

TEST REPORT

Product Name: Security Camera

FCC ID: 2A9GG-D1

Trademark: N/A Model Number: D1

Prepared For: guangzhouxingtaihuishengchuangxintouzi Co., Ltd.

Address: 2402fang 159hao, nantaohuajie, guangzhoudadao, haizhuqu Guangzhoushi,

510310 China

Manufacturer: dongguanshiyinpaidianziyouxiangongsi

Address: guangdongshengdongguanshifenggangzhennanlinglu23hao2dong201shi

Prepared By: Shenzhen CTB Testing Technology Co., Ltd.

Address: 1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, S

henzhen, Guangdong, China

Sample Received Date: Oct. 11, 2024

Sample tested Date: Oct. 11, 2024 to Oct. 19, 2024

Issue Date: Oct. 19, 2024

Report No.: CTB24101106301RF02

Test Standards FCC Part 2, 24E

Test Results PASS

Zhou Kui

Remark: This is LTE radio test report.

Compiled by: Reviewed by: Approved by:

Arron Liu

Zhou kui Arron 2iu

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

T	est Re	eport Declaration	Page
	1.	VERSION	3
	2.	TEST SUMMARY	
	3.	MEASUREMENT UNCERTAINTY	5
	4.	PRODUCT INFORMATION AND TEST SETUP	
	4.1	Product Information	
	4.2	Test Setup Configuration	7
	4.3	Support Equipment	7
	4.4	Test Mode	7
	4.5	Test Environment	
	5.	TEST FACILITY AND TEST INSTRUMENT USED	8
	5.1	Test Facility	
	5.2	Test Instrument Used	8
	6.	RF EXPOSURE	10
	6.1	Standard Applicable	10
	6.2	Test Result	10
	7.	RF OUTPUT POWER	11
	7.1	Standard Applicable	11
	7.2	Test Procedure	11
	7.3	Summary of Test Results/Plots	12
	8.	PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	
	8.1	Standard Applicable	13
	8.2	Test Procedure	13
	8.3	Summary of Test Results	13
	9.	EMISSION BANDWIDTH	14
	9.1	Standard Applicable	14
	9.2	Test Procedure	
	9.3	Summary of Test Results/Plots	14
	10.	OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
	10.1	Standard Applicable	15
	10.2	Test Procedure	
	10.3	Summary of Test Results/Plots	
	11.		
	11.1	Standard Applicable	17
	11.2	Test Procedure	
	11.3	Summary of Test Results/Plots	18
	12.	FREQUENCY STABILITY	22
	12.1	Standard Applicable	22
	12.2	Test Procedure	22
	12.3	Summary of Test Results/Plots	22

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved	
CTB24101106301RF02	Oct. 19, 2024	Original	Valid	

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 3 of 22

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a)	TIA-603-E-2016 & KDB 971168 D01v03r01	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 22.913(a)(5)/Part27.50(h)(2)	TIA-603-E-2016 & KDB 971168 D01v03r01	PASS
peak-to-average ratio	Part 27.50(d)	KDB 971168 D01v03r01	PASS
99% & 26dB Occupied Bandwidth	Part 2.1049(h)	KDB 971168 D01v03r01	PASS
Band Edge at antenna terminals	Part 2.1051/ Part 22.917(a)/Part 27.53(m) (4)	KDB 971168 D01v03r01	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 22.917(a)/Part 27.53(m) (4)	TIA-603-E-2016 & KDB 971168 D01v03r01	PASS
Field strength of spurious radiation	Part 2.1053/ Part 22.917(a)/Part 27.53(m) (4)	TIA-603-E-2016 & KDB 971168 D01v03r01	PASS
Frequency stability	Part 2.1055/Part 27.54	TIA-603-E-2016 & KDB 971168 D01v03r01	PASS

ż

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 4 of 22

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item C C C C	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density , Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
Receiver Reference Sensitivity level	1.9dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63℃
frequency	1×10-7

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 5 of 22

Report No.: CTB24101106301RF02

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): D1

Model Description: N/A

Hardware Version: V1.0

Software Version: V1.0

Operation Frequency: FDD-LTE BAND 2: 1850-1910MHz
Max. RF output power: FDD-LTE BAND 2: 22.84dBm

Type of Modulation: QPSK, 16QAM
Antenna installation: FPC antenna

Antenna Gain: FDD-LTE BAND 2: 3.32dBi

Ratings: DC 5V by adapter DC 3.7V by battery

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 6 of 22

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
C.	C C C	, 6			C.

Notes

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 4.4 Test Mode

Test Mode	List	
Test Mode	Description	Remark
TM1	FDD-LTE BAND 2	Low, Middle, High Channels

4.5 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(DC):	3.7V
Normal Temperature(℃)	23
Low Temperature(°C)	
High Temperature(℃)	40

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 7 of 22

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

No.	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	A.14.16	2025/6/28
2	Power Sensor	Agilent	U2021XA	MY56120032	Y KP K	2025/6/28
3	Power Sensor	Agilent	U2021XA	MY56120034	0,0	2025/6/28
4	Communication test set	R&S	CMW500	108058	V3.5.80	2025/6/28
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
6	Signal Generator	Agilent	N5181A	MY50140365	A.01.60	2025/6/28
7	Vector signal generator	Agilent	N5182A	MY47420195	A.01.87	2025/6/28
8	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2025/6/28
9	2.4 GHz Filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001	50 CS	2025/6/30
10	5 GHz Filter	Shenxiang	MSF5150-58 50MS-1155	20181015001	S SP S	2025/6/30
11	Filter	Xingbo	XBLBQ-DZA 120	190821-1-1	\$ \$ \$ \$	2025/6/30
12	BT&WI-FI Automatic test software	Micowave	MTS8310	Ver. 2.0.0.0	0 6	
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017		2025/6/28
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	C 1 C 5	2025/6/28
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0		57 5
16	966 chamber	C.R.T.	966	4 14	& 1b	2027/6/21
17	Receiver	R&S	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
18	Amplifier	HP	8447E	2945A02747		2025/6/28
19	Amplifier	Agilent	8449B	3008A01838	010	2025/6/28
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	ST CST CST	2025/6/28
21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911		2025/6/28

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 8 of 22

CTB

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB24101106301RF02

22	EMI test software	Fala	EZ-EMC	FA-03A2 RE		6,16,
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224		2025/6/28
24	loop antenna	ZHINAN	ZN30900A	GTS534	s 6	1
25	40G Horn antenna	A/H/System	SAS-574	588	51 5	2025/6/28
26	Amplifier	AEROFLEX	Aeroflex	097	0 6 0	2025/6/28
27	Power Metter	KEYSIGHT	N1912AP	N/A	A.05.00	2025/6/28

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 9 of 22

6. RF EXPOSURE

6.1 Standard Applicable

According to §1.1307 and §2.1091, §2.1093, the portable transmitter must comply the RF exposure requirements.

6.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure report.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 10 of 22

7. RF OUTPUT POWER

7.1 Standard Applicable

According to §22.913(a)(2), the ERP of mobile and portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.


According to §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

According to §27.50(c)(10), portable stations (hand-held devices) in the 698-746 MHz band are limited to 3 watts ERP.

7.2 Test Procedure

Conducted output power test method:

Radiated power test method:

- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 11 of 22

Report No.: CTB24101106301RF02

7.3 Summary of Test Results/Plots

Please refer to Appendix 1: Conducted output power

Test result: Pass

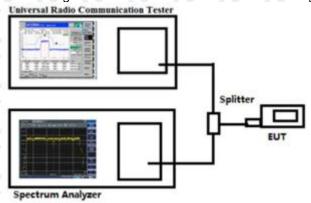
Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 12 of 22

8. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER

8.1 Standard Applicable

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal


corresponding to the highest PAPR expected during periods of continuous transmission.

8.2 Test Procedure

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled
- Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Configuration for the emission bandwidth testing:

8.3 Summary of Test Results

Please refer to Appendix 3: Peak-to-Average Ratio

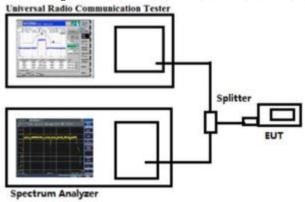
Test result: Pass

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 13 of 22

9. EMISSION BANDWIDTH

9.1 Standard Applicable

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.


According to §24.238(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

9.2 Test Procedure

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Test Configuration for the emission bandwidth testing:

9.3 Summary of Test Results/Plots

Please refer to Appendix 4: 26dB Bandwidth and Occupied Bandwidth

Test result: Pass

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 14 of 22

10. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL

10.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

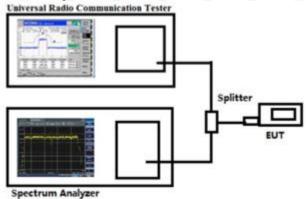
- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

According to §27.53 (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

According to §27.53(h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

According to §27.53(g), for operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.

According to $\S27.53(m)(4)$, for mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) \, dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) \, dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) \, dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) \, dB$ on all frequencies between 2490.5 MHz and 2496 MHz and $55 + 10 \log (P) \, dB$ at or below 2490.5 MHz.


10.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10 th harmonic.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 15 of 22

Test Configuration for the out of band emissions testing:

10.3 Summary of Test Results/Plots

Please refer to Appendix 5 & 6: Band Edge & Conducted Spurious Emission

Test result: Pass

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 16 of 22

11. SPURIOUS RADIATED EMISSIONS

11.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §27.53 (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

According to §27.53 (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

According to §27.53(h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

According to §27.53(g) the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 17 of 22

11.2 Test Procedure

- 1. The setup of EUT is according with per ANSI/TIA-603-E and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB =43+10 Log 10 (power out in Watts)

11.3 Summary of Test Results/Plots

Note: 1. this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

2. All test modes (different bandwidth and different modulation) are performed, but only the worst case is recorded in this report.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 18 of 22

Test Data: QPSK

0 0	0 0	Band 2	18607 channel/B\	V1.4(lowes	st channel)		0 0
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1369.45	158	20	-55.37	-13	-42.37	Pass	СH
1645.24	143	352	-48.89	-13	-35.89	Pass	Н
3811.94	143	226	-49.26	-13	-36.26	Pass	CH
5931.74	144	88	-43.35	-13	-30.35	Pass	A HA
6545.07	141	338	-44.66	-13	-31.66	Pass	CH
7986.62	142	295	-42.83	-13	-29.83	Pass	Ф НФ
1192.67	153	298	-56.76	-13	-43.76	Pass	V
1419.86	145	16	-58.67	-13	-45.67	Pass	V
3578.09	156	105	-50.36	-13	-37.36	Pass	V
3761.55	148	184	-50.57	-13	-37.57	Pass	V
5796.79	158	306	-47.94	-13	-34.94	Pass	V
6538.61	148	91	-48.32	-13	-35.32	Pass	V ₃
	A. C.A.	Band 2	18900 channel/BV	V1.4(middl	le channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1389.29	147	319	-58.44	-13	-45.44	Pass	Н
1716.85	143	113	-49.62	-13	-36.62	Pass	СH
3952.79	145	255	-48.30	-13	-35.30	Pass	Ф нФ
5972.83	152	113	-45.26	-13	-32.26	Pass	CH
6506.50	148	108	-42.36	-13	-29.36	Pass	♦ H♦
8074.56	147	276	-40.67	-13	-27.67	Pass	Н
1175.58	149	284	-52.84	-13	-39.84	Pass	V V
1420.60	147	32	-56.89	-13	-43.89	Pass	V
3542.84	154	78	-50.84	-13	-37.84	Pass	O VO
3882.29	156	52	-50.64	-13	-37.64	Pass	V
5758.07	142	85	-48.90	-13	-35.90	Pass	V ₃
6520.97	149	126	-46.40	-13	-33.40	Pass	V

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 19 of 22

	Band 2 19193 channel/BW1.4(highest channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
1422.29	157	198	-59.63	-13	-46.63	Pass	H			
1621.16	149	128	-46.74	-13	-33.74	Pass	do Ho			
3894.82	148	80	-48.04	-13	-35.04	Pass	Ħ			
5984.02	141	326	-46.03	-13	-33.03	Pass	H			
6557.26	151	258	-42.16	-13	-29.16	Pass	Н			
8151.42	147	344	-41.95	-13	-28.95	Pass	Н			
1202.64	144	279	-54.24	-13	-41.24	Pass	V			
1418.50	152	349	-57.92	-13	-44.92	Pass	V			
3582.42	140	249	-52.57	-13	-39.57	Pass	V			
3910.24	150	328	-51.27	-13	-38.27	Pass	V			
5862.46	146	142	-48.54	-13	-35.54	Pass	V			
6602.81	154	110	-48.11	-13	-35.11	Pass	V			

16QAM

		Band 2	18607 channel/BV	V1.4(lowes	st channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1403.18	148	263	-57.62	-13	-44.62	Pass	Н
1769.62	143	214	-48.57	-13	-35.57	Pass	H
3972.19	160	31	-48.13	-13	-35.13	Pass	Н
5905.48	147	327	-42.81	-13	-29.81	Pass	Н
6472.78	151	325	-43.95	-13	-30.95	Pass	ОН
7992.88	159	354	-45.21	-13	-32.21	Pass	H
1204.70	146	68	-56.47	-13	-43.47	Pass	CV
1404.75	153	79	-60.16	-13	-47.16	Pass	V
3517.88	149	9 181	-49.66	9-13	-36.66	Pass	CV
3860.33	155	156	-52.40	-13	-39.40	Pass	V
5867.78	152	345	-48.17	-13	-35.17	Pass	CV
6501.36	152	118	-48.98	-13	-35.98	Pass	V

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 20 of 22

Frequency	Height	Azimuth	Spurious Emission Level	Limit	Over Limit (dB)	Result	Antenna
(MHz)	(cm)	(deg)	(dBm)	(dBm)	(db)	430	Polaxis.
1267.04	150	47	-57.77	-13	-44.77	Pass	Ħ
1662.07	145	327	-46.71	-13	-33.71	Pass	An Han
3849.86	158	122	-45.71	-13	-32.71	Pass	H
5958.74	148	250	-42.31	-13	-29.31	Pass	H
6466.39	149	346	-43.77	-13	-30.77	Pass	Н
8010.49	147	4	-44.99	-13	-31.99	Pass	Н
1189.39	154	200	-52.79	-13	-39.79	Pass	V
1526.18	160	120	-59.75	-13	-46.75	Pass	V
3509.59	154	146	-50.36	-13	-37.36	Pass	V
3924.60	152	5	-51.45	-13	-38.45	Pass	V
5762.36	150	266	-47.66	-13	-34.66	Pass	V
6549.38	144	74	-47.21	-13	-34.21	Pass	V
4 64	4 K 1	Band 2	19193 channel/BW	1.4(highes	t channel)	4 K	4 64
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1377.58	143	185	-57.22	-13	-44.22	Pass	Ho.
1633.65	155	304	-51.08	-13	-38.08	Pass	H
3992.69	147	339	-45.57	-13	-32.57	Pass	Н
5896.10	155	330	-43.50	-13	-30.50	Pass	Н
6567.11	159	328	-41.40	-13	-28.40	Pass	Н
8123.27	157	175	-42.10	-13	-29.10	Pass	Ĥ
1152.47	140	359	-55.38	-13	-42.38	Pass	V
1504.85	145	296	-59.01	-13	-46.01	Pass	V
3591.07	146	169	-52.23	-13	-39.23	Pass	V
3792.05	160	67	-51.91	-13	-38.91	Pass	V
	147	3	-49.49	-13	-36.49	Pass	V
5875.21	147	3	10.10			. 400	V

Note:

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 21 of 22

¹⁾ Scan from 9kHz to 40GHz, the disturbance above 13GHz and below 1GHz are attenuated more than 20 dB below the applicable limit and not required to be reported, the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

²⁾ Tested with all kind of bandwidth,RB Size and RB Offset, Found the 1.4MHz with full RB were the worst case; and then Only the worst case is recorded in the report.

12. FREQUENCY STABILITY

12.1 Standard Applicable

According to §22.355, §24.235, §27.54 the limit is 2.5ppm.

12.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

12.3 Summary of Test Results/Plots

Note: 1.Normal Voltage NV=DC5V; Low Voltage LV=DC4.5V; High Voltage HV=DC5.5V

Please refer to Appendix 2: Frequency Stability

Test result: Pass

**** END OF REPORT ****

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 22 of 22