Date/Time: 2015-02-06 08:47:12 Test Laboratory: SGS-SAR Lab ## System Performance Check 2450MHz Head DUT: D2450V2; Type: D2450V2; Serial: 733 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.778$ S/m; $\varepsilon_r = 38.574$; $\rho = 1000$ kg/m^3 Phantom section: Flat Section #### DASY 5 Configuration: • Probe: EX3DV4 - SN3962; ConvF(7.32, 7.32, 7.32); Calibrated: 2014-11-24; • Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 • Electronics: DAE3 Sn569; Calibrated: 2014-10-01 • Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.1 W/kg ## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.39 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.67 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 13.1 W/kg = 11.16 dBW/kg Date/Time: 2015-02-06 14:32:29 Test Laboratory: SGS-SAR Lab ## **System Performance Check 2450MHz Body** DUT: D2450V2; Type: D2450V2; Serial: 733 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.951$ S/m; $\varepsilon_r = 51.68$; $\rho = 1000$ kg/m^3 Phantom section: Flat Section #### DASY 5 Configuration: • Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 2014-11-24; • Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 • Electronics: DAE3 Sn569; Calibrated: 2014-10-01 • Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.1 W/kg ## Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 81.80 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.32 W/kg Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 12.1 W/kg = 10.84 dBW/kg Report No.: SZEM141100637205 # **Appendix B** # **Detailed Test Results** | GSM850 for Head | |------------------------| | GSM850 for Body | | GSM1900 for Head | | GSM1900 for Body | | WCDMA Band II for Head | | WCDMA Band II for Body | | WCDMA Band V for Head | | WCDMA Band V for Body | | WIFI for Head | | WIFI for Body | Date/Time: 2015-02-02 11:38:20 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G GSM835 190CH Right Hand Tilted 15 Degree With SIM2 ## DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6 MHz;Duty Cycle: 1:8.30042 Medium: HSL835;Medium parameters used: f = 837 MHz; σ = 0.926 S/m; ϵ_r = 41.232; ρ = 1000 kg/m^3 Phantom section: Right Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(9.89, 9.89, 9.89); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Head/Area Scan (11x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.329 W/kg ## BAK BOARD 3G/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.36 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.730 W/kg SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.131 W/kg Maximum value of SAR (measured) = 0.288 W/kg 0 dB = 0.329 W/kg = -4.83 dBW/kg Date/Time: 2015-02-03 09:18:49 Test Laboratory: SGS-SAR Lab #### BAK BOARD 3G GSM850 GPRS 4TS 190CH Back side 0mm ## DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.0797 Medium: MSL835; Medium parameters used: f = 837 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r = 55.161$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Body/Area Scan (11x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.422 W/kg ## BAK BOARD 3G/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.61 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.34 W/kg SAR(1 g) = 0.471 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 0.503 W/kg 0 dB = 0.422 W/kg = -3.75 dBW/kg Date/Time: 2015-02-04 10:26:44 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G GSM1900 661CH Right Hand Touch Cheek ## DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, GSM Only Communication System (0); Frequency: 1880 MHz;Duty Cycle: 1:8.30042 Medium: HSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.427$ S/m; $\varepsilon_r = 40.665$; $\rho = 1000$ kg/m^3 Phantom section: Right Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(8.14, 8.14, 8.14); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Head/Area Scan (11x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.242 W/kg ## BAK BOARD 3G/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.155 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.150 W/kg Maximum value of SAR (measured) = 0.473 W/kg 0 dB = 0.473 W/kg = -3.25 dBW/kg Date/Time: 2015-02-05 11:46:14 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G GSM1900 GPRS 4TS 661CH Top side 0mm DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:2.0797 Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.273$; $\rho = 1000$ kg/m^3 Phantom section: Flat Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(8.07, 8.07, 8.07); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Body/Area Scan (7x11x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.559 W/kg ## BAK BOARD 3G/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.317 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.702 W/kg; SAR(10 g) = 0.310 W/kg Maximum value of SAR (measured) = 0.776 W/kg 0 dB = 0.559 W/kg = -2.52 dBW/kg Date/Time: 2015-02-02 14:33:12 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3GWCDMA835 4182CH Right Hand Tilted 15 Degree DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: HSL835; Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.926$ S/m; $\varepsilon_r =$ 41.101; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(9.89, 9.89, 9.89); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## BAK BOARD 3G/Head/Area Scan (11x16x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.189 W/kg ## BAK BOARD 3G/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.117 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.519 W/kg SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.089 W/kg #### Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.215 W/kg 0 dB = 0.189 W/kg = -7.24 dBW/kg Date/Time: 2015-02-03 19:49:03 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G WCDMA850 4182CH Back side 0mm DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r =$ 55.174; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## BAK BOARD 3G/Body/Area Scan (11x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.199 W/kg ## BAK BOARD 3G/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.004 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.679 W/kg SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.107 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.248 W/kg 0 dB = 0.199 W/kg = -7.01 dBW/kg Date/Time: 2015-02-04 17:36:24 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3GWCDMA1900 9400CH Right Hand Touch Cheek DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0,
WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.427$ S/m; $\varepsilon_r = 40.665$; $\rho = 1000$ kg/m³ Phantom section: Right Section ## DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(8.14, 8.14, 8.14); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Head/Area Scan (11x16x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.253 W/kg ## BAK BOARD 3G/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.053 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.461 W/kg SAR(1 g) = 0.243 W/kg; SAR(10 g) = 0.123 W/kg Maximum value of SAR (measured) = 0.257 W/kg 0 dB = 0.253 W/kg = -5.97 dBW/kg Date/Time: 2015-02-05 14:33:15 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G WCDMA1900 9400CH Back side 0mm DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1880 MHz; $\sigma = 1.493$ S/m; $\varepsilon_r = 52.273$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(8.07, 8.07, 8.07); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Body/Area Scan (11x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.564 W/kg ## BAK BOARD 3G/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.270 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.450 W/kg; SAR(10 g) = 0.182 W/kg Maximum value of SAR (measured) = 0.595 W/kg 0 dB = 0.564 W/kg = -2.49 dBW/kg Date/Time: 2015-02-06 10:50:12 Test Laboratory: SGS-SAR Lab #### BAK BOARD 3G WiFi 11CH Left Hand Touch Cheek ## DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2462 MHz; $\sigma = 1.804$ S/m; $\varepsilon_r = 38.492$; $\rho = 1000$ kg/m³ Phantom section: Left Section ## DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(7.32, 7.32, 7.32); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = -19.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Head/Area Scan (13x20x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.150 W/kg ## BAK BOARD 3G/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.006 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.385 W/kg SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.065 W/kg Maximum value of SAR (measured) = 0.186 W/kg 0 dB = 0.150 W/kg = -8.25 dBW/kg Date/Time: 2015-02-06 15:21:58 Test Laboratory: SGS-SAR Lab ## BAK BOARD 3G WiFi 11CH Back 0mm DUT: BAK BOARD 3G; Type: Tablet PC; Serial: N/A Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2462 MHz; $\sigma = 1.966$ S/m; $\varepsilon_r = 51.603$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY 5 Configuration: - Probe: EX3DV4 SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 2014-11-24; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn569; Calibrated: 2014-10-01 - Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) **BAK BOARD 3G/Head/Area Scan (13x8x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.695 W/kg ## BAK BOARD 3G/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.785 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.64 W/kg SAR(1 g) = 0.994 W/kg; SAR(10 g) = 0.372 W/kg Maximum value of SAR (measured) = 1.21 W/kg 0 dB = 0.695 W/kg = -1.58 dBW/kg # **Multi-Band Average SAR** ## **Multi Band Result:** **BAK BOARD 3G/Body/Volume Scan (16x9x6)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.401 W/kgMaximum value of SAR (interpolated) = 2.67 W/kg Report No.: SZEM141100637205 # **Appendix C** # **Calibration certificate** | D835V2-SN 4d105(2013-11-25) | |------------------------------| | D1900V2-SN 5d028(2013-11-27) | | D2450V2-SN 733(2013-11-26) | | DAE3-SN 569(2014-10-01) | | EX3DV4-SN 3962 2014-11-24) | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Certificate No: D835V2-4d105_Nov13 Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-SZ (Auden) **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d105 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 25, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards | Power meter EPM-442A GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 | | |---|-----------------| | Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 | | | Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 | | | | | | Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 | | | | | | Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 | | | DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 | | | Secondary Standards ID # Check Date (in house) Schedu | lled Check | | RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house | e check: Oct-15 | | Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) In house | e check: Oct-14 | | Name Function Signate | ure | | Calibrated by: Israe El-Naouq Laboratory Technician | Concuery | | Approved by: Katja Pokovic Technical Manager | ens | | | | Cal Date (Certificate No.) Issued: November 26, 2013 Scheduled Calibration This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: Certificate No: D835V2-4d105_Nov13 d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR
measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.64 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.26 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.28 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.55 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.06 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d105_Nov13 Page 3 of 8 ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.4 Ω - 4.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.3 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.9 Ω - 6.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.395 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.333 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------|--| | Manufactured on | May 26, 2010 | | Certificate No: D835V2-4d105_Nov13 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 25.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.324 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.80 W/kg SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.92 W/kg 0 dB = 2.92 W/kg = 4.65 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 25.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.007$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.53 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 2.78 W/kg 0 dB = 2.78 W/kg = 4.44 dBW/kg # Impedance Measurement Plot for Body TSL ## SGS-CSTC Standards Technical Services Co., Ltd. | Dipole Calibration for Impedance and Return-loss | | | | | | |--|-------------------------------|-------------|-------------------------------|-------------------|------------| | Model NO.: | D835V2 | Serial NO.: | 4d105 | Measurement Date: | 2014-11-24 | | Liquid Type | Target Value: | | Measured Value: | | verdict | | Liquid Type — | Impedance | Return Loss | Impedance | Return Loss | vertict | | Head | 51.4 Ω -4.1 j Ω | -27.3dB | 51.7 Ω -5.8j Ω | -27.7dB | Complied | | Body | 46.9 Ω -6.0 j Ω | -23.1dB | 46.3 Ω -6.4 j Ω | -23.2dB | Complied | Remark: According to KDB 865664 D01,instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements: - 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement. - 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement. Stop 1.035 GHz Cor ! 1 Start 635 MHz IFBW 70 kHz 1 Start 635 MHz ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-SZ (Auden) Accreditation No.: SCS 108 Certificate No: D1900V2-5d028_Nov13 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d028 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 27, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) |
Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-15 | | | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 27, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d028_Nov13 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d028_Nov13 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.4 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.39 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certificate No: D1900V2-5d028_Nov13 ## **Appendix** ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | $50.8 \Omega + 6.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.4 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | $46.6 \Omega + 6.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |--|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 17, 2002 | | Certificate No: D1900V2-5d028_Nov13 ## **DASY5 Validation Report for Head TSL** Date: 27.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d028 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics:
DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.112 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.33 W/kg Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 27.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d028 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.784 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.39 W/kg Maximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg = 11.00 dBW/kg # Impedance Measurement Plot for Body TSL ## SGS-CSTC Standards Technical Services Co., Ltd. | Dipole Calibration for Impedance and Return-loss | | | | | | | |--|-------------------------------|-------------|-------------------------------|-------------------|------------|--| | Model NO.: | D1900V2 | Serial NO.: | 5d082 | Measurement Date: | 2014-11-26 | | | Liquid Type | Target Value: | | Measured Value: | | verdict | | | Liquid Type | Impedance | Return Loss | Impedance | Return Loss | verdict | | | Head | 50.8 Ω +6.8 j Ω | -23.4dB | 50.1 Ω +6.5j Ω | -24.2dB | Complied | | | Body | 46.6 Ω +6.8 j Ω | -22.1dB | 47.7 Ω +4.4 j Ω | -22.0dB | Complied | | Remark: According to KDB 865664 D01,instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements: - 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement. - 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement. ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-SZ (Auden) Certificate No: D2450V2-733_Nov13 Accreditation No.: SCS 108 # **ALIBRATION CERTIFICATE** D2450V2 - SN: 733 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 26, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-15 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | Calibrated by: Katja Pokovic **Technical Manager** Approved by: Issued: November 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-733_Nov13 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 1998 | | # SAR result with
Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.81 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.0 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certificate No: D2450V2-733_Nov13 ## **Appendix** ## **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.2 Ω + 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.6 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.0 Ω + 4.2 j Ω | | |--------------------------------------|--------------------------------|--| | Return Loss | - 27.5 dB | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.149 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------|--| | Manufactured on | May 07, 2003 | | Certificate No: D2450V2-733_Nov13 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 26.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 733 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.010 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 17.4 W/kg 0 dB = 17.4 W/kg = 12.41 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 26.11.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 733 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.010 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.81 W/kg Maximum value of SAR (measured) = 16.4 W/kg 0 dB = 16.4 W/kg = 12.15 dBW/kg ## Impedance Measurement Plot for Body TSL | Dipole Calibration for Impedance and Return-loss | | | | | | |--|-------------------------------|-------------------------------|-------------------------------|-------------------|------------| | Model NO.: | D2450V2 | Serial NO.: | 733 | Measurement Date: | 2014-11-25 | | Liquid Type | Target \ | Target Value: Measured Value: | | verdict | | | Liquid Type | Impedance | Return Loss | Impedance | Return Loss | verdict | | Head | 54.2 Ω +2.5 j Ω | -26.6dB | 53.2 Ω +2.7j Ω | -26.6dB | Complied | | Body | 51.0 Ω +4.2 j Ω | -27.5dB | 50.4 Ω +2.7 j Ω | -27.2dB | Complied | Remark: According to KDB 865664 D01,instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements: - 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement. - 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement. Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ## IMPORTANT NOTICE #### **USAGE OF THE DAE 3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### **Important Note:** To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-SZ (Auden) Accreditation No.: SCS 108 Certificate No: DAE3-569_Oct14 ## **CALIBRATION CERTIFICATE** Object DAE3 - SD 000 D03 AA - SN: 569 Calibration procedure(s) QA CAL-06.v28 Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 01, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|---------------------|-----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | SE LIMS 053 AA 1001 | 07-Jan-14 (in house check) | In house check: Jan-15 | | Auto DAE Calibration Unit | 3E 0113 033 AA 1001 | Ur-Jan-14
(III House Check) | | Name Function Signature Palibrated by: Dominique Steffen Technician Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: October 1, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-569_Oct14 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.924 ± 0.02% (k=2) | 403.325 ± 0.02% (k=2) | 403.500 ± 0.02% (k=2) | | Low Range | 3.92577 ± 1.50% (k=2) | 3.96310 ± 1.50% (k=2) | 3.93738 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 251.5 ° ± 1 ° | |---|---------------| | Connector Angle to be used in DASY system | 251.5°± | # Appendix (Additional assessments outside the scope of SCS108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200035.22 | -0.20 | -0.00 | | Channel X + Input | 20002.19 | -1.76 | -0.01 | | Channel X - Input | -20006.97 | -1.35 | 0.01 | | Channel Y + Input | 200035.19 | 0.15 | 0.00 | | Channel Y + Input | 20005.73 | 1.84 | 0.01 | | Channel Y - Input | -20002.94 | 2.72 | -0.01 | | Channel Z + Input | 200036.78 | 2.05 | 0.00 | | Channel Z + Input | 20000.85 | -2.98 | -0.01 | | Channel Z - Input | -20003.49 | 2.25 | -0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.07 | -0.52 | -0.03 | | Channel X + Input | 200.34 | -0.24 | -0.12 | | Channel X - Input | -199.37 | 0.15 | -0.07 | | Channel Y + Input | 2000.14 | -0.25 | -0.01 | | Channel Y + Input | 200.77 | 0.37 | 0.18 | | Channel Y - Input | -200.33 | -0.64 | 0.32 | | Channel Z + Input | 1999.30 | -1.02 | -0.05 | | Channel Z + Input | 199.21 | -1.07 | -0.53 | | Channel Z - Input | -201.98 | -2.27 | 1.13 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -0.04 | -1.94 | | | - 200 | 3.39 | 1.76 | | Channel Y | 200 | 4.71 | 4.96 | | | - 200 | -5.88 | -6.27 | | Channel Z | 200 | -13.08 | -13.58 | | | - 200 | 11.57 | 11.33 | | | | | | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.84 | -2.31 | | Channel Y | 200 | 9.77 | | 2.55 | | Channel Z | 200 | 7.06 | 7.64 | - | ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | | |-----------|------------------|-----------------|--| | Channel X | 16202 | 16482 | | | Channel Y | 16554 | 16428 | | | Channel Z | 15802 | 16416 | | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -3.34 | -4.82 | -1.88 | 0.64 | | Channel Y | -1.07 | -3.59 | 0.83 | 0.78 | | Channel Z | -0.53 | -1.91 | 1.06 | 0.57 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | |-----------|----------------|------------------|--| | Channel X | 200 | 200 | | | Channel Y | 200 | 200 | | | Channel Z | 200 | 200 | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client SGS-SZ (Auden) Certificate No: EX3-3962 Nov14 Accreditation No.: SCS 108 C ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3962 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: November 24, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 24, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization
parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3962_Nov14 Page 2 of 11 EX3DV4 - SN:3962 November 24, 2014 # Probe EX3DV4 SN:3962 Manufactured: September 30, 2013 Calibrated: November 24, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4- SN:3962 November 24, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.38 | 0.47 | 0.43 | ± 10.1 % | | DCP (mV) ⁸ | 99.0 | 98.6 | 91.3 | | #### **Modulation Calibration Parameters** | UID
0 | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^b
(k=2) | |----------|---------------------------|------|---------|------------|-----|---------|----------|---------------------------| | | CW | X 0. | 0.0 | 0.0 0.0 | 0.0 | 1.0 | 0.00 | 157.1 | | | | Y | 0.0 | 0.0 | 1.0 | | 153.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 140.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3962 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 43.5 | 0.87 | 10.94 | 10.94 | 10.94 | 0.20 | 1.40 | ± 13.3 % | | 850 | 41.5 | 0.92 | 9.89 | 9.89 | 9.89 | 0.80 | 0.50 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.28 | 8.28 | 8.28 | 0.58 | 0.71 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.14 | 8.14 | 8.14 | 0.63 | 0.67 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.11 | 8.11 | 8.11 | 0.80 | 0.58 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.32 | 7.32 | 7.32 | 0.63 | 0.68 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.22 | 5.22 | 5.22 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.03 | 5.03 | 5.03 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.75 | 4.75 | 4.75 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.66 | 4.66 | 4.66 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.68 | 4.68 | 4.68 | 0.45 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3962 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 450 | 56.7 | 0.94 | 11.11 | 11.11 | 11.11 | 0.12 | 1.20 | ± 13.3 % | | 850 | 55.2 | 0.99 | 10.07 | 10.07 | 10.07 | 0.80 | 0.50 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 8.34 | 8.34 | 8.34 | 0.61 | 0.71 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.07 | 8.07 | 8.07 | 0.44 | 0.77 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.47 | 7.47 | 7.47 | 0.80 | 0.56 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.27 | 4.27 | 4.27 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.08 | 4.08 | 4.08 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.85 | 3.85 | 3.85 | 0.55 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.69 | 3.69 | 3.69 | 0.55 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.89 | 3.89 | 3.89 | 0.55 | 1.90 | ± 13.1 % | Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3962 November 24, 2014 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4-SN:3962 November 24, 2014 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3962 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity
Assessment: ± 0.6% (k=2) EX3DV4-SN:3962 November 24, 2014 # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz -0.4 -0.2 0.4 EX3DV4- SN:3962 November 24, 2014 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -30.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Report No.: SZEM141100637205 # **Appendix D** # **Photographs** - 1. SAR measurement System - 2. Photographs of Tissue Simulate Liquid - 3. Photographs of EUT test position - 4. EUT Constructional Details Report No.: SZEM141100637205 ## 1. SAR measurement System: ## 2. Photographs of Tissue Simulate Liquid Report No.: SZEM141100637205 Report No.: SZEM141100637205 Photo 8: Left tilted 15 degree # 3. Photographs of EUT test position Photo 7: Left touch cheek Photo 9: Right touch cheek Photo 10: Right tilted 15 degree Photo 11: Back side 0mm Photo 12: Left side 0mm Report No.: SZEM141100637205 | Photo 13: Top side 0mm | NA | |------------------------|----| | | NA | Report No.: SZEM141100637205 ## 4. EUT Constructional Details