master	Client Without	Client With Radar				
	Master	Radar Detection	Detection				
Non-Occupancy Period	Yes	Not required	Yes				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Availability Check	Yes	Not required	Not required				
U-NII Detection Bandwidth	Yes	Not required	Yes				

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Delection bandwidth	res	Not required	res
Table 2: Applicab	ility of DFS requirem	ents during normal	operation

Operational Mode				
Master Device or Client with	Client Without Radar			
Radar Detection	Detection			
Yes	Not required			
Yes 2008	Yes			
Yes	Yes			
Yes	Not required			
	Master Device or Client with Radar Detection Yes Yes			

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Master Devices

a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250~5350 MHz and 5470~5725 MHz bands. DFS is not required in the 5150~5250 MHz or 5725~5825 MHz bands.

b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for a specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.

c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII devices to Associate with the Master Device.

d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is no radar system operating on the Channel, using DFS described under a).

e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.

f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.

g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.

Client Devices

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the

Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

Paramenter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.
	sing Transmission Time should be performed with begins at the end of the Radar Type 0 burst.

Table 4: DFS Response Requirement Values

- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

14.2 DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)		
EIRP ≥ 200 milliwatt	-64 dBm		
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm		
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm		

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

14.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)			Minimum Number of Trials	
0	1	1428	18	See Note 1	See Note 1	
Test A: 15 unique PRI values		$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \end{pmatrix} \right\}$	60%	See Note 1		
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Nata 4. Oh a		ate (Radar Types 1-	4)	80%	120	

Table 5 Short Pulse Radar Test Waveforms

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of

pulses would be Round up

 $\left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) = \text{Round up } \{17.2\} = 18.$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval		
Number	(Pulses Per Second)	(Microseconds)		
10.	1930.5	518		
2	1858.7	538		
3	1792.1	558		
4	1730.1	578		
5	1672.2	598		
6	1618.1	618		
7	1567.4	638		
8	1519.8	658		
9	1474.9	678		
10	1432.7	698		
11	1392.8	718		
12	1355	738		
13	1319.3	758		
14	1285.3	778		
15	1253.1	798		
16	1222.5	818		
17	1193.3	838		
18	1165.6	858		
19	1139	878		
20	1113.6	898		
21	1089.3	918		
22	1066.1	938		
23	326.2	3066		

Table 6 – Long Pulse Radar Test Waveform

adar ype	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	4	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

14.4 Test Item

14.4.1 Calibration of Radar Waveform

14.4.1.1 Test Configuration

7.2.1 Setup for Master with injection at the Master

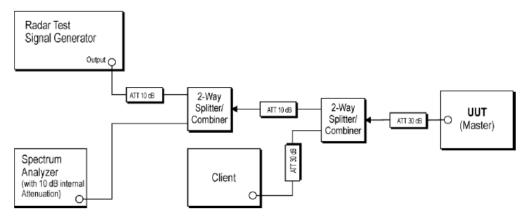


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

14.4.1.2 Test Procedure

a) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master

b) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.

c) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

d) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

14.4.1.3 Test Result

Please Refer to Appendix data for DFS

14.4.2 Channel Move Time, Channel Closing Transmission Time

14.4.2.1 Test Configuration

7.2.1 Setup for Master with injection at the Master

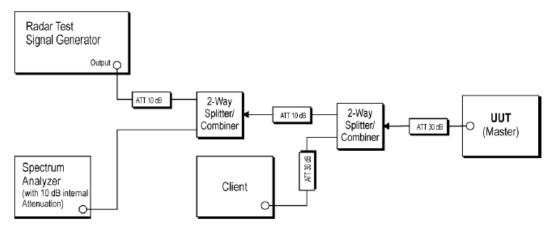


Figure 2: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

2000

14.4.2.2 Test Procedure

a) The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.

b) The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device.

c) A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.

d) EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.

e) When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.

f) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type

g) Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

14.4.2.3 Test Result

Please Refer to Appendix data for DFS

15 TEST SETUP & EUT PHOTOGRAPH

Please see the attachment for details.

