

Tineco Intelligent Technology Co., Ltd.

RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model:

FW060600US

REPORT NUMBER:

2501B1714SHA-001

ISSUE DATE:

February 26, 2025

DOCUMENT CONTROL NUMBER:

TTRF15.247-03_V1 © 2018 Intertek

Intertek Testing Services (Shanghai FTZ) Co., Ltd Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 2501B1714SHA-001

Applicant: Tineco Intelligent Technology Co., Ltd.

No. 108 Shi Hu Road (West), Wu Zhong Zone, Suzhou 215168

Manufacturer: Tineco Intelligent Technology Co., Ltd.

No. 108 Shi Hu Road (West), Wu Zhong Zone, Suzhou 215168

Factory: Tineco Intelligent Technology Co., Ltd.

No. 108 Shi Hu Road (West), Wu Zhong Zone, Suzhou 215168

FCC ID: 2AV7A-FW06
IC: 26039- FW06

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2023): Radio Frequency Devices (Subpart C)


ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 3 (August 2023): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

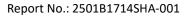
RSS-Gen Issue 5 (March 2019) Amendment 1: General Requirements for Compliance of Radio Apparatus

PREPARED BY:	REVIEWED BY:	
Zrie. li	J kip	
Project Engineer	Reviewer	
Eric Li	Wakevou Wang	


This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Content

RE	VISIO	ON HISTORY	5
ME	ASU	JREMENT RESULT SUMMARY	6
1	G	SENERAL INFORMATION	7
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	
	1.2	TECHNICAL SPECIFICATION	
	1.3	ANTENNA INFORMATION	
	1.4	DESCRIPTION OF TEST FACILITY	
2	TE	EST SPECIFICATIONS	g
	2.1	STANDARDS OR SPECIFICATION	Ç
	2.2	Mode of operation during the test	
	2.3	TEST SOFTWARE LIST	
	2.4	TEST PERIPHERALS LIST	10
	2.5	TEST ENVIRONMENT CONDITION:	10
	2.6	INSTRUMENT LIST	11
	2.7	MEASUREMENT UNCERTAINTY	13
3	M	/INIMUM 6DB BANDWIDTH	14
	3.1	LIMIT	14
	3.2	MEASUREMENT PROCEDURE	14
	3.3	TEST CONFIGURATION	14
	3.4	TEST RESULTS OF MINIMUM 6DB BANDWIDTH	14
4	M	MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P	15
	4.1	LIMIT	15
	4.2	MEASUREMENT PROCEDURE	15
	4.3	TEST CONFIGURATION	
	4.4	TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	16
5	P	OWER SPECTRUM DENSITY	17
	5.1	LIMIT	17
	5.2	MEASUREMENT PROCEDURE	17
	5.3	TEST CONFIGURATION	18
	5.4	TEST RESULTS OF POWER SPECTRUM DENSITY	18
6	Εľ	MISSION OUTSIDE THE FREQUENCY BAND	19
	6.1	LIMIT	19
	6.2	Measurement Procedure	19
	6.3	TEST CONFIGURATION	
	6.4	THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND	20
7	R	ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	21
	7.1	LIMIT	21
	7.2	MEASUREMENT PROCEDURE	21
	7.3	TEST CONFIGURATION	_
	7.4	TEST RESULTS OF RADIATED EMISSIONS	25
8	P	OWER LINE CONDUCTED EMISSION	29
	8.1	LIMIT	29
	8.2	TEST CONFIGURATION	29


8.3	Measurement Procedure	30
	TEST RESULTS OF POWER LINE CONDUCTED EMISSION	
9 (OCCUPIED BANDWIDTH	33
9.1	LIMIT	33
	MEASUREMENT PROCEDURE	
9.3	TEST CONFIGURATION	33
9.4	THE RESULTS OF OCCUPIED BANDWIDTH	33
10 4	ANTENNA REQUIREMENT	3/

Revision History

Report No.	Version	Description	Issued Date
2501B1714SHA-001	Rev. 01	Initial issue of report	February 26, 2025

Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 3 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 3 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 3 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 3 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes: 1: NA =Not Applicable

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

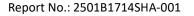

Product name:	Smart cordless floor washer	
Type/Model/PMN/HVIN:	FW060600US	
	The EUT is a Smart cordless floor washer, it supports Bluetooth and	
	WIFI functions, there is one model, we tested it and listed the worst	
Description of EUT:	results in this report.	
	DC 25.2V, 230W	
	Charging dock: AA2455	
	input(drying): 120V~ 60Hz, 5.2A,	
	input(charging): 120V~ 60Hz, 0.5A,	
	output: 30Vdc, 1A	
Rating:	Class 2 Power Supply	
EUT type:	☐ Table top ☐ Floor standing	
Software Version:	/	
Hardware Version:	/	
Sample Identification No.:	. 0250211-05-002	
Sample received date:	2025.02.11	
Date of test:	2025.02.12~2025.02.20	

1.2 Technical Specification

Frequency Band:	2400MHz ~ 2483.5MHz	
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20	
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)	
	IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK)	
Type of Modulation:	IEEE 802.11n-HT20: OFDM (64-QAM, 16-QAM, QPSK, BPSK)	
Channel Number: 11 Channels for 802.11b, 802.11g and 802.11n(HT20)		
Channel Separation:	on: 5 MHz	
Antenna:	PCB Antenna, 3.75dBi	

1.3 Antenna information

Mode	Tx/Rx Function	Beamforming function	CDD function	Directional gain (dBi)
802.11b	1Tx/1Rx	NO	NO	-
802.11g	1Tx/1Rx	NO	NO	-
802.11n(HT20)	1Tx/1Rx	NO	NO	-



1.4 Description of Test Facility

Name:	Intertek Testing Services (Shanghai FTZ) Co., Ltd	
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China	
Telephone:	86 21 61278200	
Telefax:	86 21 54262353	

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L21189
certified, or accredited by these	FCC Accredited Lab Designation Number: CN0175
organizations:	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Registration No.: R-14243, G-10845, C-14723, T-12252
	A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2023) ANSI C63.10 (2013) KDB 558074 (v05r02) RSS-247 Issue 3 (August 2023) RSS-Gen Issue 5 (March 2019) Amendment 1

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Software name	Manufacturer	Version	Supplied by
ESP_RF_Test_CN	-	-	Client

The lowest, middle and highest channel were tested as representatives.

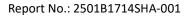
Frequency Band (MHz)	Mode	Lowest (MHz)	Middle (MHz)	Highest (MHz)
	802.11b	2412	2437	2462
2400-2483.5	802.11g	2412	2437	2462
	802.11n(HT20)	2412	2437	2462

Data rate and Power setting:

The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rata as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate	Power Setting
	802.11b	1Mbps	Default
2400-2483.5	802.11g	6Mbps	Default
	802.11n(HT20)	MCS0	Default

2.3 Test software list


Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	DELL 5480	-

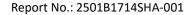
2.5 Test environment condition:

Test items	Temperature	Humidity		
Minimum 6dB Bandwidth				
Maximum conducted output power and e.i.r.p.				
Power spectrum density	24°C	52%RH		
Emission outside the frequency band				
Occupied bandwidth				
Radiated Emissions in restricted frequency bands	25°C	51%RH		
Power line conducted emission	24°C	52%RH		


2.6 Instrument list

Conducted	Conducted Emission								
Used	Equipment	Manufacturer	Туре	Internal no.	Due date				
\boxtimes	Test Receiver	R&S	ESR7	EC 6194	2025-02-27				
\boxtimes	Attenuator	Hua Xiang	Ts5-10db-6g	EC 6194-1	2025-12-06				
\boxtimes	A.M.N.	R&S	ESH2-Z5	EC 3119	2025-07-23				
	A.M.N.	R&S	ENV 216	EC 3393	2026-07-16				
	A.M.N.	R&S	ENV4200	EC 3558	2025-06-05				
Radiated E	mission								
Used	Equipment	Manufacturer	Type	Internal no.	Due date				
	Test Receiver	R&S	ESIB 26	EC 3045	2025-08-18				
	Test Receiver	R&S	ESR	EC6501	2025-09-10				
	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2025-09-11				
\boxtimes	TRILOG broadband Antenna	Schwarzbeck	VULB9168	EC 6402	2025-03-19				
\boxtimes	Pre-amplifier	R&S	AFS42- 00101800-25-S- 42	EC 5262	2025-11-06				
	Pre-amplifier	Tonscend	tap01018050	EC 6432-1	2025-12-03				
	Horn antenna	Tonscend	bha9120d	EC 6432-2	2025-03-20				
\boxtimes	Horn antenna	ETS	3117	EC 4792-1	2025-09-13				
\boxtimes	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2026-09-12				
	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2025-08-10				
	Horn antenna	ETS	3116c	EC 5955	2025-08-14				
RF test									
Used	Equipment	Manufacturer	Type	Internal no.	Due date				
	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2025-03-05				
	Vector Signal Generator	Agilent	N5182B	EC 5175	2025-03-05				
	Universal Radio Communication Tester	R&S	CMW500	EC5944	2025-03-05				
	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2025-03-07				
	Mobile Test System	Litepoint	Iqxel	EC 5176	2026-01-10				
	Test Receiver	R&S	ESCI 7	EC 4501	2025-03-09				
	Climate chamber	GWS	MT3065	EC 6021	2025-03-07				
	Spectrum Analyzer	Keysight	N9030B	EC 6078	2025-03-18				

Tet Site	Tet Site							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
\boxtimes	Shielded room	Zhongyu	-	EC 2838	2026-01-09			
	Shielded room	Zhongyu	-	EC 2839	2026-01-09			
\boxtimes	Semi-anechoic chamber	Albatross project	-	EC 3048	2026-07-11			
	Fully-anechoic chamber	Albatross project	-	EC 3047	2026-07-11			
Additional	instrument							
Used	Equipment	Manufacturer	Type	Internal no.	Due date			
\boxtimes	Thermo- Hygrograph	Testo	175h1	EC 6640	2025-08-29			
	Thermo- Hygrograph	Testo	175h1	EC 6641	2025-08-29			
\boxtimes	Thermo- Hygrograph	Testo	175h1	EC6642	2025-08-29			
\boxtimes	Thermo- Hygrograph	Testo	175h1	EC 6643	2025-08-29			
	Thermo- Hygrograph	Testo	175h1	EC 6644	2025-08-29			
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2025-08-16			



2.7 Measurement uncertainty

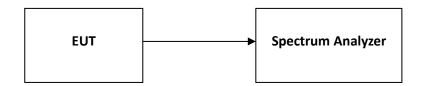
The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit


For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The EUT was tested according to Subclause 11.8 of ANSI C63.10.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

TEST REPORT

4 Maximum conducted output power and e.i.r.p.

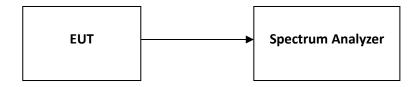
Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Measurement Procedure


The EUT was tested according to Subclause 11.9.2.2 of ANSI C63.10.

- a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.
- b) Set span to at least 1.5 x OBW.
- c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 x RBW.
- e) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add $10 \log (1/0.25) = 6 dB$ if the duty cycle is 25 %.

TEST REPORT

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

TEST REPORT

5 Power spectrum density

Test result: Pass

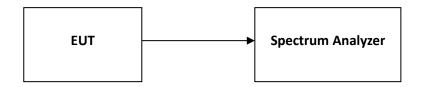
5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

The EUT was tested according to Subclause 11.10 of ANSI C63.10.


This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %):

- a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 x OBW.
- d) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- e) Set VBW ≥3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

TEST REPORT

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

TEST REPORT

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Measurement Procedure

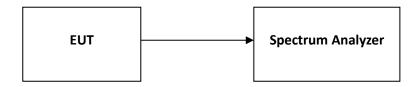
The EUT was tested according to Subclause 11.11 of ANSI C63.10.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Emission level measurement


- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

TEST REPORT

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

TEST REPORT

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

The EUT was tested according to Subclause 11.12 of ANSI C63.10.

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. For the floor-standing devices, the EUT was placed on the top of a rotating table 0.1 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

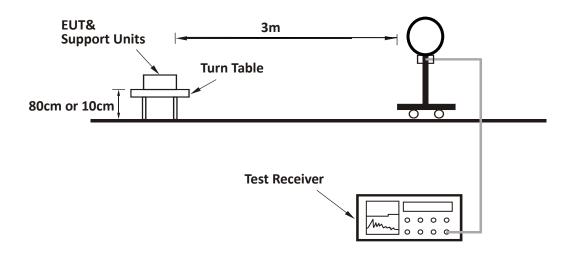
NOTE:

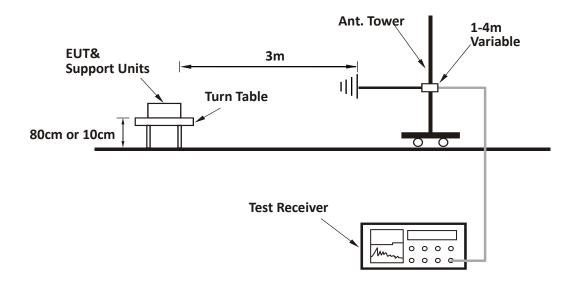
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. For the floor-standing devices, the EUT was placed on the top of a rotating table 0.1 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detector function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

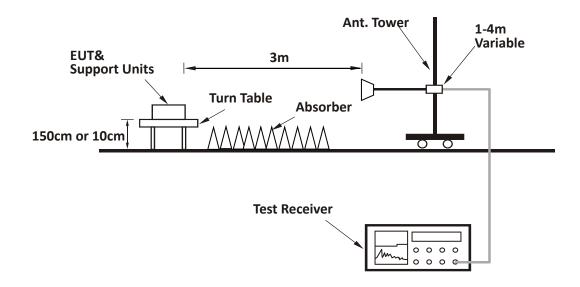
Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions were reported.

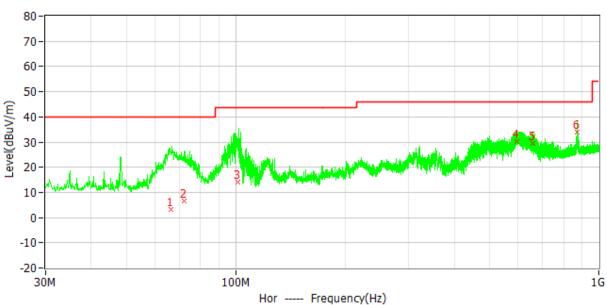

TEST REPORT

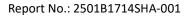

7.3 Test Configuration

For Radiated emission below 30MHz:


For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:




7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

No.	Fraguancy	Limit	Level	Delta	Reading	Factor	Dotostor	Polar
INO.	Frequency	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector	Polai
1	66.466MHz	40.0	3.4	-36.6	-9.5	12.9	QP	Hor
2	72.230MHz	40.0	6.6	-33.4	-5.4	12.0	QP	Hor
3	101.553MHz	43.5	13.9	-29.6	3.7	10.2	QP	Hor
4	593.463MHz	46.0	30.2	-15.8	7.7	22.5	QP	Hor
5	657.673MHz	46.0	29.4	-16.6	5.9	23.5	QP	Hor
6	869.074MHz	46.0	34.1	-11.9	7.4	26.7	QP	Hor

1G

TEST REPORT

70 60 50

30M

Level(dBuV/m)

Ver ---- Frequency(Hz)

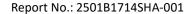

No	Fraguancy	Limit	Level	Delta	Reading	Factor	Dotostor	Polar
No.	Frequency	dBuV/m	dBuV/m dBuV/m dB dBuV d		dB/m	Detector	Polar	
1	61.685MHz	40.0	24.4	-15.6	10.8	13.6	QP	Ver
2	72.640MHz	40.0	32.3	-7.7	20.4	11.9	QP	Ver
3	94.349MHz	43.5	31.4	-12.1	22.0	9.4	QP	Ver
4	100.800MHz	43.5	36.9	-6.6	26.8	10.1	QP	Ver
5	700.539MHz	46.0	23.4	-22.6	-0.7	24.1	QP	Ver
6	869.074MHz	46.0	29.8	-16.2	3.1	26.7	QP	Ver

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (- Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

2. Level = Original Receiver Reading + Correct Factor

100M

- 3. Delta = Level Limit
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.


Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz 802.11b

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390	50.80	74.00	23.20	PK
	V	2390	51.30	74.00	22.70	PK
L	Н	4824	44.80	74.00	29.20	PK
	V	4824	45.40	74.00	28.60	PK
М	V	4874	45.60	74.00	28.40	PK
	Н	2483.5	50.50	74.00	23.50	PK
	V	2483.5	51.90	74.00	22.10	PK
Н	Н	4924	45.10	74.00	28.90	PK
	V	4924	45.70	74.00	28.30	PK

802.11g

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2390	59.80	74.00	15.40	PK
L	V	2390	47.70	54.00	6.30	AV
	V	4824	45.40	74.00	29.20	PK
М	V	4874	45.60	74.00	28.70	PK
	V	2483.5	59.60	74.00	14.80	PK
Н	V	2483.5	47.60	54.00	6.40	AV
	V	4924	46.20	74.00	28.80	PK

802.11n(HT20)

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	V	2390	62.80	74.00	12.40	PK
L	V	2390	48.70	54.00	5.10	AV
	V	4824	45.70	74.00	28.60	PK
М	V	4874	45.80	74.00	28.30	PK
	V	2483.5	62.70	74.00	11.80	PK
Н	V	2483.5	48.50	54.00	5.30	AV
	V	4924	45.90	74.00	28.40	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

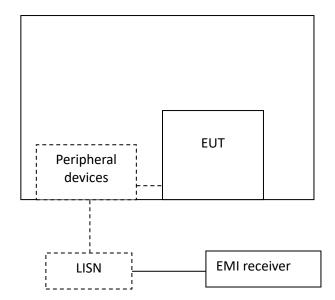

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;

Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.


8 Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
rrequency or Emission (Winz)	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

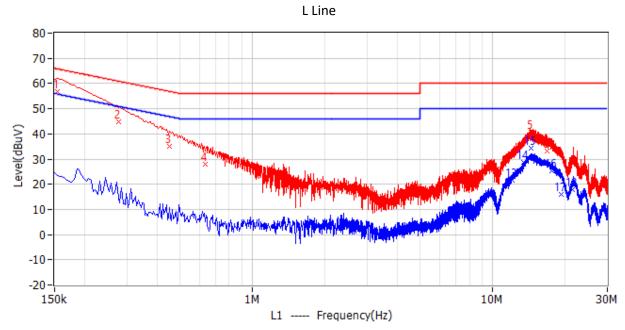
8.2 Test Configuration

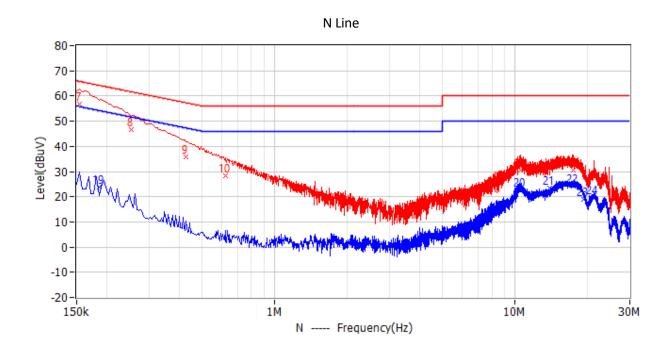


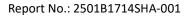
8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.


The bandwidth of the test receiver is set at 9 kHz.





8.4 Test Results of Power line conducted emission

Test Voltage: AC 120V, 60Hz

Test Data:

No. Frequency Limit dBuV dBuV dB dBuV dB dBuV dB Detector Phase	IEST D	ata.							
1 154.500kHz 65.75 56.74 -9.01 50.54 6.20 QP L1 2 276.000kHz 60.94 44.95 -15.99 38.75 6.20 QP L1 3 451.500kHz 56.85 34.95 -21.90 28.75 6.20 QP L1 4 636.000kHz 56.00 28.09 -27.91 21.89 6.20 QP L1 5 14.420MHz 60.00 40.63 -19.37 33.73 6.90 QP L1 6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz	No.	Frequency	_			_		Detector	Phase
2 276.000kHz 60.94 44.95 -15.99 38.75 6.20 QP L1 3 451.500kHz 56.85 34.95 -21.90 28.75 6.20 QP L1 4 636.000kHz 56.00 28.09 -27.91 21.89 6.20 QP L1 5 14.420MHz 60.00 40.63 -19.37 33.73 6.90 QP L1 6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz			dBuV	dBuV	dB	dBuV	dB		
3 451.500kHz 56.85 34.95 -21.90 28.75 6.20 QP L1 4 636.000kHz 56.00 28.09 -27.91 21.89 6.20 QP L1 5 14.420MHz 60.00 40.63 -19.37 33.73 6.90 QP L1 6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz	1	154.500kHz	65.75	56.74	-9.01	50.54	6.20	QP	L1
4 636.000kHz 56.00 28.09 -27.91 21.89 6.20 QP L1 5 14.420MHz 60.00 40.63 -19.37 33.73 6.90 QP L1 6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz	2	276.000kHz	60.94	44.95	-15.99	38.75	6.20	QP	L1
5 14.420MHz 60.00 40.63 19.37 33.73 6.90 QP L1 6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz	3	451.500kHz	56.85	34.95	-21.90	28.75	6.20	QP	L1
6 16.832MHz 60.00 33.23 -26.77 26.13 7.10 QP L1 7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz	4	636.000kHz	56.00	28.09	-27.91	21.89	6.20	QP	L1
7 154.500kHz 65.75 56.62 -9.13 50.42 6.20 QP N 8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz	5	14.420MHz	60.00	40.63	-19.37	33.73	6.90	QP	L1
8 253.500kHz 61.64 46.49 -15.15 40.29 6.20 QP N 9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 18 21.566MHz	6	16.832MHz	60.00	33.23	-26.77	26.13	7.10	QP	L1
9 429.000kHz 57.27 35.85 -21.42 29.65 6.20 QP N 10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 18 21.566MHz <td>7</td> <td>154.500kHz</td> <td>65.75</td> <td>56.62</td> <td>-9.13</td> <td>50.42</td> <td>6.20</td> <td>QP</td> <td>N</td>	7	154.500kHz	65.75	56.62	-9.13	50.42	6.20	QP	N
10 627.000kHz 56.00 28.46 -27.54 22.26 6.20 QP N 11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz<	8	253.500kHz	61.64	46.49	-15.15	40.29	6.20	QP	N
11 10.518MHz 60.00 30.74 -29.26 24.04 6.70 QP N 12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz<	9	429.000kHz	57.27	35.85	-21.42	29.65	6.20	QP	N
12 17.462MHz 60.00 30.49 -29.51 23.39 7.10 QP N 13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N	10	627.000kHz	56.00	28.46	-27.54	22.26	6.20	QP	N
13 12.053MHz 50.00 21.45 -28.55 14.75 6.70 CAV L1 14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MH	11	10.518MHz	60.00	30.74	-29.26	24.04	6.70	QP	N
14 13.412MHz 50.00 28.83 -21.17 22.03 6.80 CAV L1 15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	12	17.462MHz	60.00	30.49	-29.51	23.39	7.10	QP	N
15 14.442MHz 50.00 34.30 -15.70 27.40 6.90 CAV L1 16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	13	12.053MHz	50.00	21.45	-28.55	14.75	6.70	CAV	L1
16 17.682MHz 50.00 25.45 -24.55 18.35 7.10 CAV L1 17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	14	13.412MHz	50.00	28.83	-21.17	22.03	6.80	CAV	L1
17 19.307MHz 50.00 16.12 -33.88 8.92 7.20 CAV L1 18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	15	14.442MHz	50.00	34.30	-15.70	27.40	6.90	CAV	L1
18 21.566MHz 50.00 17.71 -32.29 10.41 7.30 CAV L1 19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	16	17.682MHz	50.00	25.45	-24.55	18.35	7.10	CAV	L1
19 186.000kHz 54.20 24.00 -30.20 17.90 6.10 CAV N 20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	17	19.307MHz	50.00	16.12	-33.88	8.92	7.20	CAV	L1
20 10.568MHz 50.00 22.86 -27.14 16.16 6.70 CAV N 21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	18	21.566MHz	50.00	17.71	-32.29	10.41	7.30	CAV	L1
21 13.871MHz 50.00 23.52 -26.48 16.72 6.80 CAV N 22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	19	186.000kHz	54.20	24.00	-30.20	17.90	6.10	CAV	N
22 17.534MHz 50.00 24.19 -25.81 17.09 7.10 CAV N 23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	20	10.568MHz	50.00	22.86	-27.14	16.16	6.70	CAV	N
23 19.208MHz 50.00 19.07 -30.93 11.87 7.20 CAV N	21	13.871MHz	50.00	23.52	-26.48	16.72	6.80	CAV	N
	22	17.534MHz	50.00	24.19	-25.81	17.09	7.10	CAV	N
24 21.044MHz 50.00 19.86 -30.14 12.56 7.30 CAV N	23	19.208MHz	50.00	19.07	-30.93	11.87	7.20	CAV	N
	24	21.044MHz	50.00	19.86	-30.14	12.56	7.30	CAV	N

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Level = Original Receiver Reading + Correct Factor
- 3. Delta = Level Limit
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

9 Occupied Bandwidth

Test result: Tested

9.1 Limit

None

9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

Please refer to Appendix A

10 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.