

CAD	TEST	DED	ODT
JAK	IEJI	REF	URI

FCC ID::	2ADFS-POCKET-AC-1	(0)
Test Report No::	TCT241108E028	
Date of issue::	Nov. 22, 2024	
Testing laboratory:	SHENZHEN TONGCE TESTING	LAB
Testing location/ address:	2101 & 2201, Zhenchang Factory Subdistrict, Bao'an District, Shen People's Republic of China	
Applicant's name::	Winner Wave Limited	
Address:	Unit 2003 Cheong Tai Commerci Street Kowloon, Hong Kong	al Building 287-289 Reclamation
Manufacturer's name:	Actions Microelectronics Co., Ltd	
Address:	201, No.9 Building, Software Par GaoXinQu, NanShan, Shenzhen	
Product Name::	Pocket	
Trade Mark::	EZCast	
Model/Type reference:	AC-1, X1, XC-1, ZC-1	
SAR Max. Values:	0.20 W/Kg (1g) for Body-worn	(6)
Date of receipt of test item	Nov. 08, 2024	
Date (s) of performance of test:	Nov. 08, 2024- Nov. 22, 2024	
Tested by (+signature) :	Karl WANG	Karl was
Check by (+signature):	Beryl Zhao	Rod CT TIE
Approved by (+signature):	Tomsin	on the si

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information	
	1.1. EUT description	3
	1.2. Model(s) list	3
2.	Test standard	
3.	Facilities and Accreditations	4
	3.1. Facilities	4
	3.2. Location	4
4.	Test Result Summary	5
5.	RF Exposure Limit	6
6.	SAR Measurement System Configuration	7
	6.1. SAR Measurement Set-up	7
	6.2. E-field Probe	8
	6.3. Phantom	8
	6.4. Device Holder	9
	6.5. Data Storage and Evaluation	10
	6.6. Position of the wireless device in relation to the phantom	11
	6.7. Tissue Dielectric Parameters	
	6.8. Tissue-equivalent Liquid Properties	15
	6.9. System Check	16
7.	Measurement Procedure	17
8.	Conducted Output Power	20
9.	Exposure Position Consideration	21
	9.1. EUT Antenna Location	21
	9.2. Test Position Consideration	21
10.	SAR Test Results Summary	22
	10.1.Body-Worn 1g SAR Data	22
	10.2.Measurement Uncertainty (150MHz-6GHz)	23
	10.3.Test Equipment List	24
11.		25
12.		27
Арр	pendix A: EUT Photos	29
Арр	pendix B: Test Setup Photos	31
Арр	pendix C: Probe Calibration Certificate	32
Арр	pendix D: Dipole Calibration Report	50
Арр	pendix E: SAR SYSTEM VALIDATION	63

General Product Information

1.1. EUT description

/	
Product Name:	Pocket
Model/Type reference:	AC-1
Sample Number:	TCT241108E028-0101/01
Rating(s):	Output: DC 5.0V
Wi-Fi 5G	
Operation Frequency:	Band 1: 5180 MHz -5240 MHz
Ohamad Bandwidth	802.11a: 20MHz
Channel Bandwidth:	802.11n: 20MHz
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Modulation Type:	64QAM, 16QAM, BPSK, QPSK

Report No.: TCT241108E028

http://www.tct-lab.com

1.2. Model(s) list

No.	Model No.	Tested with
(C) 1	AC-1	\boxtimes
Other models	X1, XC-1, ZC-1	

Note: AC-1 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names and color. So the test data of AC-1 can represent the remaining models.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

TESTING CENTRE TECHNOLOGY Report No.: TCT241108E028

2. Test standard

The tests were performed according to following standards:

FCC 47 CFR §2.1093

IEC-IEEE 62209-1528-2020: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices

KDB447498 D01:General RF Exposure Guidance v06

KDB616217 D04: SAR for laptop and tablets v01r02

KDB865664 D01:SAR measurement 100MHz to 6GHz v01r04

KDB865664 D02:RF Exposure Reporting v01r02.

KDB248227 D01:802.11 wi-fi SAR v02r02

KDB690783 D01:SAR Listings on Grant v01r03

3. Facilities and Accreditations

3.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

3.2. Location

SHENZHEN TONGCE TESTING LAB.

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China Environment Condition:

Temperature:	18°C ~25°C	
Humidity:	35%~75% RH	
Atmospheric Pressure:	1011 mbar	

4. Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary>

inghost reported standardio of it commany						
Exposure Position	Frequency Band	Reported SAR (W/kg)	Equipment Class	Highest Reported SAR (W/kg)		
Body-worn 1-g SAR (5 mm Gap)	WLAN 5.2 GHz	0.20	NII	0.20		

Note:

1.	This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposi	ıre
	limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested	in
	accordance with the measurement methods and procedures specified in IEEE 1528-2020.	

Page 5 of 63

RF Exposure Limit

Type Exposure	SAR (W/kg) Uncontrolled Exposure Limit
Spatial Peak SAR (averaged over any 1 g of tissue)	1.60
Spatial Peak SAR (hands/wrists/feet/ankles averaged over 10g)	4.00
Spatial Peak SAR (averaged over the whole body)	0.08

Note:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2.
- The Spatial Average value of the SAR averaged over the whole body.

 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the 3. shape of a cube) and over the appropriate averaging time.

6. SAR Measurement System Configuration

6.1. SAR Measurement Set-up

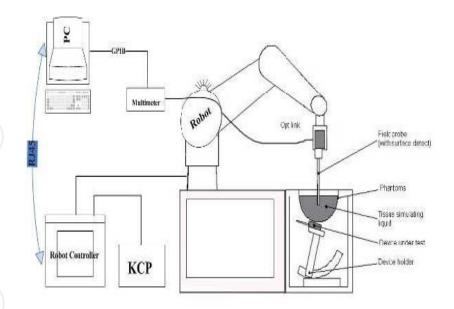
The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System (VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch; it sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP.


OPENSAR software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

KUKA SAR Test Sysytem Configuration

6.2. E-field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by MVG).

The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

This probe has a built in optical surface detection system to prevent from collision with phantom.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 25/22 EPGO375		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1:R1=0.197M Ω Dipole 2:R3=0.230M Ω Dipole 3:R3=0.208M Ω		

Photo of E-Field Probe

6.3. Phantom

The SAM Phantom SAM120 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC IEC-IEEE 62209-1528-2020.

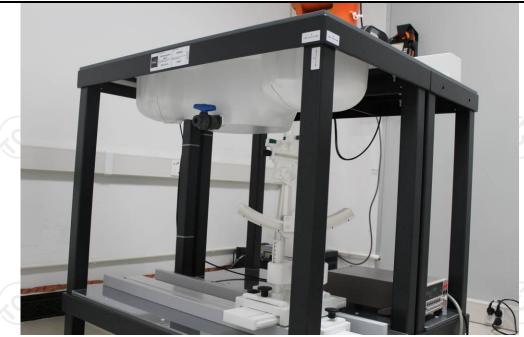
The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections.

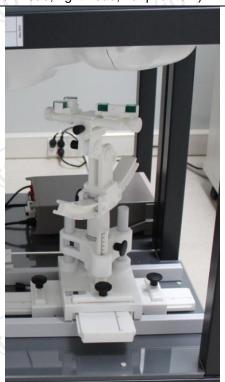
Body SAR testing also used the flat section between the head profiles.


Name: COMOSAR IEEE SAM PHANTOM

S/N: SN 19/15 SAM 120 Manufacture: MVG

Report No.: TCT241108E028

SAM Twin Phantom


6.4. Device Holder

In combination with the Generic Twin Phantom SAM120, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

COMOSAR Mobile phone positioning system

6.5. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensiti	vity Normi, ai0,	, ai1, ai2
- Conver	sion factor ConvFi	
- Diode o	compression point Dcpi	
Device parameters: - Frequei	ncy f	
- Crest fa	actor cf	
Media parameters: - Conduct	tivity σ	
- Density		

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the millimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

```
 \begin{tabular}{lll} Vi = Ui + Ui2 \cdot c \ f \ / \ d \ c \ pi \end{tabular}  With \begin{tabular}{lll} Vi = compensated signal of channel i & (i = x, y, z) \end{tabular}  Ui = input signal of channel i & (i = x, y, z) \end{tabular}  of = crest factor of exciting field & (MVG parameter) dcpi = diode compression point & (MVG parameter) \end{tabular}
```

From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: Ei = (Vi / Normi · ConvF)1/2

Page 10 of 63

Report No.: TCT241108E028

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2+ EY2+ Ez2)1/2

The primary field data are used to calculate the derived field units.

SAR = (Etot) $2 \cdot \sigma / (\rho \cdot 1000)$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

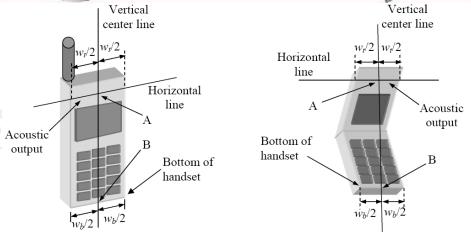
 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

6.6. Position of the wireless device in relation to the phantom

Handset Reference Points


Ppwe = Etot2 / 3770 or Ppwe = $Htot2 \cdot 37.7$

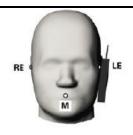
With Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

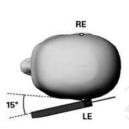
Wt Width of the handset at the level of the acoustic

Wb Width of the bottom of the handset


A Midpoint of the width wt of the handset at the level of the acoustic output

B Midpoint of the width wb of the bottom of the handset

Positioning for Cheek / Touch



Positioning for Ear / 15º Tilt

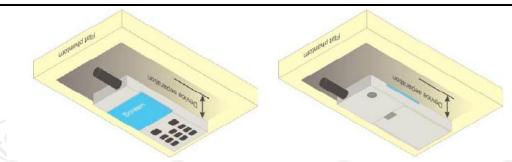
Body Worn Accessory Configurations

To position the device parallel to the phantom surface with either keypad up or down.

To adjust the device parallel to the flat phantom.

To adjust the distance between the device surface and the flat phantom to 15mm or holster surface and the flat phantom to 0 mm.

Illustration for Body Worn Position


Ireless Router (Hotspot) Configurations

Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W >

9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

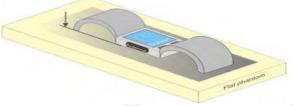


Illustration for Hotspot Position

Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

Test position for limb-worn devices

6.7. Tissue Dielectric Parameters

Report No.: TCT241108E028

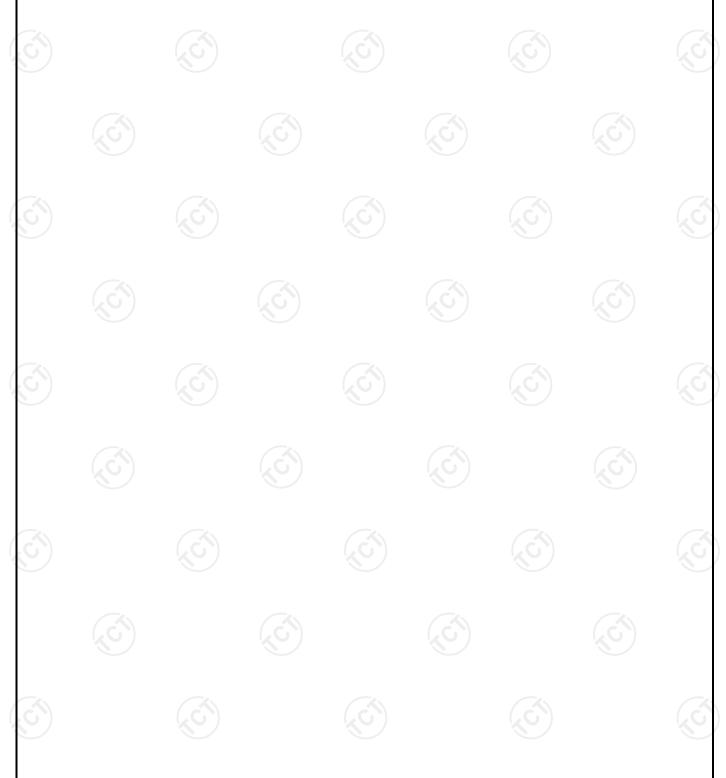
The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials

Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Liquid Type (σ)	± 5% Range	Permittivity (ε)	± 5% Range
300	Head	0.87	0.83~0.91	45.30	43.04~47.57
450	Head	0.87	0.83~0.91	43.50	41.33~45.68
835	Head	0.90	0.86~0.95	41.50	39.43~43.58
900	Head	0.97	0.92~1.02	41.00	39.43~43.58
1800-2000	Head	1.40	1.33~1.47	40.00	38.00~42.00
2450	Head	1.80	1.71~1.89	39.20	37.24~41.16
2600	Head	1.96	1.86~2.06	39.00	37.05~40.95
3000	Head	2.40	2.28~2.52	38.50	36.58~40.43
5800	Head	5.27	5.01~5.53	35.30	33.54~37.07

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

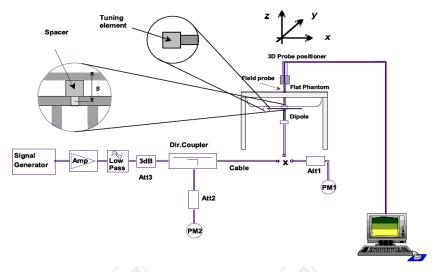


Page 14 of 63

6.8. Tissue-equivalent Liquid Properties

Test Date	Temp ℃	Tissue Type	Measured Frequency (MHz)	εr	σ(s/m)	Dev εr(%)	Dev σ(%)
11/20/2024	22 ℃	E200H	5200	36.68	4.45	1.89	-4.51
11/20/2024	220	5200H	5180	36.04	4.68	0.22	-0.43

Page 15 of 63


6.9. System Check

Report No.: TCT241108E028

The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the OPENSAR system.

System Check Set-up

Verification Results

Freq. (MHz)	Liquid	100	d Value in mW /kg)	Normalize (W/			t Value /kg)	Deviati	on (%)
(IVIIIZ)	Type	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average
5200	Head	5.01	15.90	50.10	159.00	51.70	161.10	-3.09	-1.30

Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Section 10 of this report.

7. Measurement Procedure

Conducted power measurement

For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: TCT241108E028

Read the WWAN RF power level from the base station simulator.

For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyser, and measure WLAN/BT output power.

Conducted power measurement

Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.

Place the EUT in positions as Appendix B demonstrates.

Set scan area, grid size and other setting on the MVG software.

Measure SAR results for the highest power channel on each testing position.

Find out the largest SAR result on these testing positions of each band.

Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power reference measurement Area scan Zoom scan Power drift measurement

Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The MVG software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Extraction of the measured data (grid and values) from the Zoom Scan.

Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).

Generation of a high-resolution mesh within the measured volume.

Interpolation of all measured values form the measurement grid to the high-resolution grid

Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

Calculation of the averaged SAR within masses of 1g and 10g.

Page 17 of 63

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties

Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below.

quoted below.					
			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of measurement plane orientate above, the measurement rescorresponding x or y dimensional least one measurement possible.	ion, is smaller than the colution must be ≤ the sion of the test device with	
Maximum zoom scan spatial resolution: Δxzoom, Δyzoom			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
	grid \[\Delta z_{Zoom}(n>1): \] between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

Page 18 of 63

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

SAR Averaged Methods

In MVG, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Report No.: TCT241108E028

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In MVG measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for

Measurement Uncertainty

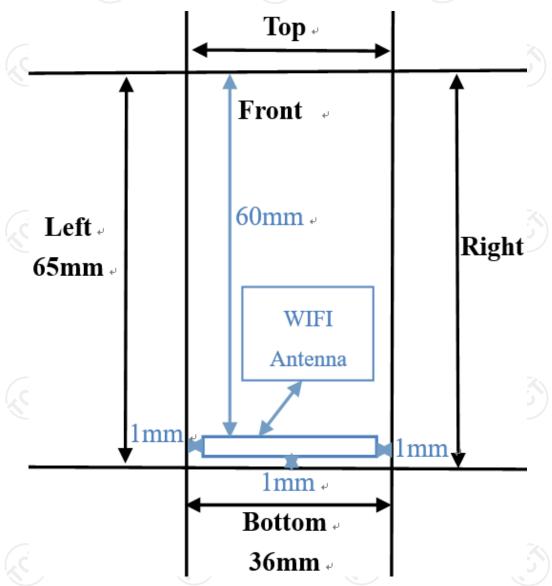
Per KDB 865664 D01 SAR Measurement 100KHz to 6GHz ,when the highest measurement 1-g SAR within a frequency band is <1.5W/kg, the extensive SAR measurement uncertainty analysis described IEEE Std 1528-2013 is not required in SAR report submitted for equipment approval.

Page 19 of 63

8. Conducted Output Power

WLAN 5.2G						
Mode	I	EEE 802.11a	а	IEE	E 802.11n H	IT20
Channel	36	40	48	36	40	48
Frequency	5180	5200	5240	5180	5200	5240
Average Power (dBm)	7.36	8.82	7.18	8.32	6.27	7.99

Note


- Per KDB 248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 2. The output power of all data rate were prescan, just the worst case (the lowest data rate) of all mode were shown in report.

9. Exposure Position Consideration

9.1. EUT Antenna Location

9.2. Test Position Consideration

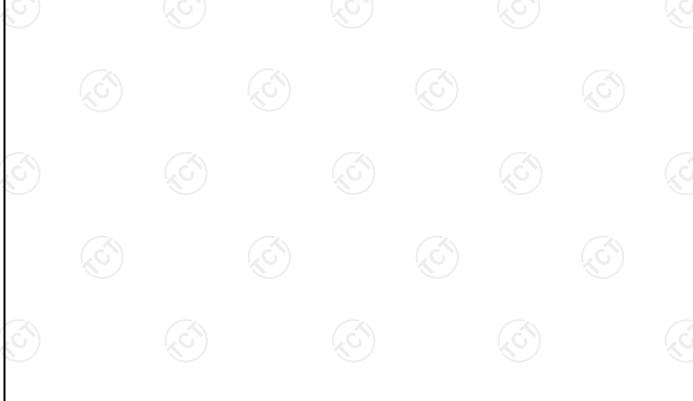
		Te	st Positions			
Mode	Back	Front	Top Side	Bottom Side	Right Side	Left Side
WIFI	Yes	Yes	No	No	Yes	No

Note:

1. Basing on KDB616217 D04 SAR test for Bottom, Left and Top sides was not required.

10. SAR Test Results Summary

. OAK Test Results Guillially


10.1. Body-Worn 1g SAR Data

Band	Mode	Test Position with 5mm	CH.	Freq. (MHz)	Ave. Power (dBm)	Tune-U p Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
		Front	40	5200	8.82	9.00	-2.53	0.19	1.042	0.20	
5.2G	802.11a	Back	40	5200	8.82	9.00	2.08	0.10	1.042	0.10	1.60
5.26	602.11a	Right	40	5200	8.82	9.00	-3.01	0.02	1.042	0.02	1.60
		Left	40	5200	8.82	9.00	2.01	0.02	1.042	0.02	KO.

Note:

- Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary.
- 2. Per KDB 447498 D01 v06, body-worn use is evaluated with the device positioned at 0 mm from a flat phantom filled with head tissue-equivalent medium.
- 3. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) Ave.power power (dBm))/10], where tune-up limit is the maximum rated power among all production units.

 Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.
- 4. Per KDB865664D01 v01r04 perform a second repeated measurement only the ratio of largest to smallest SAR for the original and first repeated measurement is >1.20 or when the original or repeated measurement is ≥1.45W/kg.
- 5. Perform a second measurement only if the original, first and second repeated measurement is *₹.5w/kg* and the ratio of largest to smallest SAR for the original, first and second repeated measurement is *₹.5w/kg* and the ratio
- 6. Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

Page 22 of 63

Report No.: TCT241108E028

10.2. Measurement Uncertainty (150MHz-6GHz)

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEC/IEEE 62209-1528: 2020. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Symbol	Input quantity Xi (source of uncertainty)	Prob. Dist.	Unc. a(xi)	Div. qi	u(xi) = a(xi)/qi	Ci	u(y) = Ci *u(xi)	vi
	Mea	surement	system e	errors				
CF	Probe calibration	N (k = 2)	5.8	2	2.90	1	2.90	8
CFdrift	Probe calibration drift	R	0.14	√3	0.08	1	0.08	8
LIN	Probe linearity and detection limit	R	1.98	√3	1.14	/ 1	1.14	8
BBS	Broadband signal	R	0.18	√3	0.10	1	0.10	∞
ISO	Probe isotropy	R	4.85	√3	2.80	1	2.80	∞
DAE	Other probe and data acquisition errors	N	2.7	1	2.70	1	2.70	∞
AMB	RF ambient and noise	N	1.73	1	1.73	1	1.73	∞
Δxyz	Probe positioning errors	N	0.81	1	0.81	2/δ	0.81	
DAT	Data processing errors	N	2.3	1	2.30	1	2.30	∞
	Phantom and dev	ice (DUT	or validat	ion ante	nna) errors	3		
LIQ(σ)	Measurement of phantom conductivity(σ)	N	4.4	1	4.4	cε, cσ	4.40	∞
LIQ(Tc)	Temperature effects (medium)	R	2.5	√3	1.44	cε, cσ	1.44	∞
EPS	Shell permittivity	R	3.4	√3	1.96	See8.4.2.3	0.49	8
DIS	Distance between the radiating element of the DUT and the phantom medium	N	0.8	1	0.8	2	1.60	8
Dxyz	Repeatability of positioning the DUT or source against the phantom	N	4	1	4) 1	4	5
Н	Device holder effects	N	3	1	3	1	3.00	
MOD	Effect of operating mode on probe sensitivity	R	3	√3	1.73	1	1.73	∞
TAS	Time-average SAR	R	1.73	√3	1.00	1	1.00	∞
RFdrift	Variation in SAR due to drift in output of DUT	N	2.89	1	2.89	1	2.89	
VAL	Validation antenna uncertainty (validation measurement only)	N	4.16	1	4.16	1	4.16	
Pin	Uncertainty in accepted power (validation measurement only)	N	2.89	1	2.89	1	2.89	
	Correction	s to the S	AR resul	t (if appl	ied)			
C(ε' ,σ)	Phantom deviation from target (ϵ', σ)	N	2.31	1	2.31	1	2.31	
C(R)	SAR scaling	R	1.15	√3	0.66	1	0.66	
u(ΔSAR)	Combined uncertainty						11.26	
O U	Expanded uncertainty and effective degrees of freedom	K	<u>5)</u>		(c	U =	22.52	(5)

10.3. Test Equipment List

A) / A)					
(G)		(,G)		Calib	ration
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)
PC	Lenovo	H3050	N/A	N/A	N/A
Signal Generator	Angilent	N5182A	MY47070282	Jun. 27, 2024	Jun. 26, 2025
Multimeter	Keithley	Multimeter 2000	4078275	Jun. 27, 2024	Jun. 26, 2025
Network Analyzer	Agilent	8753E	US38432457	Jun. 27, 2024	Jun. 26, 2025
Wireless Communication Test Set	R&S	CMU200	111382	Jun. 27, 2024	Jun. 26, 2025
Wideband Radio Communication Tester	R&S	CMW500	114220	Jun. 27, 2024	Jun. 26, 2025
Power Meter	Agilent	E4418B	GB43312526	Jun. 27, 2024	Jun. 26, 2025
Power Meter	Agilent	E4416A	MY45101555	Jun. 27, 2024	Jun. 26, 2025
Power Meter	Agilent	N1912A	MY50001018	Jun. 27, 2024	Jun. 26, 2025
Power Sensor	Agilent	E9301A	MY41497725	Jun. 27, 2024	Jun. 26, 2025
Power Sensor	Agilent	E9327A	MY44421198	Jun. 27, 2024	Jun. 26, 2025
Power Sensor	Agilent	E9323A	MY53070005	Jun. 27, 2024	Jun. 26, 2025
Power Amplifier	PE	PE15A4019	112342	N/A	N/A
Directional Coupler	Agilent	722D	MY52180104	N/A	N/A
Attenuator	Chensheng	FF779	134251	N/A	N/A
E-Field PROBE	MVG	SSE2	SN 25/22 EPGO375	Jun. 29, 2024	Jun. 28, 2025
DIPOLE 5000-6000	MVG	SID 5000-6000	SN 13/14 WGA 21	May. 15, 2024	May. 14, 202
Limesar Dielectric Probe	MVG	SCLMP	SN 19/15 OCPG71	Jun. 05, 2024	Jun. 04, 2027
Communication Antenna	MVG	ANTA59	SN 39/14 ANTA59	N/A	N/A
Mobile Phone Position Device	MVG	MSH101	SN 19/15 MSH101	N/A	N/A
Dummy Probe	MVG	DP66	SN 13/15 DP66	N/A	N/A
SAM PHANTOM	MVG	SAM120	SN 19/15 SAM120	N/A	N/A
PHANTOM TABLE	MVG	TABP101	SN 19/15 TABP101	N/A	N/A
Robot TABLE	MVG	TABP61	SN 19/15 TABP61	N/A	N/A
6 AXIS ROBOT	KUKA	KR6-R900	501822	N/A	N/A

Note: 1.N/A means this equipment no need to calibrate

- 2.Each Time means this device need to calibrate every use time
- 3. The dipole was not damaged properly repaired.

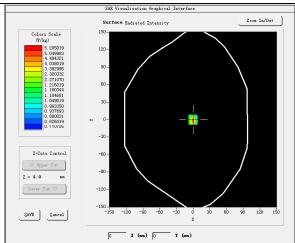
- 4. The measured SAR deviates from the calibrated SAR value by less than 10%
 5. The most recent return-loss result meets the required 20 dB minimum return-loss requirement
 6. The most recent measurement of the real or imaginary parts of the impedance deviates by less than 5 Ω from the previous measurement.

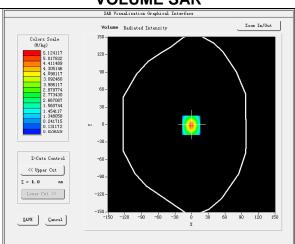
Page 24 of 63

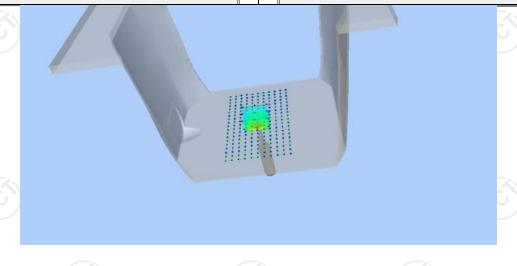
11. System Check Results

Date of measurement: 11/20/2024 Test mode: 5200MHz (Head)

Product Description: Validation

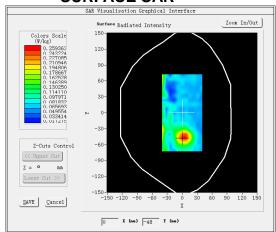

Dipole Model: SID5200


E-Field Probe: SSE2 (SN 25/22 EPGO375)

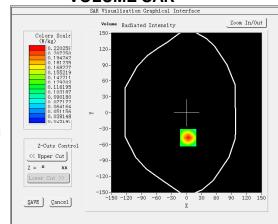

Phantom	Validation plane
Input Power	100mW
Crest Factor	1.0
Probe Conversion factor	2.01
Frequency (MHz)	5200.000000
Relative permittivity (real part)	36.678832
Relative permittivity (imaginary part)	13.679428
Conductivity (S/m)	4.450788
Variation (%)	-0.820000
SAR 10g (W/Kg)	1.807521
SAR 1g (W/Kg)	5.012481

VOLUME SAR

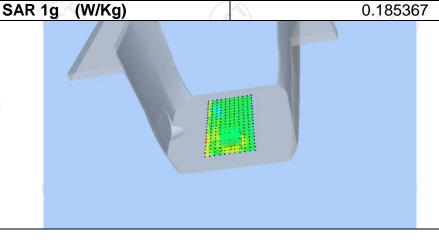
SAR (W/Kg) 5.01	Z (mm)	0.00	4.00	9.00	14.00	19.00
4.50 3.30 1.50 1.00 0.03 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm) Hot spot position	SAR (W/Kg)	5.0132 5.01 -	2.7584	1.5026	0.8252	0.4125
Hot spot position Hot spot position		4.50 -				
Hot spot position Hot spot position						
Hot spot position Hot spot position		2.50				
1.00 0.03 0.02 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm) Hot spot position			$\overline{}$			
Hot spot position Hot spot position						
Hot spot position O O O O O O O O O O O O O		0.03		+++		
Hot spot position A CO A CO				18 20 22 24 2	6 28 30	
				ion		
	(0)		Tior oper poor	1011		<u>(,)</u>

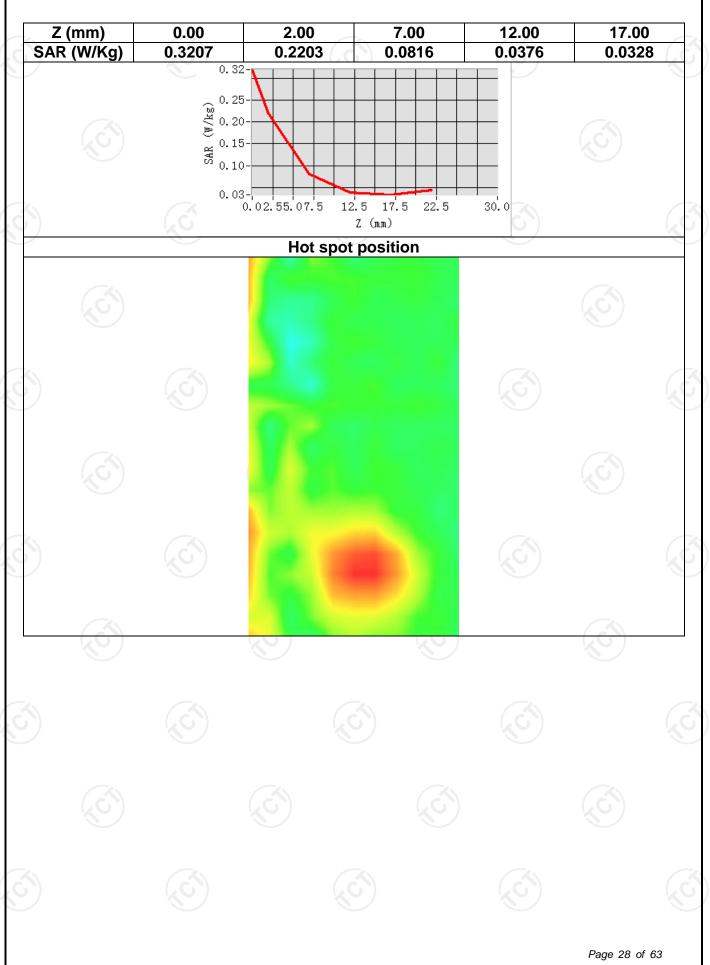

12. SAR Test Data

5.2G


MEASUREMENI 1	

MEAGOI	IXEIVIEIVI I				
SAR (Channel 40):	Date: 11/20/2024				
Frequency (MHz)	5200.000000				
Relative permittivity (real part)	36.678832				
Relative permittivity (imaginary part)	13.679428				
Conductivity (S/m)	4.450788				
Variation (%)	-2.530000				
Crest Factor	1.0				
Probe Conversion factor	2.01				
E-Field Probe:	SSE2 (SN 25/22 EPGO375)				
Area Scan	dx=10mm dy=10mm, h= 5.00 mm				
ZoomScan	5x5x7,dx=4mm dy=4mm dz=2mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm				
Phantom	Validation plane				
Device Position	Body Front(5mm)				
Band	<u>IEEE 802.11a ISM</u>				


SURFACE SAR


VOLUME SAR

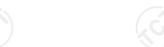
Maximum location: X=3.00, Y=-47.00 SAR Peak: 0.33 W/kg SAR 10g (W/Kg) 0.079220

Fax: 86-755-27673332

http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339

Appendix A: EUT Photos



Page 29 of 63

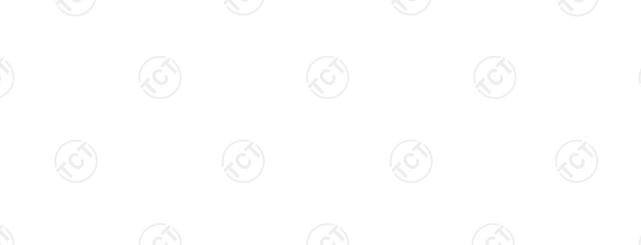
Liquid depth

The Body Liquid of 5000-6000MHz (16.5cm)

Report No.: TCT241108E028

Appendix B: Test Setup Photos

Body worn - Back (5mm)


Body worn -Right (5mm)

Body worn -Front (5mm)

Body worn -Left (5mm)

Appendix C: Probe Calibration Certificate

COMOSAR E-FIELD Probe

COMOSAR E-Field Probe Calibration Report

Ref: ACR.180.7.22.BES.B

SHENZHEN TONGCE TESTING LAB

2101 & 2201, ZHENCHANG FACTORY RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAO'AN DISTRICT SHENZHEN, GUANGDONG, 518103, PEOPLE'S REPUBLIC OF CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 25/22 EPGO375

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 06/29/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	6/30/2024	
Checked & approved by:	Jérôme Luc	Technical Manager	6/30/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	7/05/2024	Gann TOUTANN

	Customer Name
	Shenzhen Tongce
Distribution:	Testing Lab

Issue	Name	Date	Modifications
A	Jérôme Le Gall	6/30/2024	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

TABLE OF CONTENTS

1	Devi	ce Under Test	
2	2 Product Description		
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
		Lower Detection Limit	5
		Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty 6	
5	Calil	oration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment	

Page: 3/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Report No.: TCT241108E028

Ref: ACR 180.7.22 BES B

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 25/22 EPGO375	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.197 MΩ	
	Dipole 2: R2=0.230 MΩ	
	Dipole 3: R3=0.208 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

 $Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR\ Probe\ vK$

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

Report No.: TCT241108E028

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{sten}$ along lines that are approximately normal to the surface:

$$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{step} is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SAR_{he} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Report No.: TCT241108E028

Ref: ACR.180.7.22.BES.B

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
FRROR SOURCES		Standard Uncertainty (%)			
Expanded uncertainty 95 % confidence level k = 2					14 %

CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

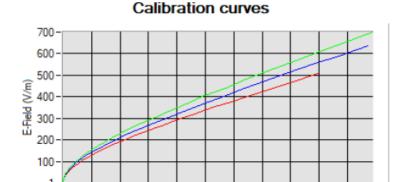
SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.64	0.53	0.44

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	108	109

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$


Page: 6/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 Voltage (V)

Dipole 1 Dipole 2 Dipole 3

LINEARITY

Linearity

Linearity:+/-1.94% (+/-0.09dB)

Page: 7/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

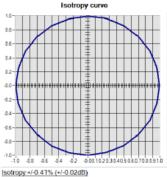
Ref: ACR.180.7.22.BES.B

SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	<u>ConvF</u>
HL750	750	1.71
BL750	750	1.78
HL900	900	1.91
BL900	900	1.96
HL1800	1800	2.08
BL1800	1800	2.16
HL2000	2000	2.03
BL2000	2000	2.10
HL2450	2450	2.31
BL2450	2450	2.37
HL2600	2600	2.16
BL2600	2600	2.23
HL3500	3500	2.21
BL3500	3500	2.28
HL3700	3700	3.45
BL3700	3700	3.15
HL4600	4600	3.30
BL4600	4600	3.70
HL5200	5200	2.01
BL5200	5200	2.08
HL5600	5600	2.07
BL5600	5600	2.12
HL5800	5800	2.06
BL5800	5800	2.13

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

ISOTROPY

HL1800 MHz

Page: 9/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

LIST OF EQUIPMENT

	Equipment Summary Sheet			
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027
Network Analyzer	Agilent 8753ES	MY40003210	10/2023	10/2026
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Multimeter	Keithley 2000	1160271	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2024	06/2027
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2023	11/2026
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.

Page: 10/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.7.22.BES.B

Liquid transition	MVG			Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

Page: 11/11

TESTING CENTRE TECHNOLOGY Report No.: TCT241108E028

Dielectric Probe Calibration Report

Ref: ACR.138.4.33.SATU.A

SHENZHEN TONGCE TESTING LAB
2101&2201, ZHENCHANG FACTORY, RENSHAN
INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN
DISTRICT, SHENZHEN, GUANGDONG, 518103,
PEOPLES REPUBLIC OF CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

FREQUENCY: 0.3-6 GHZ SERIAL NO.: SN 19/15 OCPG 71

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/05/2024

Summary:

This document presents the method and results from an accredited Dielectric Probe calibration performed in MVG USA using the LIMESAR test bench. All calibration results are traceable to national metrology institutions.

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	06/05/2024	JES
Checked by :	Jérôme LUC	Product Manager	06/05/2024	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	06/05/2024	them Putthmental

	Customer Name
/ 110111111111111 1	SHENZHEN TONGCE TESTING LAB

Issue	Date	Modifications
A	06/05/2024	Initial release

Page: 2/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	rice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
		surement Method	
	4.1	Liquid Permittivity Measurements	5
5	Mea	surement Uncertainty	
	5.1	Dielectric Permittivity Measurement	5
6	Cal	bration Measurement Results	
	6.1	Liquid Permittivity Measurement	6
7	List	of Equipment 7	

Page: 3/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

1 INTRODUCTION

This document contains a summary of the suggested methods and requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type LIMESAR DIELECTRIC PROBE		
Manufacturer	MVG	
Model	SCLMP	
Serial Number	SN 19/15 OCPG 71	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's Dielectric Probes are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. The product is designed for use with the LIMESAR test bench only.

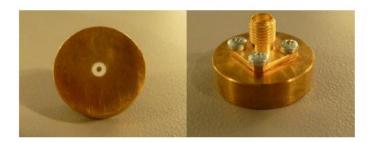


Figure 1 - MVG LIMESAR Dielectric Probe

Page: 4/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209-1 & 2 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either DMS or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 LIQUID PERMITTIVITY MEASUREMENTS

The permittivity of a liquid with well established dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>DIELECTRIC PERMITTIVITY MEASUREMENT</u>

The following uncertainties apply to the Dielectric Permittivity measurement:

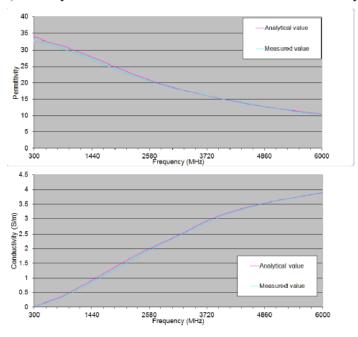
Uncertainty analysis of Permittivity					
ERROR SOURCES	ERROR SOURCES Uncertainty Probability Value (+/-%) Distribution Divisor ci				
Repeatability (n repeats, mid-band)	4.00%	N	1	1	4.000%
Deviation from reference liquid	5.00%	R	√3	1	2.887%
Network analyser-drift, linearity	2.00%	R	√3	1	1.155%
Test-port cable variations	0.00%	Ŭ	√2	1	0.000%
Combined standard uncertainty					5.066%
Expanded uncertainty (confidence level of 95%, k = 2)				10.0%	

Uncertainty analysis of Conductivity					
ERROR SOURCES	Uncertainty value (+/-%)	Probability Distribution	Divisor	ci	Standard Uncertainty (+/-%)
Repeatability (n repeats, mid-band)	3.50%	N	1	1	3.500%
Deviation from reference liquid	3.00%	R	√3	1	1.732%
Network analyser-drift, linearity	2.00%	R	√3	1	1.155%
Test-port cable variations	0.00%	U	√2	1	0.000%
Combined standard uncertainty					4.072%
Expanded uncertainty (confidence level of 95%, k = 2)				8.1%	

Page: 5/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A


6 CALIBRATION MEASUREMENT RESULTS

Measurement Condition

Software	LIMESAR
Liquid Temperature	21°C
Lab Temperature	21°C
Lab Humidity	44%

6.1 LIQUID PERMITTIVITY MEASUREMENT

A liquid of known characteristics (methanol at 20°C) is measured with the probe and the results (complex permittivity $\epsilon'+j\epsilon''$) are compared with the well-known theoretical values for this liquid.

Page: 6/7

SAR DIELECTRIC PROBE CALIBRATION REPORT

Ref: ACR.138.4.33..SATU.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Manufacturer / Id Description Model		Identification No.	Current Calibration Date	Next Calibration Date	
LIMESAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2024	02/2027	
Methanol CAS 67-56-1	Alpha Aesar	Lot D13W011	Validated. No cal required.	Validated. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	09/2024	09/2025	

Page: 7/7

Appendix D: Dipole Calibration Report

SID5000-6000

SAR Reference Waveguide Calibration Report

Ref: ACR.256.12.15.SATU.A

SHENZHEN TONGCE TESTING LAB

2101&2201, ZHENCHANG FACTORY, RENSHAN INDUSTRIAL ZONE, FUHAI SUBDISTRICT, BAOAN DISTRICT, SHENZHEN, GUANGDONG, 518103, PEOPLES REPUBLIC OF CHINA

MVG COMOSAR REFERENCE WAVEGUIDE

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA32

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 05/15/2024

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/15/2024	Jes
Checked by :	Jérôme LUC	Product Manager	5/15/2024	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	5/15/2024	fum Prethowski

Distribution : Customer Name

SHENZHEN TONGCE
TESTING LAB

Date	Modifications
5/15/2024	Initial release

Page: 2/13

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	4
	4.2	Mechanical Requirements	4
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results5	
	6.1	Return Loss	5
	6.2	Mechanical Dimensions	
7	Vali	dation measurement6	
	7.1	Head Liquid Measurement	7
	7.2	Measurement Result	7
	7.3	Body Measurement Result	
8	List	of Equipment 13	

Ref: ACR.256.12.15.SATU.A

Report No.: TCT241108E028

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 13/14 WGA32
Product Condition (new / used)	New

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

4 MEASUREMENT METHOD

The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards.

4.2 <u>MECHANICAL REQUIREMENTS</u>

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide.

Page: 4/13

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

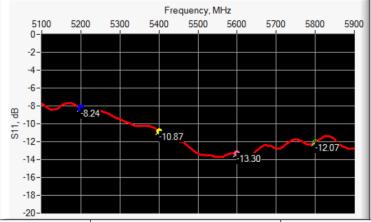
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm


5.3 VALIDATION MEASUREMENT

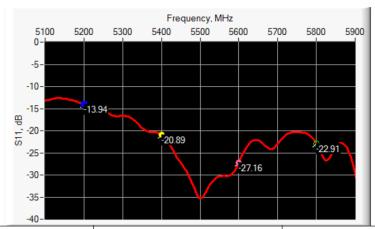
The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	_
5000-6000	<-8.24	-8	


Page: 5/13

Report No.: TCT241108E028

Ref: ACR.256.12.15.SATU.A

6.2 <u>RETURN LOSS IN BODY LIQUID</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
5000-6000	< -13.94	-8

6.3 MECHANICAL DIMENSIONS

Enganone	L (mm)		W (mm)		L _f (mm)		W _f (mm)		T (mm)	
Frequenc v (MHz)	Require	Measure	Require	Measure	Require	Measure	Require	Measure	Require	Measure
y (WIIIZ)	d	d	d	d	d	d	d	d	d	d
5200	40.39 ±	PASS	20.19 ±	PASS	81.03 ±	PASS	61.98 ±	PASS	5.3*	PASS
3200	0.13	PASS	0.13	PASS	0.13	PASS	0.13	PASS	3.31	PASS
5800	40.39 ±	DAGG	20.19 ±	PASS	81.03 ±	PASS	61.98 ±	DAGG	4.3*	DAGG
3800	0.13	PASS	0.13	PASS	0.13	PASS	0.13	PASS	4.5*	PASS

^{*} The tolerance for the matching layer is included in the return loss measurement.

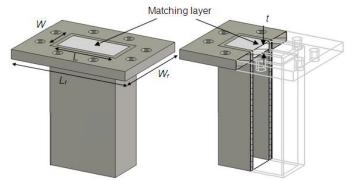


Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

Page: 6/13

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 55 of 63

Report No.: TCT241108E028

Ref: ACR.256.12.15.STU.A

7.1 <u>HEAD LIQUID MEASUREMENT</u>

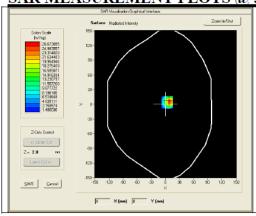
Frequency MHz	Relative per	mittivity (ε _r ')	Conductivi	ity (σ) S/m
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	PASS	4.66 ±10 %	PASS
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	PASS	4.86 ±10 %	PASS
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	PASS	5.07 ±10 %	PASS
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	PASS	5.27 ±10 %	PASS
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

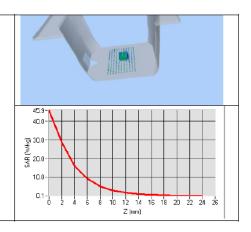
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

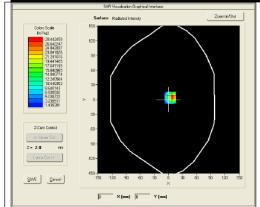
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values 5200 MHz: eps' :36.62 sigma : 4.93 Head Liquid Values 5400 MHz: eps' :35.95 sigma : 5.18 Head Liquid Values 5600 MHz: eps' :36.08 sigma : 5.60 Head Liquid Values 5800 MHz: eps' :34.73 sigma : 5.74
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

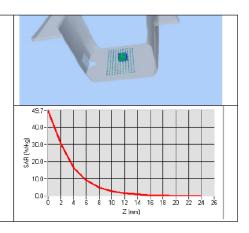
Page: 7/13





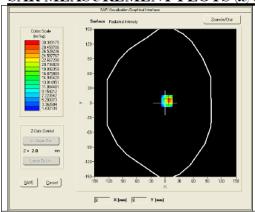
Ref: ACR.256.12.15.SATU.A

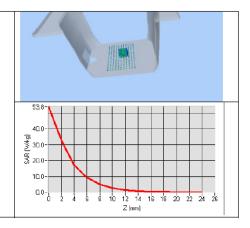

Frequency (MHz)	1 g SAR	(W/kg)	10 g SAR (W/kg)		
	required measured		required	measured	
5200	159.00	163.88 (16.39)	56.90	57.29 (5.73)	
5400	166.40	172.23 (17.22)	58.43	59.16 (5.92)	
5600	173.80	181.28 (18.13)	59.97	61.57 (6.16)	
5800	181.20	188.95 (18.90)	61.50	63.45 (6.35)	


SAR MEASUREMENT PLOTS @ 5200 MHz

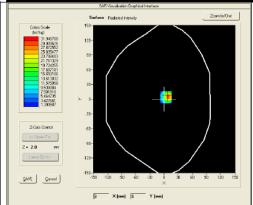
SAR MEASUREMENT PLOTS @ 5400 MHz

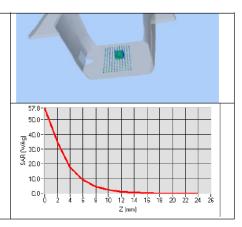
Page: 8/13





SAR REFERENCE WAVEGUIDE CALIBRATION REPORT


Ref: ACR.256.12.15.SATU.A


SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

7.3 <u>BODY LIQUID MEASUREMENT</u>

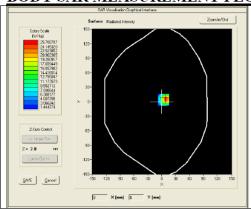
Frequency MHz	Relative per	mittivity (ε _r ')	Conductivity (σ) S/m			
	required	measured	required	measured		
5200	49.0 ±10 %	PASS	5.30 ±10 %	PASS		
5300	48.9 ±10 %		5.42 ±10 %			
5400	48.7 ±10 %	PASS	5.53 ±10 %	PASS		
5500	48.6 ±10 %		5.65 ±10 %			
5600	48.5 ±10 %	PASS	5.77 ±10 %	PASS		
5800	48.2 ±10 %	PASS	6.00 ±10 %	PASS		

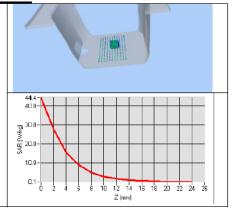
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values 5200 MHz: eps' :50.69 sigma : 4.98 Body Liquid Values 5400 MHz: eps' :48.45 sigma : 5.82 Body Liquid Values 5600 MHz: eps' :50.57 sigma : 6.37 Body Liquid Values 5800 MHz: eps' :48.19 sigma : 6.45
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

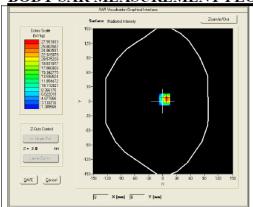
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	158.49 (15.85)	55.40 (5.54)
5400	167.20 (16.72)	57.39 (5.74)
5600	175.65 (17.57)	59.48 (5.95)
5800	183.06 (18.31)	61.62 (6.16)

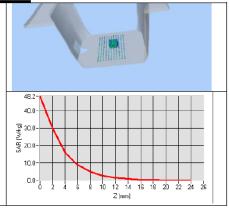
Page: 10/13

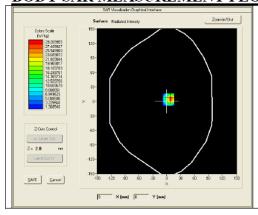




SAR REFERENCE WAVEGUIDE CALIBRATION REPORT


Ref: ACR.256.12.15.SATU.A

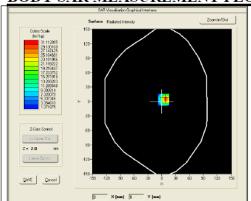

BODY SAR MEASUREMENT PLOTS @ 5200 MHz

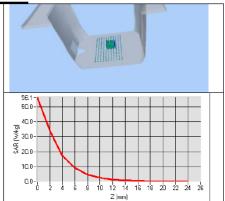


BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13





SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 12/13

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.256.12.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet											
Equipment Description	Manufacturer / Model	Identification No.	tion No. Current Next Ca Calibration Date D								
Flat Phantom	MVG	SN-20/09-SAM71		Validated. No cal required.							
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.							
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2024	02/2025							
Calipers	Carrera	CALIPER-01	01/2024	01/2025							
Reference Probe	MVG	EPG122 SN 18/11	10/2023	10/2024							
Multimeter	Keithley 2000	1188656	01/2024	01/2025							
Signal Generator	Agilent E4438C	MY49070581	01/2024	01/2025							
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.							
Power Meter	HP E4418A	US38261498	01/2024	01/2025							
Power Sensor	HP ECP-E26A	US37181460	01/2024	01/2025							
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.							
Temperature and Humidity Sensor	Control Company	150798832	10/2023	10/2024							

Appendix E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System Validation Summary

		Tissu COND. PERM.		COND. PERM.	CW Validation			Mod. Validation			
Date	Freq. [MHz]	Probe S/N	e type	(σ)	(εr)	sensitivity	Probe linearity	Probe isotropy	Mod. type	Duty factor	Peak to average power ratio
07/25/2024	2450	SN 25/22 EPGO 375	Head	38.99	1.88	PASS	PASS	PASS	OFDM	PASS	N/A
07/25/2024	5G	SN 25/22 EPGO 375	Head	36.68	4.45 ~ 5.08	PASS	PASS	PASS	OFDM	PASS	N/A

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as OFDM according to KDB 865664.

				Calibration		
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)	
Signal Generator	Angilent	N5182A	MY47070282	Jun. 27, 2024	Jun. 26, 2025	
Multimeter	Keithley	Multimeter 2000	4078275	Jun. 27, 2024	Jun. 26, 2025	
Network Analyzer	Agilent	8753E	US38432457	Jun. 27, 2024	Jun. 26, 2025	
Power Meter	Agilent	E4418B	GB43312526	Jun. 27, 2024	Jun. 26, 2025	
Power Sensor	Agilent	E9301A	MY41497725	Jun. 27, 2024	Jun. 26, 2025	
Power Amplifier	PE	PE15A4019	112342	N/A	N/A	
Temperature / Humidity Sensor	Control company	TH101B	152470214	Jun. 27, 2024	Jun. 26, 2025	

****END OF REPORT****

Page 63 of 63

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com