

Radio Test Report Application for Grant of Equipment Authorization

FCC Part 27
[3450MHz - 3550MHz and 3700MHz - 3980MHz]

FCC ID: VBNAQQQA-01

Nokia Solutions and Networks Airscale Base Transceiver Station Radio Unit Model: AQQQA

Report: NOKI0052.1 Rev. 0, Issue Date: February 22, 2023

CERTIFICATE OF TEST

Last Date of Test: January 26, 2023
Nokia Solutions and Networks
EUT: Airscale Base Transceiver Station Radio Unit Model AQQQA

Radio Equipment Testing

Standards

Specification	Method
Code of Federal Regulations (CFR) Title 47 Part 2 CFR Title 47 Part 27 Subpart C	ANSI C63.26-2015 with FCC KDB 971168 D01 v03r01 FCC KDB 662911D01 v02r01 FCC KDB 662911D02 v01

Results

Test Description	Applied	Results	Comments
Occupied Bandwidth	Yes	Pass	
Frequency Stability	Yes	Pass	
Average Power	Yes	Pass	
Peak to Average Power (PAPR)CCDF	Yes	Pass	
Power Spectral Density and EIRP Calculation	Yes	Pass	
Band Edge Compliance	Yes	Pass	
Spurious Conducted Emissions	Yes	Pass	
Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. NOKI0052.1 2/373

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. NOKI0052.1 3/373

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

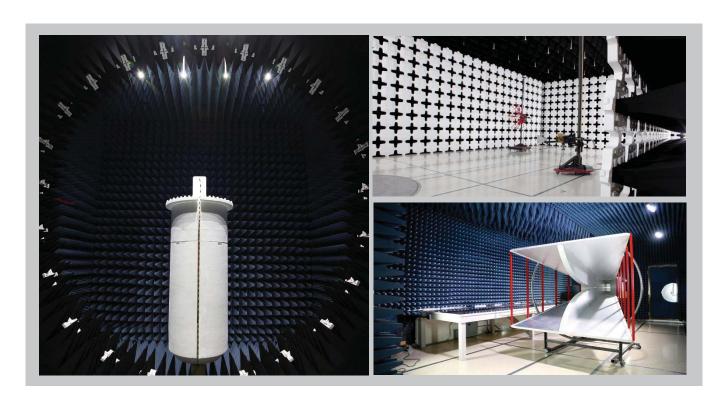
MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>

Report No. NOKI0052.1 4/373


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		A2LA			
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06	
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
		BSMI			
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

Report No. NOKI0052.1 5/373

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

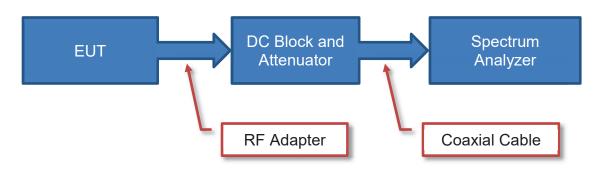
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

Report No. NOKI0052.1 6/373

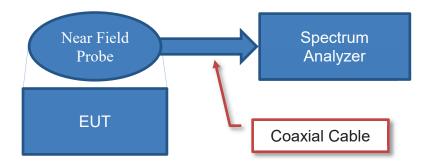
TEST SETUP BLOCK DIAGRAMS



Measurement Bandwidths

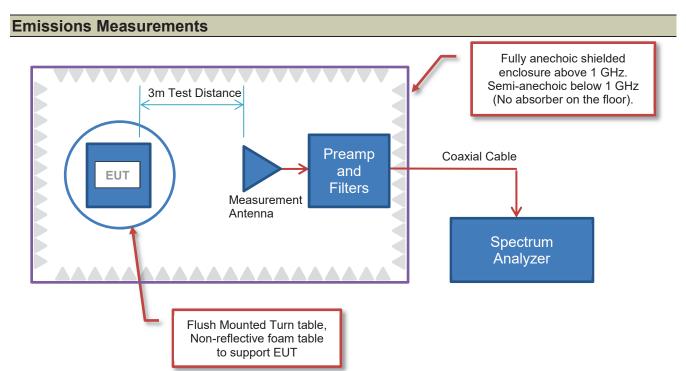
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

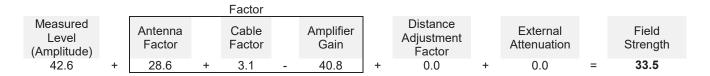
Sample Calculation (logarithmic units)

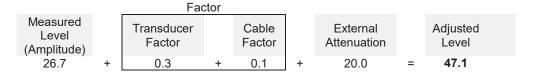
Near Field Test Fixture Measurements


Sample Calculation (logarithmic units)

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Report No. NOKI0052.1 7/373


TEST SETUP BLOCK DIAGRAMS



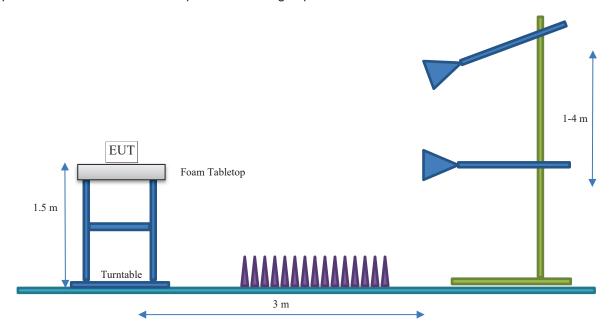
Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) - Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0


Report No. NOKI0052.1 8/373

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

Report No. NOKI0052.1 9/373

Client and Equipment under Test (EUT) Information

Company Name:	Nokia Solutions and Networks
Address:	3201 Olympus Blvd
City, State, Zip:	Dallas, TX 75019
Test Requested By:	Steve Mitchell
EUT:	Airscale Base Transceiver Station Radio Unit Model AQQQA
First Date of Test:	December 13, 2022
Last Date of Test:	January 26, 2023
Receipt Date of Samples:	December 13, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The equipment under test (EUT) is a Nokia Solutions and Networks AirScale Dual Band MAA (Massive Adaptive Antenna) 64T64R Radio Unit (RU) variant AQQQA. The AQQQA Radio Unit is designed to support 5G NR (New Radio) TDD (Time Division Duplex) operations. The scope of testing in this effort is FCC radio certification of the AQQQA for 5G NR TDD Single Carrier operations in the 3.45G and 3.7G Bands. Single carriers in each band may be operated simultaneously. Single band multicarrier operations will be covered under a separate effort.

The AQQQA RU supports 3GPP frequency band n77 operations including the 3.45G Band (BTS Tx/Rx: 3450 to 3550 MHz) and 3.7G Band (BTS Tx/Rx: 3700 to 3980 MHz). Each band supports 64 transmit/receive paths. The AQQQA supports up to 64 port MIMO operation in each band. The 3.45G Band maximum RF output power is 200 watts (3.125W/TRX x 64 TRXs). The 3.7G Band maximum RF output power is 320 watts (5W/TRX x 64 TRXs). The total AQQQA RU RF output power (including both bands) is limited to 480 watts (64 x 7.5 watts). The AQQQA RU 3.45G Band supports 5G NR TDD bandwidths of 20, 30 and 40MHz. The AQQQA RU 3.7G Band supports 5G NR TDD bandwidths of 20, 40, 60, 80 and 100MHz. The single carrier channel bandwidth maximum RF output power per TRX are as follows.

Single Carrier 3.45G Band Maximum RF Output Power per TRX					
NR20	NR20 NR30				
2.500 Watts or	2.500 Watts or	3.125 Watts or			
34.0 dBm	34.0 dBm	35.0 dBm			

Single Carrier 3.7G Band Maximum RF Output Power per TRX						
NR20 NR40 NR60 NR80 NR100						
2.500 Watts or	5.000 Watts or	5.000 Watts or	5.000 Watts or	5.000 Watts or		
34.0 dBm	37.0 dBm	37.0 dBm	37.0 dBm	37.0 dBm		

Report No. NOKI0052.1 10/373

The AQQQA RU supports four downlink modulation types (QPSK, 16QAM, 64QAM, and 256QAM). The AQQQA RU instantaneous bandwidth is 100MHz per band. The AQQQA RU occupied bandwidth is 100MHz per band. Simultaneous single carrier operation in each band is supported. Single band multicarrier operations will be covered under a separate effort. The AQQQA antenna assembly has an array of 4 rows and 8 columns of (±45°) cross-polarized (orthogonal) radiators. This antenna assembly has a maximum beamforming gain of 25.5dBi. The sixty-four AQQQA transmitter outputs are connected to the antenna array (thirty-two are connected to +45° radiators/antennas).

The radio unit has external interfaces including DC power (DC1, DC2), ground (GND), optical (OPT1-4) and remote electrical tilt (AISG). The RU with applicable installation kit is pole mounted. Tests performed include RF channel power, CCDF -peak to average power ratio, power spectral density (power/1MHz), emission bandwidth (99% and 26 dB down), band edge spurious emissions (± 1MHz), spurious emissions (conducted and radiated), and frequency stability (over required voltage & temperature ranges). The 5G NR modulation types for this testing are setup according to 3GPP TS 38.141-1 Test Models and are NR-FR1-TM 1.1 (QPSK modulation type), NR-FR1-TM 3.2 (16QAM modulation type), NR-FR1-TM 3.1 (64QAM modulation type), and NR-FR1-TM 3.1a (256QAM modulation type). AQQQA radio unit was configured with a connector panel to allow RF conducted measurements for this effort. The connector panel simulates antenna mechanical interface to the radio and provides RF interface to radio transceiver ports/antenna array ports. These transceiver array boundary ports are referenced within the document as 'TAB' or 'TAB Port'.

The AQQQA RU supports 3.45G Band only operation, 3.7G Band only operation and dual band (3.45G & 3.7G simultaneous) operation. The following AQQQA RU configurations were verified for compliance.

- (a) 3.45G Band Carriers only at maximum power (200W/Band total)
- (b) 3.7G Band Carriers only at maximum power (320W/Band total)
- (c) Dual band with 3.45G carriers at maximum (200W) and 3.7G carriers at 280W.
- (d) Dual band with 3.7G carriers at maximum (320W) and 3.45G carriers at 160W.

Report No. NOKI0052.1 11/373

The 3GPP frequency Band n77 – FCC 3.45G Band (3450-3550 MHz) band edge NR-ARFCNs for 5G NR channel bandwidths (20, 30, and 40 MHz) are provided below. The NR-ARFCN is defined as New Radio - Absolute Radio Frequency Channel Number.

	5G NR		5G NR Channel Bandwidth			
	NR- ARFCN	Frequency (MHz)	20 MHz	30 MHz	40 MHz	
	Band Edge	3450.00		Lower Band Ed	ge	
1 64	630668	3460.02	Bot Ch			
ngh						
1 through 64)	631000	3465.00		Bot Ch		
11 t						
ınas	631334	3470.01			Bot Ch	
ıter						
(Aı	633334	3500.01		Middle Channe	el .	
nd						
B	635332	3529.98			Top Ch	
450						
4 3.	635666	3534.99		Top Ch		
707						
AQQQA 3.45G Band (Antennas	636000	3540.00	Top Ch			
₹						
	Band Edge	3550.00		Upper Band Edg	ge	

AQQQA 3.45G Band Band Edge 5G NR Frequency Channels

Report No. NOKI0052.1 12/373

The 3GPP frequency Band n77 – FCC 3.7G Band (3700-3980 MHz) band edge NR-ARFCNs for 5G NR channel bandwidths (20, 40, 60, 80 and 100 MHz) are provided below.

	5G NR			5G NR C	Channel Ba	ndwidth					
	NR- ARFCN	Frequency (MHz)	20 MHz	40 MHz	60 MHz	80 MHz	100 MHz				
	Band Edge	3700.00		Lower Band Edge							
	647334	3710.01	Bot Ch								
	648000	3720.00		Bot Ch							
64)	648668	3730.02			Bot Ch						
ngh											
hro	649334	3740.01				Bot Ch					
1 tl											
nas	650000	3750.00					Bot Ch				
AQQQA 3.7G Band (Antennas 1 through 64)											
(An	656000	3840.00			Middle Channel						
pu											
Ba	662000	3930.00					Top Ch				
.76											
A 3	662666	3939.99				Top Ch					
00											
AQ	663332	3949.98			Top Ch						
	664000	3960.00		Top Ch							
	•••••										
	664666	3969.99	Top Ch								
	•••••										
	Band Edge	3980.00		1	Upper Band Edge	e					

AQQQA 3.7G Band Band Edge 5G NR Frequency Channels

13/373

AQQQA External Interfaces

Name	Qty	Connector Type	Purpose (and Description)
DC1-2	2	APPG	Power supply, -48V DC + GND
GND	1	Screw lugs (M8, 2xM5)	Grounding of the Unit
OPT1-4	4	SFP28	10/25GbE Ethernet/Optical eCPRI Interface
AISG	1	8-pin circular connector	AISG to external devices

Testing Objective:

FCC radio certification of the AirScale Dual Band MAA 64T64R Radio Unit variant AQQQA for 5G NR TDD Single Carrier operations in the 3.45G and 3.7G Bands.

Report No. NOKI0052.1 14/373

Configuration NOKI0052-1

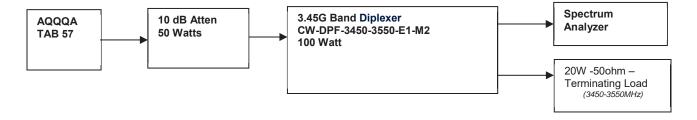
Software/Firmware Running during test				
Description	Version			
Radio Module Software	RF.CTA6.trunk.2022.1030.001			
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001			

Description	Manufacturer	Model/Part Number	Serial Number
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010
3.45G Band Diplexer CW-DPF-3450-3550-EB1-M2 100 Watt	.CREOWAVE	CW-DPF-3450-3550-EB1-M2	SN:2273001
Attenuator 50W/10dB	AeroflexWeinschel	66-20-33	BZ1165
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867
Lenovo PC T490	Lenovo	T490	PF26RVZ0
Keysight- DC System power supply	Keysight	N8757A	US21D4054S
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4
50W/10dB Attenuator	RF-LAMBDA	RFS50G26S10FF	20032017
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct
10W -50ohm -Terminating Load	IDK	IDK-BS	117
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280
CAT5e data cable (EM-PC)	ETL	E316395	6066M
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001
GPS sync cable	Nokia	995426	CA2029
FYGB GPS receiver	Nokia	472748A	71231431
Cat-5e cable	CSA	LL73189	E151955
Antenna Connector Panel	Nokia	838114	X2

Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	Ν	20 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Y	4 meters	N	EUT [RRH] TAB ports 056,5864	10W and 20W - 50ohm -Terminating Loads

Report No. NOKI0052.1 15/373

Cables	Cables				
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57	Attenuator 50W/10dB [LAMBDA]
Attenuator 50W/10dB [LAMBDA]	N	NA	N	RF cable HS- SUCOFLEX_104	3.45G Band Blocking Filter
3.45G Band Diplexer	N	NA	N	Attenuator 50W/10dB [LAMBDA]	RF cable HS- SUCOFLEX_104
HS-SUCOFLEX 104	V	1	N	3.45G Band	Analyzer
	Y	1 meter	N	Blocking Filter	20W -50ohm - Terminating Load


RF Test Setup Diagram:

Band Edge Test Setup

- Single Band 3.45GHz: 3100MHz to 3430MHz & 3570MHz to 4030MHz; Limit line at -58.1dBm/MHz

Conducted Spurious Emissions Test Setup

- Single Band 3.45GHz: 9kHz to 150kHz, 150kHz to 30MHz, 30MHz to 3430MHz and 3570MHz to 6000MHz. Limit line at -58.1 dBm.

Report No. NOKI0052.1 16/373

Configuration NOKI0052-2

Software/Firmware Running during test				
Description	Version			
Radio Module Software	RF.CTA6.trunk.2022.1030.001			
BTS Software Version (23R1)	SBTS23R1 ENB 9999 221102 000001			

Equipment being tested (incl Description	Manufacturer	Model/Part Number	Serial Number
Description	Nokia Solutions and	Wiodel/Fait Nullibel	Serial Nulliber
AMIA (BTS System Module)	Networks	473098.204	UK222201001
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010
3450 to 3980MHz Diplexer CW-DPF-3450-3980-E1-M2 100 Watt	.CREOWAVE	CW-DPF-3450-3980-E1-M2	SN:2214003
Attenuator 50W/10dB	AeroflexWeinschel	66-20-33	BZ1165
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867
Lenovo PC T490	Lenovo	T490	PF26RVZ0
Keysight- DC System power supply	Keysight	N8757A	US21D4054S
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4
50W/10dB Attenuator	RF-LAMBDA	RFS50G26S10FF	20032017
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct
10W -50ohm -Terminating Load	IDK	IDK-BS	117
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280
CAT5e data cable (EM-PC)	ETL	E316395	6066M
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001
GPS sync cable	Nokia	995426	CA2029
FYGB GPS receiver	Nokia	472748A	71231431
Cat-5e cable	CSA	LL73189	E151955
Antenna Connector Panel	Nokia	838114	X2

Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	N	20 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Y	4 meters	N	EUT [RRH] TAB ports 021,23 56,5864	10W and 20W - 50ohm -Terminating Loads

Report No. NOKI0052.1 17/373

Cables	Cables				
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57 & #22	Attenuator 50W/10dB [LAMBDA]
Attenuator 50W/10dB [LAMBDA]	N	NA	N	RF cable HS- SUCOFLEX_104	3450 to 3980MHz Diplexer
3450 to 3980MHz Diplexer	N	NA	N	Attenuator 50W/10dB [LAMBDA]	RF cable HS- SUCOFLEX_104
HS-SUCOFLEX_104	Y	1 meter	N	3450 to 3980MHz Diplexer	Analyzer 20W -50ohm - Terminating Load

RF Test Setup Diagram:

Conducted Spurious Emissions Test Setups

- Single Band 3.7GHz: 9kHz to 150kHz, 150kHz to 30MHz, 30MHz to 3400MHz. Limit line at -31.1 dBm.
- Dual Band 3.7GHz (320Watt) and 3.45GHz (160Watt): 9kHz to 150kHz, 150kHz to 30MHz, 30MHz to 3400MHz and 4030MHz to 6000MHz; Limit Line at -58.1 dBm
- Dual Band 3.45GHz (200Watt) and 3.7GHz (280Watt): 9kHz to 150kHz, 150kHz to 30MHz, 30MHz to 3400MHz and 4030MHz to 6000MHz; Limit Line at -58.1 dBm

Report No. NOKI0052.1 18/373

Configuration NOKI0052-3

Software/Firmware Running during test				
Description	Version			
Radio Module Software	RF.CTA6.trunk.2022.1030.001			
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001			

Equipment being tested (incli			
Description	Manufacturer	Model/Part Number	Serial Number
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010
3450-3550MHz & 3700-3980MHz Dual Diplexer CW-DDPF-3450-3550 & 3700-3980- E1-M2 100 Watt	.CREOWAVE	CW-DDPF-3450-3550 & 3700- 3980-E1-M2	2205002
Attenuator 50W/10dB	AeroflexWeinschel	66-20-33	BZ1165
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867
Lenovo PC T490	Lenovo	T490	PF26RVZ0
Keysight- DC System power supply	Keysight	N8757A	US21D4054S
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4
50W/10dB Attenuator	RF-LAMBDA	RFS50G26S10FF	20032017
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct
10W -50ohm -Terminating Load	IDK	IDK-BS	117
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280
CAT5e data cable (EM-PC)	ETL	E316395	6066M
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001
GPS sync cable	Nokia	995426	CA2029
FYGB GPS receiver	Nokia	472748A	71231431
Cat-5e cable	CSA	LL73189	E151955
Antenna Connector Panel	Nokia	838114	X2

Report No. NOKI0052.1 19/373


Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	N	20 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Y	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Υ	4 meters	N	EUT [RRH] TAB ports 021,23 56,5864	10W and 20W - 50ohm -Terminating Loads

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57 & #22	Attenuator 50W/10dB [LAMBDA]
Attenuator 50W/10dB [LAMBDA]	N	NA	N	RF cable HS- SUCOFLEX_104	Dual Diplexer CW-DDPF-3450- 3550-& 3700-3980- E1-M2 100 Watt
Dual Diplexer CW-DDPF-3450-3550-& 3700-3980-E1- M2 100 Watt	N	NA	N	Attenuator 50W/10dB [LAMBDA]	RF cable HS- SUCOFLEX_104
HS-SUCOFLEX_104	Υ	1 meter	N	Dual Diplexer CW-DDPF-3450- 3550-& 3700-3980- E1-M2 100 Watt	Analyzer 20W -50ohm - Terminating Load

RF Test Setup Diagram:

Conducted Spurious Emissions Test Setup

- Dual Band 3.7GHz (320Watt) and 3.45GHz (160Watt): 3100MHz to 3430MHz, 3570MHz to 3680MHz and 4000MHz to 4200MHz; Limit line at -58.1 dBm/MHz
- Dual Band Carrier 3.45GHz (200Watt) and 3.7GHz (280Watt): 3100MHz to 3430MHz, 3570MHz to 3680MHz and 4000MHz to 4200MHz; Limit line at -58.1 dBm/MHz

Report No. NOKI0052.1 20/373

Configuration NOKI0052-4

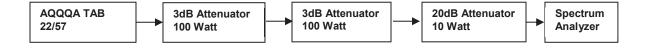
Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001				

Equipment being tested (incl Description	Manufacturer	Model/Part Number	Serial Number	
AMIA (BTS System Module)	Nokia Solutions and	473098.204	UK222201001	
ASIB (BTS System Module)	Networks Nokia Solutions and	473764A.102	K9214331950	
ASIB (B13 System Module)	Networks Nokia Solutions and	473704A.102	N92 1433 1930	
ABIO (BTS System Module)	Networks	475266A.103	DH223246457	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455	
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010	
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K	
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867	
Lenovo PC T490	Lenovo	T490	PF26RVZ0	
Keysight- DC System power supply	Keysight	N8757A	US21D4054S	
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146	
Attenuator 10W/20dB	Fairview Microwave	SA3N10W-20	21071308	
Attenuator 100W/3dB	Aeroflex/ Weinschel	47-3-33	CC7387	
Attenuator 100W/3dB	Aeroflex/ Weinschel	47-3-33	CG5493	
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4	
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4	
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct	
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct	
10W -50ohm -Terminating Load	IDK	IDK-BS	117	
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct	
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280	
CAT5e data cable (EM-PC)	ETL	E316395	6066M	
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001	
GPS sync cable	Nokia	995426	CA2029	
FYGB GPS receiver	Nokia	472748A	71231431	
Antenna Connector Panel	Nokia	838114	X2	

Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Υ	4 meters	N	EUT [RRH] TAB ports 021,23 56,5864	10W and 20W - 50ohm - Terminating Loads

Report No. NOKI0052.1 21/373

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57& #22	Attenuator 100W/3dB/ CC7387
Attenuator 100W/3dB/ CC7387	N	NA	N	RF cable N- Type/SMA HS- SUCOFLEX_104	Attenuator 100W/3dB/ CG5493
Attenuator 100W/3dB/ CG5493	N	NA	N	Attenuator 100W/3dB/ CC7387	Attenuator 10W/20dB/ 21071308
Attenuator 10W/20dB/ 21071308	N	NA	N	Attenuator 100W/3dB/ CG5493	RF cable SMA/SMA HS-SUCOFLEX_104
HS-SUCOFLEX_104	Υ	1 meter	N	Attenuator 10W/20dB/ 21071308	Analyzer


RF Test Setup Diagram:

Band Edge Test Setup

- Single Band 3.7GHz (80&100MHz bandwidths): 3550MHz to 3700MHz and 3980MHz to 4130MHz; Limit Line at -31.1 dBm

Conducted Spurious Emission Setup

- Single Band 3.7GHz: 3400MHz to 6000MHz. Limit line at -31.1dBm/MHz
- Single Band 3.45GHz: 3400MHz to 3600MHz. Limit line at -31.1dBm/MHz
- Dual Band 3.45GHz (200W) and 3.7GHz(280W): 3400MHz to 4030MHz. Limit line at -31.1dBm/MHz
- Dual Band 3.7GHz(320W) and 3.45GHz (160W): 3400MHz to 4030MHz. Limit line at -31.1dBm/MHz

Report No. NOKI0052.1 22/373

Configuration NOKI0052-5

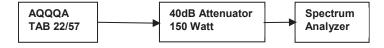
Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1 ENB 9999 221102 000001				

	Equipment being tested (include Peripherals)							
Description	Manufacturer	Model/Part Number	Serial Number					
AMIA (BTS System Module)	IA (BTS System Module) Nokia Solutions and Networks		UK222201001					
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950					
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457					
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455					
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010					
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K					
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867					
Lenovo PC T490	Lenovo	T490	PF26RVZ0					
Keysight- DC System power supply	Keysight	N8757A	US21D4054S					
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146					
Attenuator 150W/40dB	AeroflexWeinschel	66-20-33	BZ1165					
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4					
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4					
20W -50ohm -Terminating Load Jiangsu Wutong IoT Tech		F Coaxial Load	BC-TE20-05/ 40ct					
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct					
10W -50ohm -Terminating Load	IDK	IDK-BS	117					
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct					
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280					
CAT5e data cable (EM-PC)	ETL	E316395	6066M					
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001					
GPS sync cable	Nokia	995426	CA2029					
FYGB GPS receiver	Nokia	472748A	71231431					
Antenna Connector Panel	Nokia	838114	X2					

Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Υ	4 meters	N	EUT [RRH] TAB ports 021,23 56,5864	10W and 20W - 50ohm - Terminating Loads

Report No. NOKI0052.1 23/373

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57& #22	Attenuator 150W/40dB
Attenuator 150W/40dB [TC909]	N	NA	N	RF cable N- Type/SMA HS- SUCOFLEX_104	RF cable SMA/SMA HS- SUCOFLEX_104
HS-SUCOFLEX_104	Υ	1 meter	N	Attenuator 250W/40dB	Analyzer


RF Test Setup Diagram:

Band Edge Test Setup

- Single Band 3.7GHz (20, 40, 60MHz bandwidths): 3550MHz to 3700MHz and 3980MHz to 4130MHz.

Limit Line at -31.1 dBm

- Single Band 3.45GHz: 3440MHz to 3450MHz & 3550 to 3560MHz; Limit Line at -31.1 dBm/MHz
- Single Band 3.45GHz: 3430MHz to 3440MHz & 3560 to 3570MHz; Limit Line at -43.1 dBm/MHz

Report No. NOKI0052.1 24/373

Configuration NOKI0052-6

Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001				

Equipment being tested (inclu	de Peripherals)		
Description	Manufacturer	Model/Part Number	Serial Number
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867
Lenovo PC T490	Lenovo	T490	PF26RVZ0
Keysight- DC System power supply	Keysight	N8757A	US21D4054S
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146
50W/10dB Attenuator	RF-LAMBDA	RFS50G26S10FF	20032017
HPF 5.5-13GHz	Microwave Circuits, INC.	DC0240	SN2454-01
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct
10W -50ohm -Terminating Load	IDK	IDK-BS	117
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280
CAT5e data cable (EM-PC)	ETL	E316395	6066M
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001
GPS sync cable	Nokia	995426	CA2029
FYGB GPS receiver	Nokia	472748A	71231431
Antenna Connector Panel	Nokia	838114	X2

Cables (Peripheral)	Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA	
Cat-5e cable (CSA)	Y	100 meters	N	ASIB	FYGB GPS receiver	
Cat-5e cable	Y	25 meters	N	ASIB	WebEM- PC	
CBL RF-Cable	Y	4 meters	N	EUT [RRH] TAB ports 021,23 56,5864	10W and 20W – 50 ohm – terminating loads	

Report No. NOKI0052.1 25/373

Cables	Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [RRH] RF TAB port #22/57	Attenuator 50W/10dB [BZ1165]	
Attenuator 50W/10dB	N	NA	N	HS- SUCOFLEX_104	High Pass Filter 5.5-13GHz	
High Pass Filter 5.5- 13GHz/100W	N	NA	N	Attenuator 50W/10dB [BZ1165]	RF cable HS- SUCOFLEX_104	
HS-SUCOFLEX_104	Υ	1 meter	N	High Pass Filter 5.5-13GHz/100W	Analyzer	

RF Test Setup Diagram:

Conducted Spurious Emissions Test Setup

- Single Band 3.45GHz: 6GHz to 13GHz; Limit Line at -58.1 dBm/MHz
- Single Band 3.7GHz: 6GHz to 13GHz; Limit Line at -31.1 dBm/MHz
- Dual Band 3.45GHz (200W) and 3.7GHz(280W): 6GHz to 13GHz; Limit Line at -58.1 dBm/MHz
- Dual Band 3.7GHz (320W) and 3.45GHz (160W): 6GHz to 13GHz; Limit Line at -58.1 dBm/MHz

Report No. NOKI0052.1 26/373

Configuration NOKI0052-7

Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001				

Description	Manufacturer	Model/Part Number	Serial Number	
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001	
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455	
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010	
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K	
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867	
Lenovo PC T490	Lenovo	T490	PF26RVZ0	
Keysight- DC System power supply	Keysight	N8757A	US21D4054S	
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146	
50W/10dB Attenuator	RF-LAMBDA	RFS50G26S10FF	20032017	
8-40GHz HPF /15Watts	RF-LAMBDA	RHPF23G08G40	17102700016	
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4	
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4	
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct	
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct	
10W -50ohm -Terminating Load	IDK	IDK-BS	117	
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct	
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280	
CAT5e data cable (EM-PC)	ETL	E316395	6066M	
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001	
GPS sync cable	Nokia	995426	CA2029	
FYGB GPS receiver	Nokia	472748A	71231431	
Antenna Connector Panel	Nokia	838114	X2	

Cables (Peripheral)						
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
Fiber Optic cable	N	25 meters	N	ASIB	Fiber Optic cable	
Cat-5e cable (CSA)	Y	100 meters	N	ASIB	Cat-5e cable (CSA)	
Cat-5e cable	Y	25 meters	N	ASIB	Cat-5e cable	
CBL RF-Cable	Y	4 meters	N	EUT [RRH] TAB ports 021,23 56.5864	CBL RF-Cable	

Report No. NOKI0052.1 27/373



Cables	Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
HS-SUCOFLEX_104 SMA/SMA	Υ	1 meter	N	EUT [AQQQA] TAB port #22/57	Attenuator 50W/10dB	
Attenuator 50W/30dB	N	NA	N	HS- SUCOFLEX_104 SMA/SMA	High Pass Filter 8-40GHz	
High Pass Filter 8-40GHz/15W	N	NA	N	Attenuator 50W/10dB	RF cable HS- SUCOFLEX_104	
HS-SUCOFLEX_104 N- Type/SMA	Υ	2 meter	N	High Pass Filter 8-40GHz/15W	Analyzer	

RF Test Setup Diagram:

Conducted Spurious Emissions Test Setup

- -Single Band 3.45GHz: 13GHz to 40GHz; Limit Line at -58.1 dBm/MHz
- -Single Band 3.7GHz: 13GHz to 40GHz; Limit Line at -31.1 dBm/MHz
- -Dual Band 3.7GHz (320Watt) and 3.45GHz (160Watt): 13GHz to 40GHz; Limit Line at -58.1 dBm/MHz
- -Dual Band 3.45GHz (200Watt) and 3.7GHz (280Watt):13GHz to 40GHz; Limit Line at -58.1 dBm/MHz

Report No. NOKI0052.1 28/373

Configuration NOKI0052-8

Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001				

Description	Manufacturer	Model/Part Number	Serial Number	
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001	
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455	
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010	
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K	
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867	
Lenovo PC T490	Lenovo	T490	PF26RVZ0	
Keysight- DC System power supply	Keysight	N8757A	US21D4054S	
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146	
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct	
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct	
10W -50ohm -Terminating Load	IDK	IDK-BS	118	
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct	
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280	
CAT5e data cable (EM-PC)	ETL	E316395	6066M	
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001	
GPS sync cable	Nokia	995426	CA2029	
FYGB GPS receiver	Nokia	472748A	71231431	
Antenna Connector Panel	Nokia	838114	X2	

Cables (Peripheral)					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA
Cat-5e cable (CSA)	Y	100 meters	N	ASIB	FYGB GPS receiver
Cat-5e cable	Y	25 meters	N	ASIB	WebEM- PC
CBL RF-Cable	Y	4 meters	N	EUT [RRH] TAB ports 021,2356,5864	10W and 20W -50ohm - Terminating Loads
RET	Υ	2.4 meters	N	EUT	Unterminated
EAC	Υ	5.4 meters	N	EUT	Unterminated
Ground	Y	3 meters	N	EUT	Turntable

Report No. NOKI0052.1 29/373

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
CBL 4 Meter- RF cable	Y	4 meters	N	EUT [AQQQA] TAB port #164	10W and 20W - 50ohm - Terminating Loads
RET	Y	2.4m	N	Remote Radio Head Module	Unterminated
EAC	Y	5.4m	N	Remote Radio Head Module	Unterminated
Grounding	N	3m	N	Remote Radio Head Module	Turntable Ground

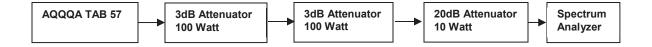
RF Test Setup Diagram: Radiated Test Setup

Report No. NOKI0052.1 30/373

Configuration NOKI0052-9

Software/Firmware Running during test				
Description	Version			
Radio Module Software	RF.CTA6.trunk.2022.1030.001			
BTS Software Version (23R1)	SBTS23R1_ENB_9999_221102_000001			

Description	Manufacturer	Model/Part Number	Serial Number	
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001	
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457	
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455	
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010	
SFP+ 9.8G,300M,850NM	Nokia	462265	VF20470022K	
SFP+ 9.8G,300M,850NM	Nokia	462265	FR214719867	
Lenovo PC T490	Lenovo	T490	PF26RVZ0	
Keysight- DC System power supply	Keysight	N8757A	US21D4054S	
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146	
Attenuator 10W/20dB	Fairview Microwave	SA3N10W-20	21071308	
Attenuator 100W/3dB	Aeroflex/ Weinschel	47-3-33	CC7387	
Attenuator 100W/3dB	Aeroflex/ Weinschel	47-3-33	CG5493	
1 Meter RF cable SMA/SMA	Huber+suhner	SUCOFLEX 104	SN 564428 /4	
2 Meter RF cable N-Type/SMA	Huber+suhner	SUCOFLEX 104	SN 184424 /4	
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct	
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct	
10W -50ohm -Terminating Load	IDK	IDK-BS	117	
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct	
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280	
CAT5e data cable (EM-PC)	ETL	E316395	6066M	
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001	
GPS sync cable	Nokia	995426	CA2029	
FYGB GPS receiver	Nokia	472748A	71231431	
Antenna Connector Panel	Nokia	838114	X2	


Cables (Peripheral)						
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA	
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver	
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC	
CBL RF-Cable	Υ	4 meters	N	EUT [RRH] TAB ports 056,5864	10W and 20W - 50ohm - Terminating Loads	

Report No. NOKI0052.1 31/373

Cables							
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2		
HS-SUCOFLEX_104	Υ	2 meters	N	EUT [AQQQA] TAB port #57	Attenuator 100W/3dB/ CC7387		
Attenuator 100W/3dB/ CC7387	N	NA	N	RF cable N- Type/SMA HS- SUCOFLEX_104	Attenuator 100W/3dB/ CG5493		
Attenuator 100W/3dB/ CG5493	N	NA	N	Attenuator 100W/3dB/ CC7387	Attenuator 10W/20dB/ 21071308		
Attenuator 10W/20dB/ 21071308	N	NA	N	Attenuator 100W/3dB/ CG5493	RF cable SMA/SMA HS-SUCOFLEX_104		
HS-SUCOFLEX_104	Y	1 meter	N	Attenuator 10W/20dB/ 21071308	Analyzer		

RF Test Setup Diagram: Frequency Stability Test Setup

Report No. NOKI0052.1 32/373

Configuration NOKI0052-12

Software/Firmware Running during test					
Description	Version				
Radio Module Software	RF.CTA6.trunk.2022.1030.001				
BTS Software Version (23R1)	SBTS23R1 ENB 9999 221102 000001				

Equipment being tested (include Peripherals)						
Description	Manufacturer	Model/Part Number	Serial Number			
AMIA (BTS System Module)	Nokia Solutions and Networks	473098.204	UK222201001			
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	K9214331950			
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246457			
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.103	DH223246455			
AQQQA (Radio Module Model)	Nokia Solutions and Networks	476090A.101	YK224300010			
SFP 10Km SM I-temp RS	Nokia	474902A.101	VF19230003E			
SFP 10Km SM I-temp RS	Nokia	474902A.101	VF19220012F			
EMI Filter	Spectrum Control	12-PMB-260-DC-E	1.0001			
Lenovo PC T490	Lenovo	T490	PF26RVZ0			
Keysight- DC System power supply	Keysight	N8757A	US21D4054S			
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007146			
20W -50ohm -Terminating Load	Jiangsu Wutong IoT Tech Co. Ltd.	F Coaxial Load	BC-TE20-05/ 40ct			
10W -50ohm -Terminating Load	MCLI	TSM-10	0926/ 6ct			
10W -50ohm -Terminating Load	IDK	IDK-BS	118			
4 Meter- RF cable	CBL	CBL-10F-SMSF-402J-N	402J-N/ 64ct			
Fiber Optic cable 25m	Occfiber.com	BX002DAIS	334280			
CAT5e data cable (EM-PC)	ETL	E316395	6066M			
SYNC-analyzer 10MHz/FrameClk Cable	Nokia	101	.0001			
GPS sync cable	Nokia	995426	CA2029			
FYGB GPS receiver	Nokia	472748A	71231431			
Antenna Connector Panel	Nokia	838114	X2			

Cables (Peripheral)						
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
Fiber Optic cable	N	25 meters	N	ASIB	AQQQA	
Cat-5e cable (CSA)	Υ	100 meters	N	ASIB	FYGB GPS receiver	
Cat-5e cable	Υ	25 meters	N	ASIB	WebEM- PC	
CBL RF-Cable	Υ	4 meters	N	EUT [RRH] TAB ports 064	10W and 20W - 50ohm - Terminating Loads	

Report No. NOKI0052.1 33/373

Cables						
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
CBL 4 Meter- RF cable	Y	4 meters	N	EUT [AQQQA] TAB port #164	10W and 20W - 50ohm - Terminating Loads	
RET	Y	2.4m	N	Remote Radio Head Module	Unterminated	
EAC	Y	5.4m	N	Remote Radio Head Module	Unterminated	
Grounding	N	3m	N	Remote Radio Head Module	Turntable Ground	

RF Test Setup Diagram: Radiated Test Setup

Report No. NOKI0052.1 34/373

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2022-12-13	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Band Edge	Tested as	No EMI suppression	EUT remained at
2	2023-01-19	Compliance	delivered to	devices were added or	Element following the
		Compilario	Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	2023-01-19	Bandwidth	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Peak to	Tested as	No EMI suppression	EUT remained at
4	2023-01-19	Average	delivered to	devices were added or	Element following the
7	2020 01 10	Power	Test Station.	modified during this test.	test.
		(PAPR)CCDF			13311
		Power	Tested as	No EMI suppression	EUT remained at
5	2023-01-19	Spectral	delivered to	devices were added or	Element following the
		Density	Test Station.	modified during this test.	test.
		Average	Tested as	No EMI suppression	EUT remained at
6	2023-01-24	Power	delivered to	devices were added or	Element following the
		1 OWCI	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	EUT remained at
7	2023-01-25	Conducted	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Frequency	Tested as	No EMI suppression	Scheduled testing
8	2023-02-01		delivered to	devices were added or	was completed.
-		Stability		modified during this test.	was completed.

Report No. NOKI0052.1 35/373

OCCUPIED BANDWIDTH SINGLE 3.45G

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANC	2022-03-02	2023-03-02
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2022-09-08	2023-09-08
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows:

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- Peak Detector was used
- Trace max hold was used

RF conducted emissions testing was performed on the worst case (highest average power) port by band. The AQQQA antenna ports are all within the manufacturer's rated output power tolerances (the RF power variation between antenna ports is small as shown in this certification testing) and the antenna port 57 for the 3.45GHz band was selected to perform the testing for this effort.

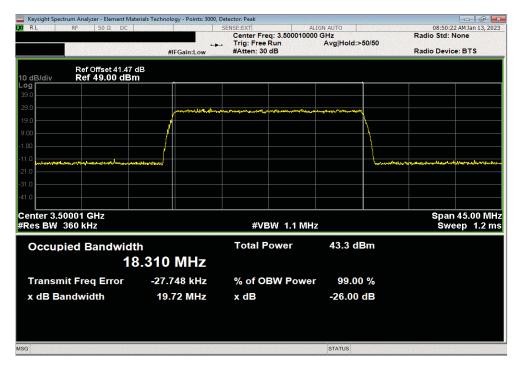
The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets. FCC 27.53(n)(1) defines he 26dB emission bandwidth requirement.

	FCC 5G Emission Designators for 3.45G Band (3450MHz to 3550MHz)							
Channel Bandwidth	Radio Channel	5G-NR: QPSK	5G-NR: 16QAM	5G-NR: 64QAM	5G-NR: 256QAM			
	Low				19M7G7W			
20MHz	Mid	19M7G7W	19M7G7W	19M7G7W	19M7G7W			
	High				19M8G7W			
	Low				29M9G7W			
30MHz	Mid	29M7G7W	29M9G7W	29M7G7W	29M7G7W			
	High				29M8G7W			
	Low				39M8G7W			
40MHz	Mid	39M8G7W	39M8G7W	39M8G7W	39M7G7W			
	High				39M7G7W			
Note: FCC emiss	ion designators a	re based on 26dB em	ission bandwidth me	asurement data.				

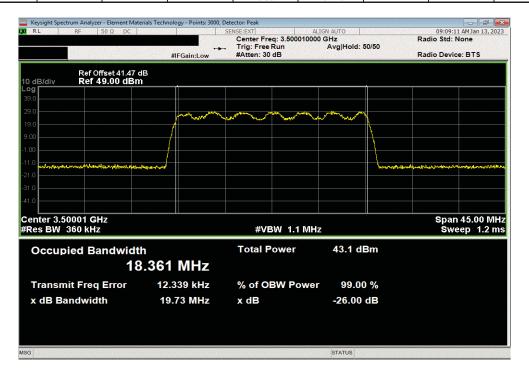
Report No. NOKI0052.1

					TbtTx 2022.06.03.0	XMit 2022.02.0
EUT:	AQQQA			Work Order:	NOKI0052	
Serial Number:	YK224300010			Date:	16-Jan-23	
Customer:	Nokia of America Corp	oration		Temperature:	20.9 °C	
Attendees:	John Rattanavong, Mic	chell Hill		47.4% RH		
Project:	None			Barometric Pres.:	1011 mbar	
Tested by:	Brandon Hobbs	Power: 54 VDC		Job Site:	TX07	
TEST SPECIFICATION	IONS	Test Method				
CC 27:2023		ANSI C63.26:2015				
COMMENTS						
		ccounted for: attenuators, cables, DC block and filter when in use. Band n77 carriers v R30) in the single carrier operating mode configuration.	were enabled at maximum pow	er levels for the 3.4	5GHz band (at 3.125	watts/carrier fo
	I TEST STANDARD					
None						
Configuration #	5	Signature				
			Value 99% (MHz)	Value 26dB (MHz)	Limit	Result
Port 57						
	Band n77, 3450 - 3550					
	20 MHz Ba					
		QPSK Modulation				
		Mid Channel, 3500.01 MHz	18.3	19.7	Within Band	Pass
		16QAM Modulation				
		Mid Channel, 3500.01 MHz	18.4	19.7	Within Band	Pass
		64QAM Modulation				
		Mid Channel, 3500.01 MHz	18.3	19.7	Within Band	Pass
		256QAM Modulation				
		Low Channel, 3460.02 MHz	18.3	19.7	Within Band	Pass
		Mid Channel, 3500.01 MHz	18.3	19.7	Within Band	Pass
		High Channel, 3540.00 MHz	18.3	19.8	Within Band	Pass
	30 MHz Ba					
		QPSK Modulation				
		Mid Channel, 3500.01 MHz	27.9	29.7	Within Band	Pass
		16QAM Modulation				
		Mid Channel, 3500.01 MHz	28.0	29.9	Within Band	Pass
		64QAM Modulation				
						_
		Mid Channel, 3500.01 MHz	27.9	29.7	Within Band	Pass
		Mid Channel, 3500.01 MHz 256QAM Modulation				
		Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz	27.9	29.9	Within Band	Pass
		Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz	27.9 27.9	29.9 29.7	Within Band Within Band	Pass Pass
		Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz	27.9	29.9	Within Band	Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth	27.9 27.9	29.9 29.7	Within Band Within Band	Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz undwidth QPSK Modulation	27.9 27.9 27.9	29.9 29.7 29.8	Within Band Within Band Within Band	Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz	27.9 27.9	29.9 29.7	Within Band Within Band	Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation	27.9 27.9 27.9 37.9	29.9 29.7 29.8 39.8	Within Band Within Band Within Band Within Band	Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz	27.9 27.9 27.9	29.9 29.7 29.8	Within Band Within Band Within Band	Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz undwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation	27.9 27.9 27.9 37.9 38.0	29.9 29.7 29.8 39.8	Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz	27.9 27.9 27.9 37.9	29.9 29.7 29.8 39.8	Within Band Within Band Within Band Within Band	Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz undwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation	27.9 27.9 27.9 37.9 38.0	29.9 29.7 29.8 39.8	Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz	27.9 27.9 27.9 37.9 38.0 37.8	29.9 29.7 29.8 39.8	Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass
	40 MHz Ba	Mid Channel, 3500.01 MHz 256QAM Modulation Low Channel, 3465.00 MHz Mid Channel, 3500.01 MHz High Channel, 3534.99 MHz andwidth QPSK Modulation Mid Channel, 3500.01 MHz 16QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz 64QAM Modulation Mid Channel, 3500.01 MHz	27.9 27.9 27.9 37.9 38.0 37.8	29.9 29.7 29.8 39.8 39.8	Within Band Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass Pass

Report No. NOKI0052.1 37/373



Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, QPSK Modulation, Mid Channel, 3500.01 MHz

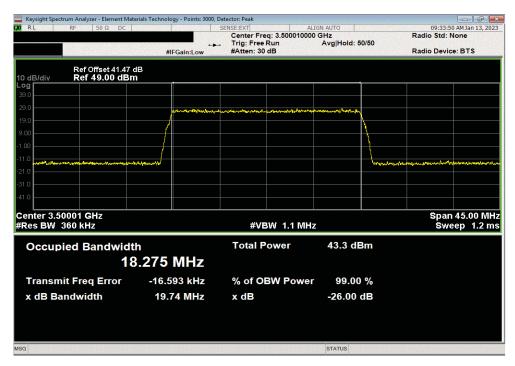

Value Value

99% (MHz) 26dB (MHz) Limit Result

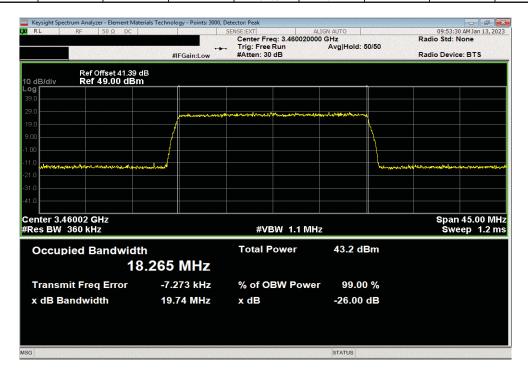
18.31 19.725 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, 16QAM Modulation, Mid Channel, 3500.01 MHz									
			Value	Value					
			99% (MHz)	26dB (MHz)	Limit	Result			
			18.361	19.728	Within Band	Pass			

Report No. NOKI0052.1 38/373



Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3500.01 MHz

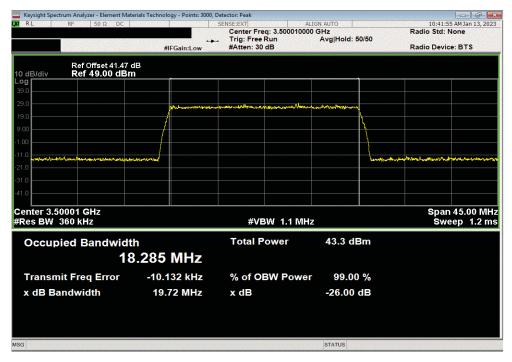

Value Value

99% (MHz) 26dB (MHz) Limit Result

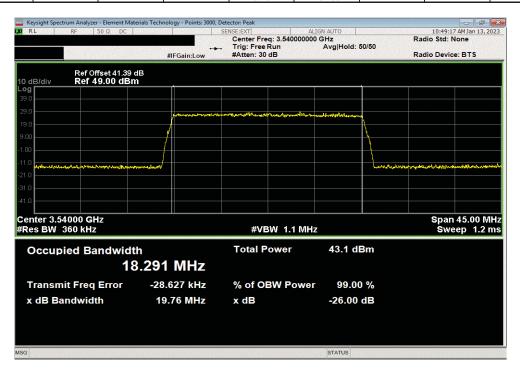
18.275 19.744 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, 256QAM Modulation, Low Channel, 3460.02 MHz										
			Value	Value						
			99% (MHz)	26dB (MHz)	Limit	Result				
			18.265	19.74	Within Band	Pass				

Report No. NOKI0052.1 39/373



Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3500.01 MHz


Value Value

99% (MHz) 26dB (MHz) Limit Result

18.285 19.717 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 20 MHz Bandwidth, 256QAM Modulation, High Channel, 3540.00 MHz										
			Value	Value						
			99% (MHz)	26dB (MHz)	Limit	Result				
			18.291	19.755	Within Band	Pass				

Report No. NOKI0052.1 40/373

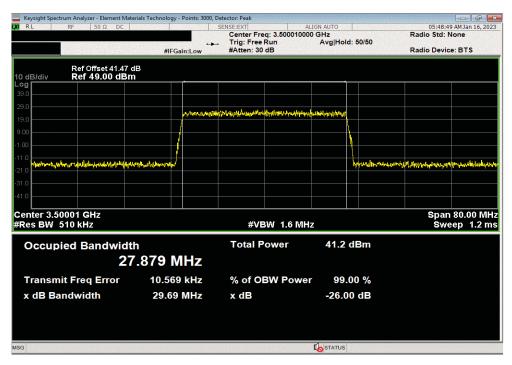
Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, QPSK Modulation, Mid Channel, 3500.01 MHz

Value

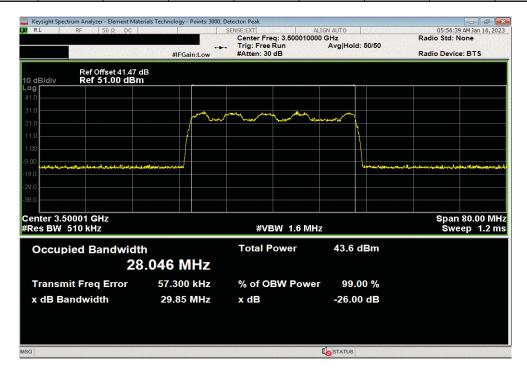
99% (MHz)

26dB (MHz)

Limit


Result

27.879

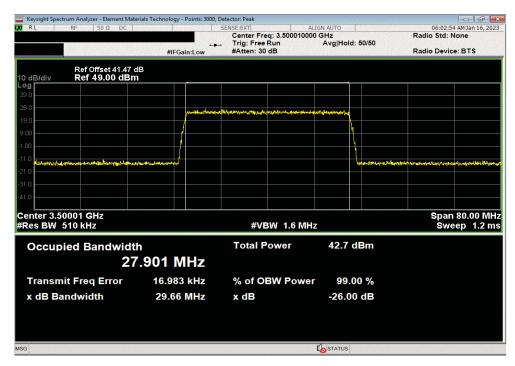

29.694

Within Band

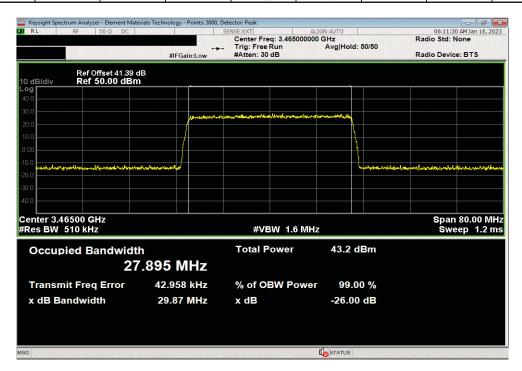
Pass

Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, 16QAM Modulation, Mid Channel, 3500.01 MHz										
			Value	Value						
			000/ (8411-)	OCAD (MILL)	Limit	Dogult				
			99% (MHz)	26dB (MHz)	LIIIII	Result				

Report No. NOKI0052.1 41/373



Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3500.01 MHz

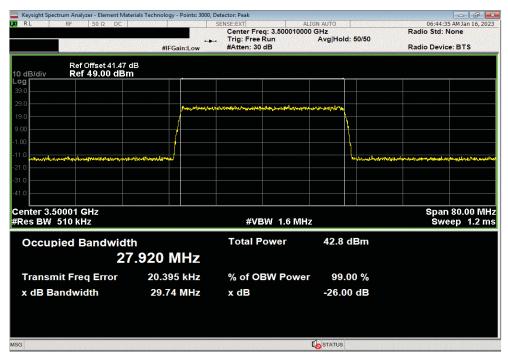

Value Value

99% (MHz) 26dB (MHz) Limit Result

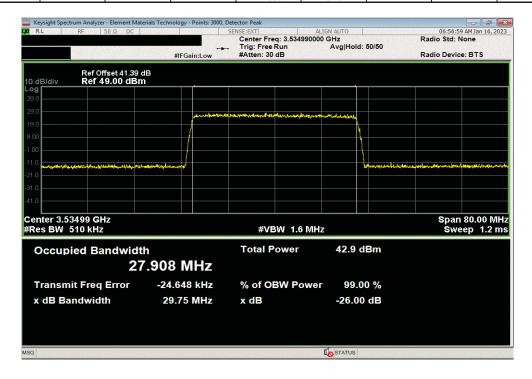
27.901 29.662 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, 256QAM Modulation, Low Channel, 3465.00 MHz										
			Value	Value						
			99% (MHz)	26dB (MHz)	Limit	Result				
			27.895	29.874	Within Band	Pass				

Report No. NOKI0052.1 42/373



Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3500.01 MHz

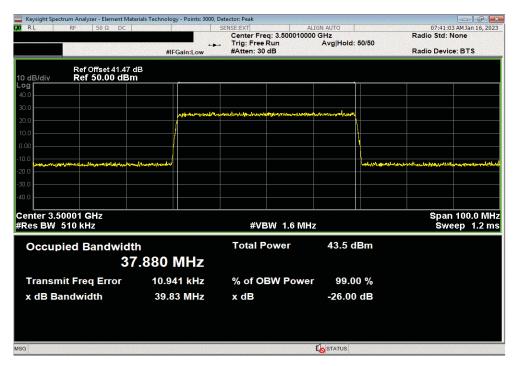

Value Value

99% (MHz) 26dB (MHz) Limit Result

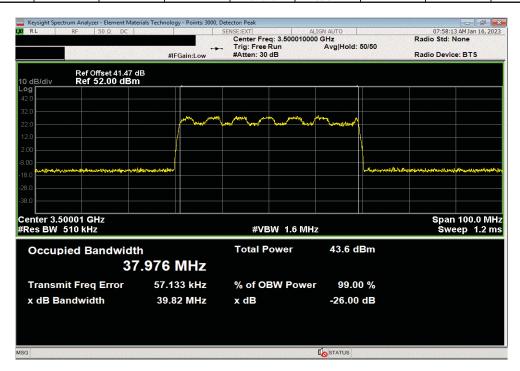
27.92 29.743 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 30 MHz Bandwidth, 256QAM Modulation, High Channel, 3534.99 MHz									
			Value	Value					
			99% (MHz)	26dB (MHz)	Limit	Result			
			27.908	29.752	Within Band	Pass			

Report No. NOKI0052.1 43/373



Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, QPSK Modulation, Mid Channel, 3500.01 MHz

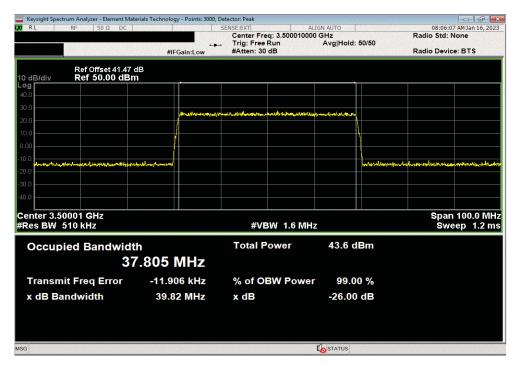

Value Value

99% (MHz) 26dB (MHz) Limit Result

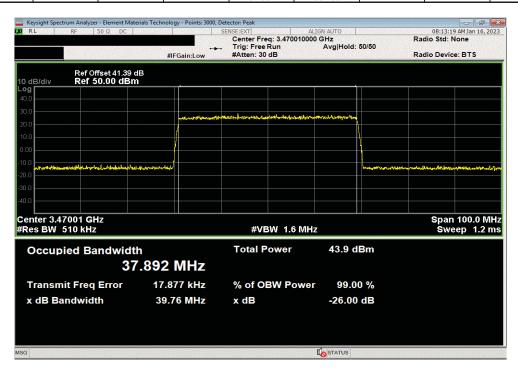
37.88 39.83 Within Band Pass

	Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, 16QAM Modulation, Mid Channel, 3500.01 MHz										
				Value	Value						
				99% (MHz)	26dB (MHz)	Limit	Result				
ĺ				37.976	39.821	Within Band	Pass				

Report No. NOKI0052.1 44/373



Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3500.01 MHz


Value Value

99% (MHz) 26dB (MHz) Limit Result

37.805 39.822 Within Band Pass

Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, 256QAM Modulation, Low Channel, 3470.01 MHz										
			Value	Value						
			99% (MHz)	26dB (MHz)	Limit	Result				
			37.892	39.759	Within Band	Pass				

Report No. NOKI0052.1 45/373

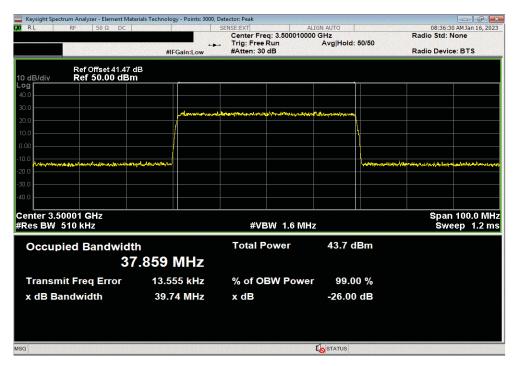
Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3500.01 MHz

Value

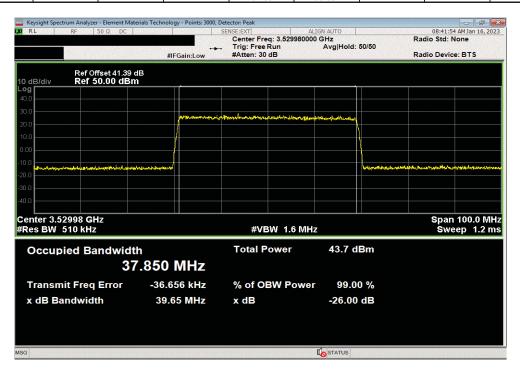
99% (MHz)

26dB (MHz)

Limit


Result

37.859


39.738

Within Band

Pass

Port 57, Band n77, 3450 - 3550 MHz, 40 MHz Bandwidth, 256QAM Modulation, High Channel, 3529.98 MHz										
			Value	Value						
			99% (MHz)	26dB (MHz)	Limit	Result				
			37.85	39.652	Within Band	Pass				

Report No. NOKI0052.1 46/373

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANC	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA3N10W-20	RKY	2022-11-15	2023-11-15
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2022-09-08	2023-09-08

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows:

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- Peak Detector was used
- Trace max hold was used

RF conducted emissions testing was performed on the worst case (highest average power) port by band. The AQQQA antenna ports are all within the manufacturer's rated output power tolerances (the RF power variation between antenna ports is small as shown in this certification testing) and the antenna port 22 for the 3.7GHz band was selected to perform the testing for this effort.

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets. FCC 27.53(I) defines he 26dB emission bandwidth requirement.

	FCC 5G En	nission Designators f	or 3.7G Band (3700N	1Hz to 3980MHz)	
Channel Bandwidth	Radio Channel	5G-NR: QPSK	5G-NR: 16QAM	5G-NR: 64QAM	5G-NR: 256QAM
	Low				19M5G7W
20MHz	Mid	19M7G7W	19M5G7W	19M6G7W	19M3G7W
	High				19M5G7W
	Low				39M6G7W
40MHz	Mid	39M8G7W	39M5G7W	39M7G7W	39M6G7W
	High				39M6G7W
	Low				60M1G7W
60MHz	Mid	60M0G7W	60M0G7W	60M0G7W	60M0G7W
	High				60M0G7W
	Low				81M2G7W
80MHz	Mid	81M3G7W	81M3G7W	81M3G7W	81M4G7W
	High				81M2G7W
	Low				102MG7W
100MHz	Mid	102MG7W	102MG7W	102MG7W	102MG7W
	High				102MG7W
Note: FCC emiss	ion designators a	re based on 26dB em	ission bandwidth me	asurement data.	_

Report No. NOKI0052.1 47/373

						TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT:	AQQQA	<u> </u>			Work Order:	NOKI0052	
Serial Number:						19-Jan-23	
	Nokia of America Corpo	ration			Temperature:		
	John Rattanavong, Mich	ell Hill			Humidity:		
Project:					Barometric Pres.:	1022 mbar	
Tested by:	Brandon Hobbs	Powe	er: 54 VDC		Job Site:	TX07	
TEST SPECIFICATI	IONS		Test Method				
FCC 27:2023			ANSI C63.26:2015				
FGG 21.2023			ANSI C03.20.2015				
COMMENTS							
All losses in the me	easurement nath were ac	counted for: attenuators, cables, DC block and filter when	in use Band n77 carriers were e	enabled at maximum nower	levels for the 3.7G	Hz hand (at 2.5 watt	s/carrier for
		NR80 & NR100) in the single carrier operating mode config		onabioa at maximam porror		(41 2.0	o, out 1101
NRZU aliu at 5 watt	s/carrier for NK40, NK60,	NKOU & NK 100) III the single carrier operating mode comit	juration.				
	I TEST STANDARD						
None							
Configuration #	4,5	Cimatus	1 1				
	· ·	Signature)				
	l	Signature					
				Value	Value		
				99% (MHz)	26dB (MHz)	Limit	Result
Port 22							
	Band n77, 3700 - 3980 M	IH ₇					
	20 MHz Ban						
		QPSK Modulation					
		Mid Channel, 3840.00 MHz		18.2	19.7	Within Band	Pass
		16QAM Modulation					
		Mid Channel, 3840.00 MHz		18.3	19.5	Within Band	Pass
				10.0		··· Duriu	. 430
		64QAM Modulation		40.0	40.0	Mille in Daniel	D
		Mid Channel, 3840.00 MHz		18.3	19.6	Within Band	Pass
		256QAM Modulation					
		Low Channel, 3710.01 MHz		18.3	19.5	Within Band	Pass
		Mid Channel, 3840.00 MHz		18.3	19.3	Within Band	Pass
		High Channel, 3969.99 MHz		18.3	19.5	Within Band	Pass
	40 MHz Ban			10.0	10.0	Widilii Dalia	1 433
	40 MINZ Ball						
		QPSK Modulation					
		Mid Channel, 3840.00 MHz		37.8	39.8	Within Band	Pass
		16QAM Modulation					
		Mid Channel, 3840.00 MHz		38.0	39.5	Within Band	Pass
		64QAM Modulation		00.0	00.0	Within Dana	1 433
				07.0	00.7	14001 - 5	
		Mid Channel, 3840.00 MHz		37.8	39.7	Within Band	Pass
		256QAM Modulation					
		Low Channel, 3720.00 MHz		37.8	39.4	Within Band	Pass
		Mid Channel, 3840.00 MHz		37.8	39.6	Within Band	Pass
		High Channel, 3960.00 MHz		37.7	39.4	Within Band	Pass
	20.1411 D			31.1	33.4	Willin Danu	1 000
	60 MHz Ban						
		QPSK Modulation					
		Mid Channel, 3840.00 MHz		57.9	60.0	Within Band	Pass
		16QAM Modulation					
		Mid Channel, 3840.00 MHz		57.9	60.0	Within Band	Pass
		64QAM Modulation		01.0	55.0	······· Duna	. 430
		Mid Channel 2040 00 MI		57.0	60.0	Mithin D	Dec
		Mid Channel, 3840.00 MHz		57.8	60.0	Within Band	Pass
		256QAM Modulation					
		Low Channel, 3730.02 MHz		57.8	60.1	Within Band	Pass
		Mid Channel, 3840.00 MHz		57.9	60.0	Within Band	Pass
		High Channel, 3949.98 MHz		57.7	60.0	Within Band	Pass
	90 MH= D==			01.1	00.0	. Alumi Dana	1 433
	80 MHz Ban						
		QPSK Modulation					
		Mid Channel, 3840.00 MHz		77.7	81.3	Within Band	Pass
		16QAM Modulation					
		Mid Channel, 3840.00 MHz		77.9	81.3	Within Band	Pass
		64QAM Modulation					
		Mid Channel, 3840.00 MHz		77.6	81.3	Within Band	Pass
				77.0	01.3	WILLIIII Dallu	Fd55
		256QAM Modulation					
		Low Channel, 3740.01 MHz		77.5	81.2	Within Band	Pass
		Mid Channel, 3840.00 MHz		77.6	81.4	Within Band	Pass
		High Channel, 3939.99 MHz		77.6	81.2	Within Band	Pass
	100 MHz Ba						
	100 MHZ Ba						
		QPSK Modulation			105 -	14001	
		Mid Channel, 3840.00 MHz		97.6	102.2	Within Band	Pass
		16QAM Modulation					
		Mid Channel, 3840.00 MHz		97.3	102.3	Within Band	Pass
		64QAM Modulation					
		Mid Channel, 3840.00 MHz		97.5	102.3	Within Band	Pass
				81.5	102.3	vviiiiii banu	Pass
		256QAM Modulation					
		Low Channel, 3750.00 MHz		97.5	102.3	Within Band	Pass
		Mid Channel, 3840.00 MHz		97.4	102.3	Within Band	Pass
		High Channel, 3930.00 MHz		97.6	102.4	Within Band	Pass

Report No. NOKI0052.1 48/373

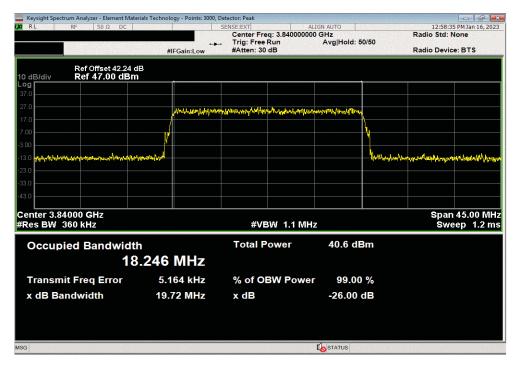
Port 22, Band n77, 3700 - 3980 MHz, 20 MHz Bandwidth, QPSK Modulation, Mid Channel, 3840.00 MHz

Value

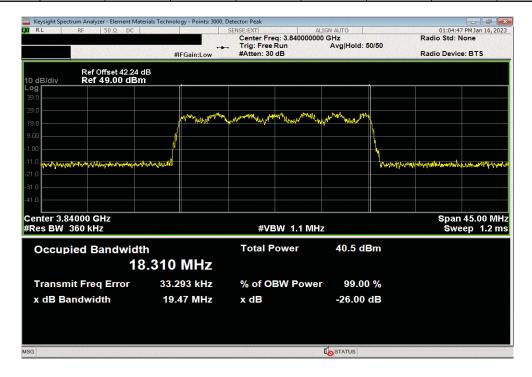
99% (MHz)

26dB (MHz)

Limit


Result

18.246

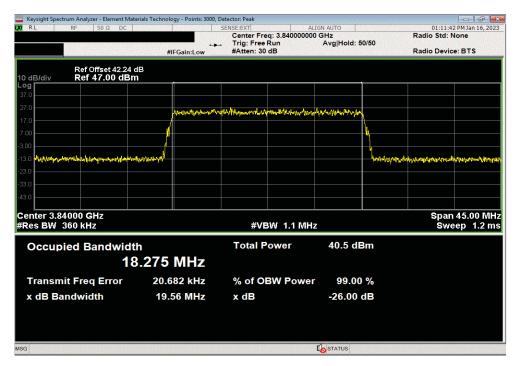

19.718

Within Band

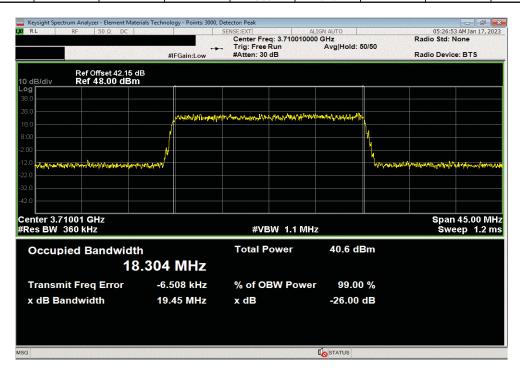
Pass

Port 22, B	and n77, 3700 -	3980 MHz, 20 MI	Hz Bandwidth, 16	QAM Modulation,	Mid Channel, 38	40.00 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			18.31	19.468	Within Band	Pass

Report No. NOKI0052.1 49/373



Port 22, Band n77, 3700 - 3980 MHz, 20 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3840.00 MHz

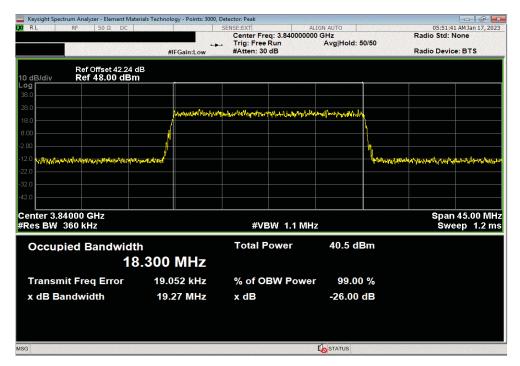

Value Value

99% (MHz) 26dB (MHz) Limit Result

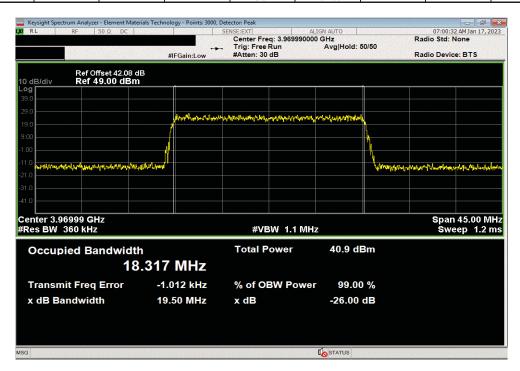
18.275 19.557 Within Band Pass

Port 22, Ba	and n77, 3700 - 3	980 MHz, 20 MH	z Bandwidth, 256	QAM Modulation	, Low Channel, 37	710.01 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			18.304	19.454	Within Band	Pass

Report No. NOKI0052.1 50/373



Port 22, Band n77, 3700 - 3980 MHz, 20 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3840.00 MHz


Value Value

99% (MHz) 26dB (MHz) Limit Result

18.3 19.271 Within Band Pass

Port 22, Ba	nd n77, 3700 - 3	980 MHz, 20 MHz	Bandwidth, 256	QAM Modulation,	High Channel, 3	969.99 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			18.317	19.495	Within Band	Pass

Report No. NOKI0052.1 51/373

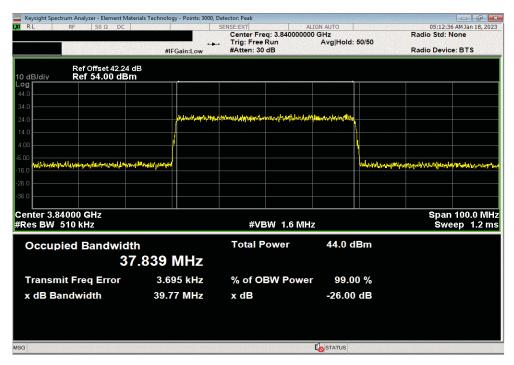
Port 22, Band n77, 3700 - 3980 MHz, 40 MHz Bandwidth, QPSK Modulation, Mid Channel, 3840.00 MHz

Value

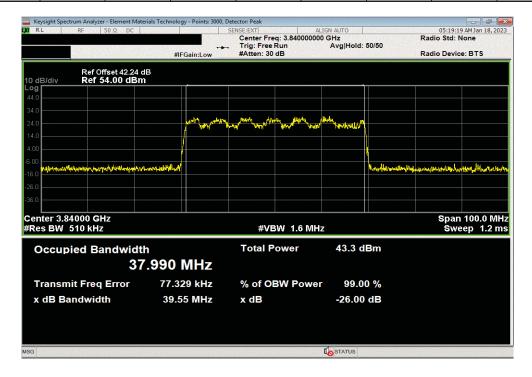
99% (MHz)

26dB (MHz)

Limit


Result

37.839

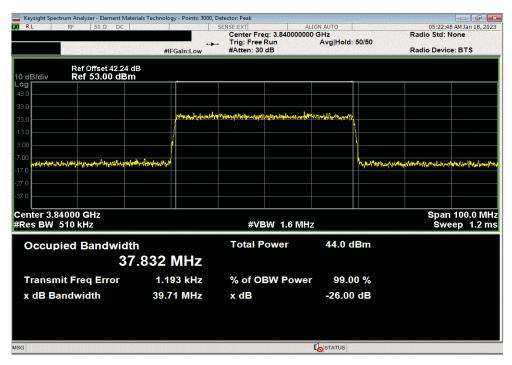

39.772

Within Band

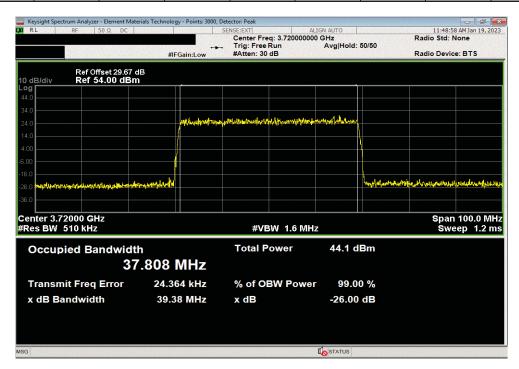
Pass

Port 22, B	and n77, 3700 -	3980 MHz, 40 MH	Iz Bandwidth, 16	QAM Modulation,	Mid Channel, 38	40.00 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
		1	37.99	39.548	Within Band	Pass

Report No. NOKI0052.1 52/373



Port 22, Band n77, 3700 - 3980 MHz, 40 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3840.00 MHz


Value Value

99% (MHz) 26dB (MHz) Limit Result

37.832 39.712 Within Band Pass

Port 22, Ba	nd n77, 3700 - 3	980 MHz, 40 MH	z Bandwidth, 256	QAM Modulation,	, Low Channel, 37	720.00 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result

Report No. NOKI0052.1 53/373

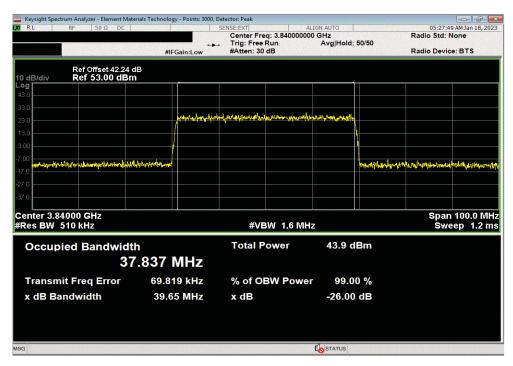
Port 22, Band n77, 3700 - 3980 MHz, 40 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3840.00 MHz

Value

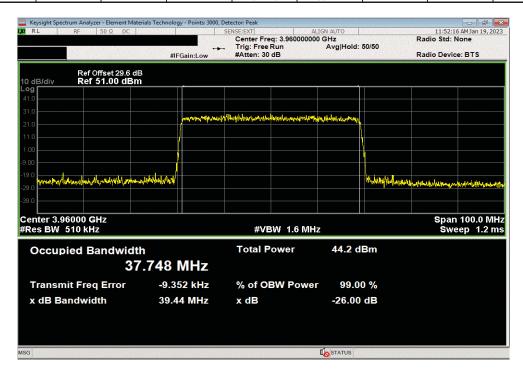
99% (MHz)

26dB (MHz)

Limit


Result

37.837


39.649

Within Band

Pass

Port 22, Ba	nd n77, 3700 - 3	980 MHz, 40 MH	z Bandwidth, 256	QAM Modulation,	, High Channel, 3	960.00 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			37.748	39,442	Within Band	Pass

Report No. NOKI0052.1 54/373

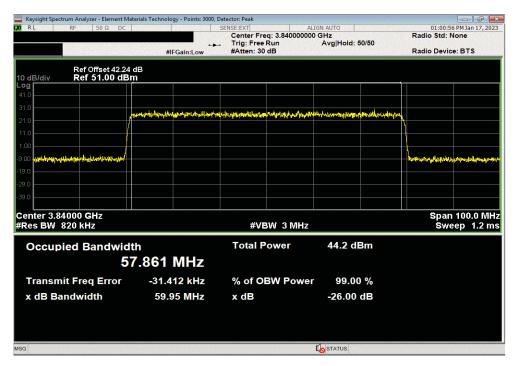
Port 22, Band n77, 3700 - 3980 MHz, 60 MHz Bandwidth, QPSK Modulation, Mid Channel, 3840.00 MHz

Value

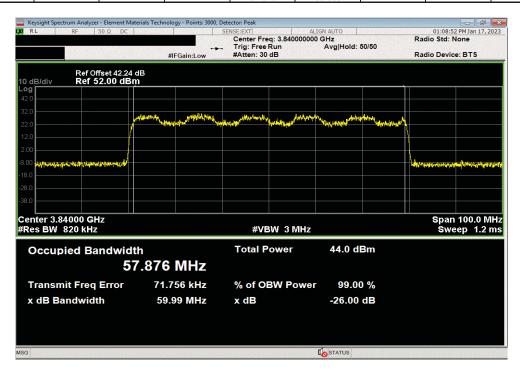
99% (MHz)

26dB (MHz)

Limit


Result

57.861

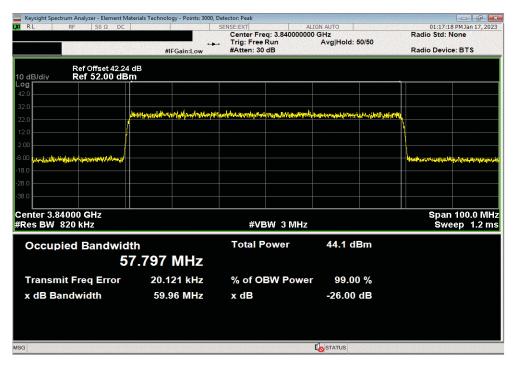

59.951

Within Band

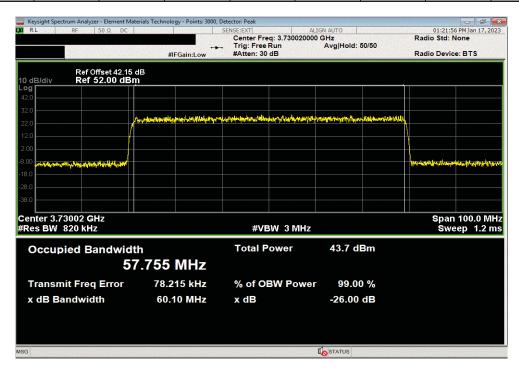
Pass

	Port 22, Ba	and n77, 3700 -	3980 MHz, 60 MF	lz Bandwidth, 16	QAM Modulation,	Mid Channel, 38	40.00 MHz
				Value	Value		
				99% (MHz)	26dB (MHz)	Limit	Result
ĺ				57.876	59.989	Within Band	Pass

Report No. NOKI0052.1 55/373

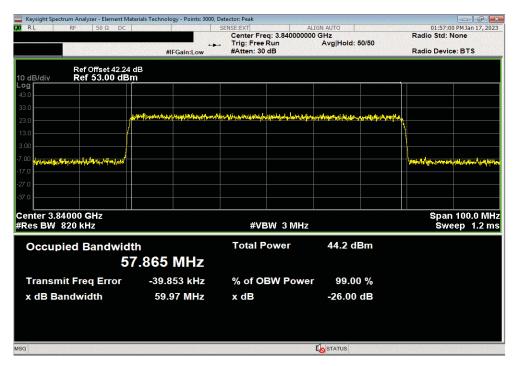


Port 22, Band n77, 3700 - 3980 MHz, 60 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3840.00 MHz

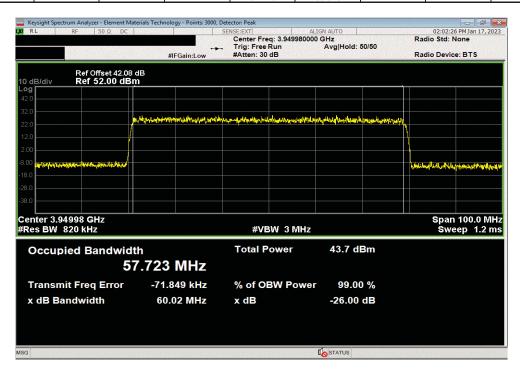

Value Value

99% (MHz) 26dB (MHz) Limit Result

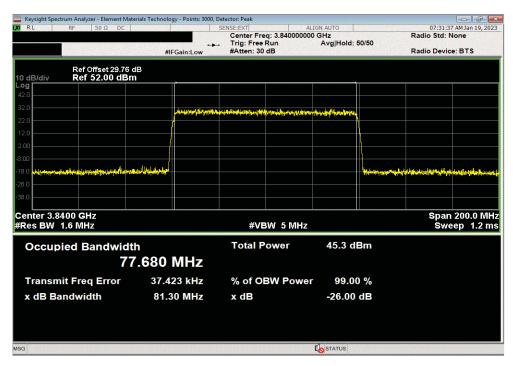
57.797 59.958 Within Band Pass



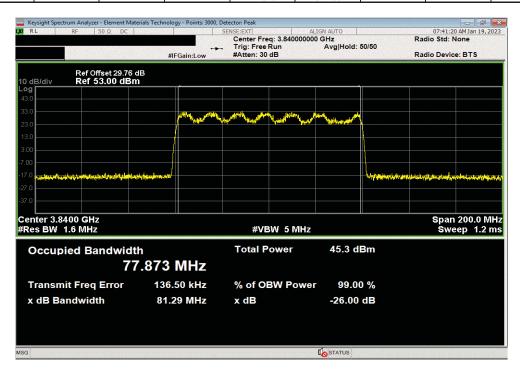
Port 22, Ba	and n77, 3700 - 3	3980 MHz, 60 MH	z Bandwidth, 256	QAM Modulation	, Low Channel, 37	730.02 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			57.755	60.096	Within Band	Pass



Report No. NOKI0052.1 56/373



Port 22, Ba	nd n77, 3700 - 3	980 MHz, 60 MH	z Bandwidth, 256	QAM Modulation,	High Channel, 39	949.98 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
			57.723	60.018	Within Band	Pass



Report No. NOKI0052.1 57/373

	Port 22, Ba	and n77, 3700 -	3980 MHz, 80 MF	lz Bandwidth, 16	QAM Modulation,	Mid Channel, 38	40.00 MHz
				Value	Value		
				99% (MHz)	26dB (MHz)	Limit	Result
ĺ				77.873	81.286	Within Band	Pass

Report No. NOKI0052.1 58/373

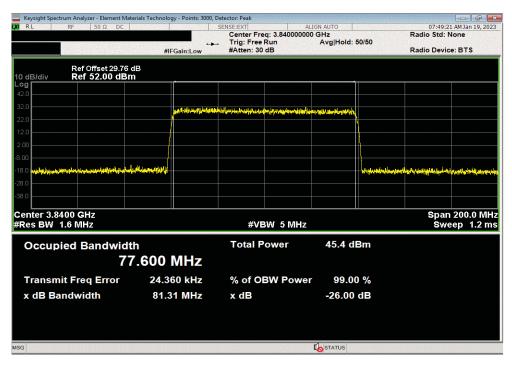
Port 22, Band n77, 3700 - 3980 MHz, 80 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3840.00 MHz

Value

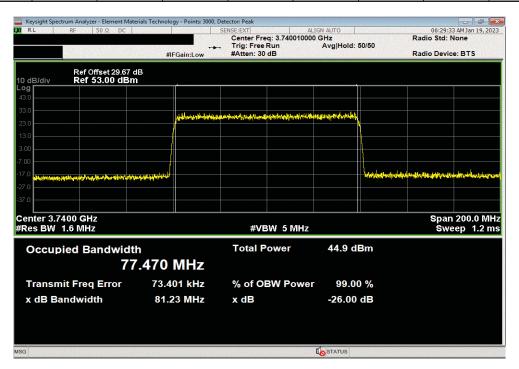
99% (MHz)

26dB (MHz)

Limit


Result

77.6


81.314

Within Band

Pass

Port 22, Ba	and n77, 3700 - 3	3980 MHz, 80 MH	z Bandwidth, 256	QAM Modulation	, Low Channel, 37	740.01 MHz
			Value	Value		
			99% (MHz)	26dB (MHz)	Limit	Result
		1	77.47	81.232	Within Band	Pass

Report No. NOKI0052.1 59/373

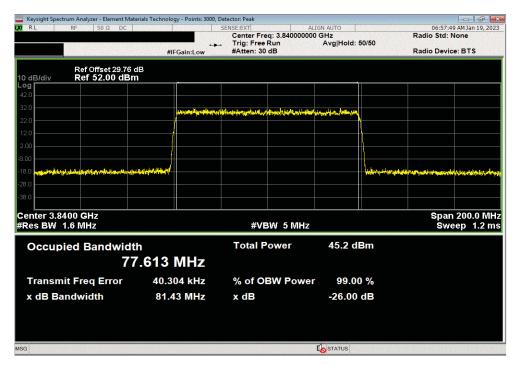
Port 22, Band n77, 3700 - 3980 MHz, 80 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3840.00 MHz

Value

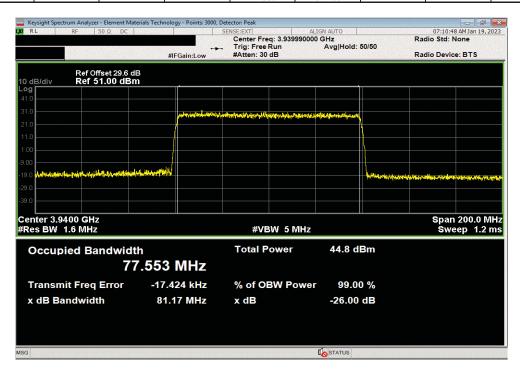
99% (MHz)

26dB (MHz)

Limit


Result

77.613


81.435

Within Band

Pass

Port 22, Band n77, 3700 - 3980 MHz, 80 MHz Bandwidth, 256QAM Modulation, High Channel, 3939.99 MHz								
			Value	Value				
			99% (MHz)	26dB (MHz)	Limit	Result		
			77.553	81.168	Within Band	Pass		

Report No. NOKI0052.1 60/373

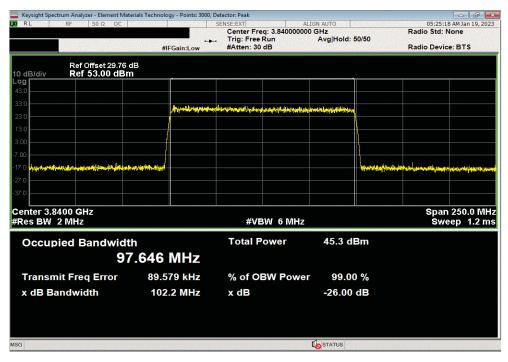
Port 22, Band n77, 3700 - 3980 MHz, 100 MHz Bandwidth, QPSK Modulation, Mid Channel, 3840.00 MHz

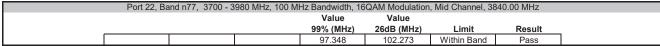
Value

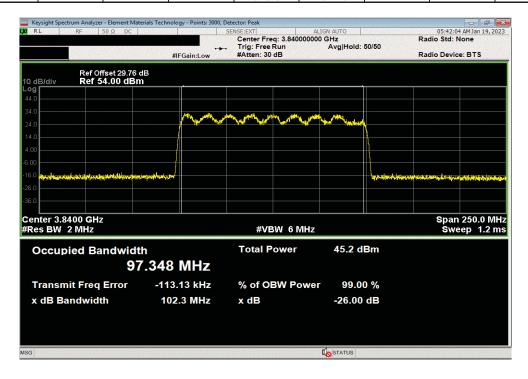
99% (MHz)

26dB (MHz)

Limit


Result


97.646


102.205

Within Band

Pass

Report No. NOKI0052.1 61/373

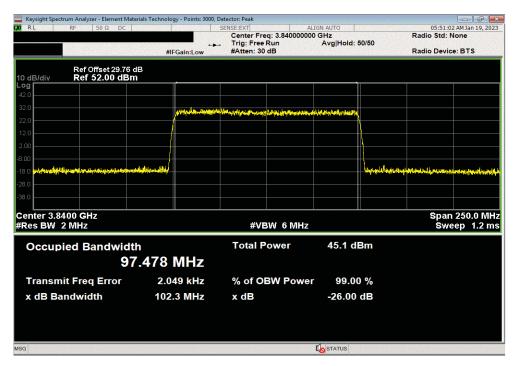
Port 22, Band n77, 3700 - 3980 MHz, 100 MHz Bandwidth, 64QAM Modulation, Mid Channel, 3840.00 MHz

Value

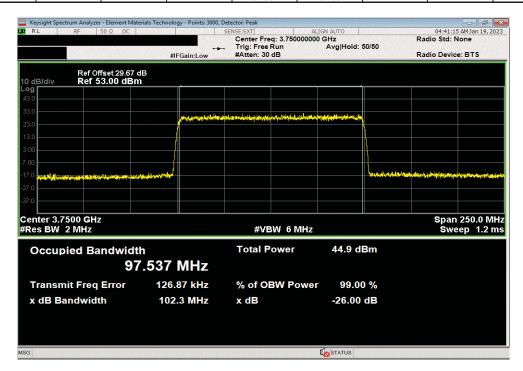
99% (MHz)

26dB (MHz)

Limit


Result

97.478


102.267

Within Band

Pass

	Port 22, Band n77, 3700 - 3980 MHz, 100 MHz Bandwidth, 256QAM Modulation, Low Channel, 3750.00 MHz									
				Value	Value					
				99% (MHz)	26dB (MHz)	Limit	Result			
i				97.537	102.307	Within Band	Pass			

Report No. NOKI0052.1 62/373

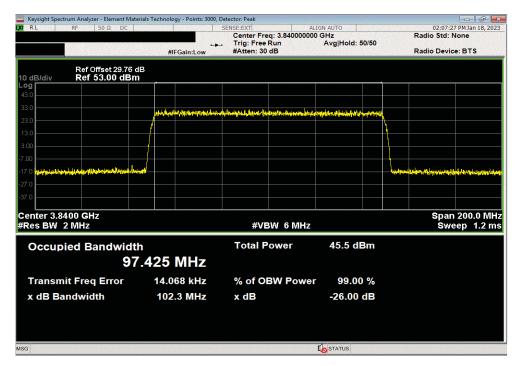
Port 22, Band n77, 3700 - 3980 MHz, 100 MHz Bandwidth, 256QAM Modulation, Mid Channel, 3840.00 MHz

Value

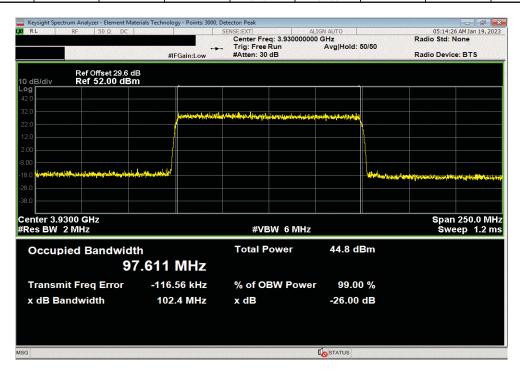
99% (MHz)

26dB (MHz)

Limit


Result

97.425


102.268

Within Band

Pass

Port 22, Band n77, 3700 - 3980 MHz, 100 MHz Bandwidth, 256QAM Modulation, High Channel, 3930.00 MHz									
			Value	Value					
			99% (MHz)	26dB (MHz)	Limit	Result			
			97.611	102.362	Within Band	Pass			

Report No. NOKI0052.1 63/373

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA3N10W-20	RKY	2022-11-15	2023-11-15
Signal Analyzer	Keysight	N9030B	R332	2022-07-28	2023-07-28
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Meter - Multimeter	Fluke	77 IV	MLT	2023-01-18	2024-01-18
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

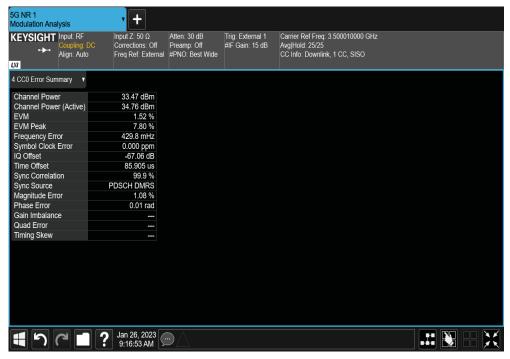
Measurements were made as called out on the data sheets. Testing was done using QPSK modulation with NR40 channel bandwidth mode of operation.

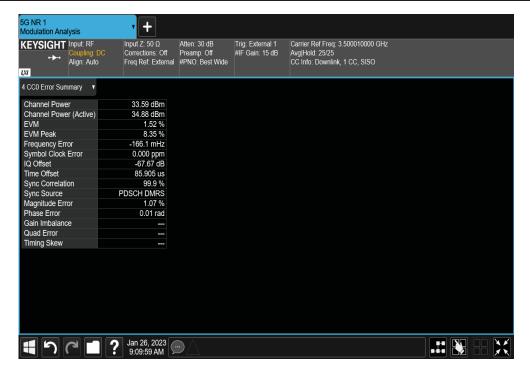
The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 $^{\circ}$ to +50 $^{\circ}$ C) and at 10 $^{\circ}$ C intervals.

Per the requirements of FCC Part 27.54:

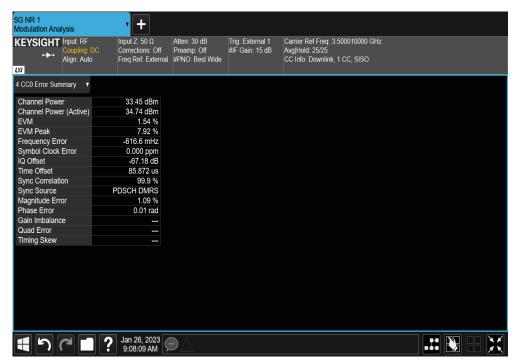
"The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation."

No specific limits are provided in either FCC 27.54, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 1000 Hz will still allow the radio to be operating within the band.

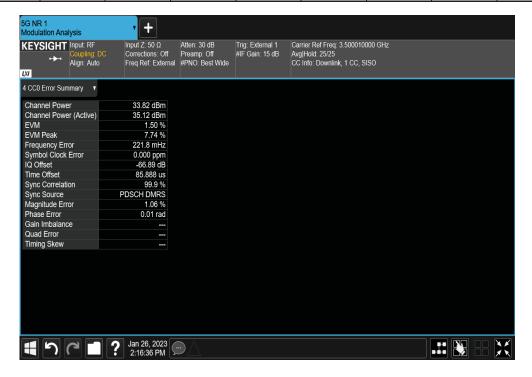

Report No. NOKI0052.1


EUT:	AQQQA			Work Order:	NOKI0052	
Serial Number:	YK224300010			Date:	1-Feb-23	
	Nokia of America Corpor			Temperature:		
	John Rattanavong, Mich	ell Hill		Humidity:		
Project:				Barometric Pres.:		
	Brandon Hobbs		Power: 54 VDC	Job Site:	TX07	
TEST SPECIFICAT	TONS		Test Method			
FCC 27:2023			ANSI C63.26:2015			
COMMENTS						
40 MHz Bandwidth	n, Mid channel, QPSK. The	EUT temperature was stabilized at each temperature step (for a min	nimum of 30 mins) prior to measurments. The E	JT was operated with a 40 MHz channel band	width on the midd	le channel using
QPSK modulation.						_
DEVIATIONS FROI	M TEST STANDARD					
None						
Configuration #	9	Signature	1			
				Value	Limit	
				Freq Δ (Hz)	Δ (Hz)	Result
Port 57						
	Band n77, 3450 - 3550 MH					
	NR40, QPSk					
		Mid Channel, 3500.01 MHz				
		85% Low Voltage Condition 40.8 VDC (@20°C)		0.4298	1000	Pass
		100% Nominal Voltage Condition 48 VDC (@20°C)		-0.1661	1000	Pass
		115% High Voltage Condition 55.2 VDC (@20°C)		-0.6166	1000	Pass
		-30°C Temp, Nominal Voltage Condition 48 VDC		0.2218	1000	Pass
		-20°C Temp, Nominal Voltage Condition 48 VDC		0.4530	1000	Pass
		-10°C Temp, Nominal Voltage Condition 48 VDC		0.3956	1000	Pass
		0°C Temp, Nominal Voltage Condition 48 VDC		-0.2083	1000	Pass
		10°C Temp, Nominal Voltage Condition 48 VDC		0.6993	1000	Pass
		20°C Temp, Nominal Voltage Condition 48 VDC		0.4298	1000	Pass
		30°C Temp, Nominal Voltage Condition 48 VDC		0.0911	1000	Pass
		40°C Temp, Nominal Voltage Condition 48 VDC 50°C Temp, Nominal Voltage Condition 48 VDC		-0.3993 -0.1661	1000 1000	Pass Pass

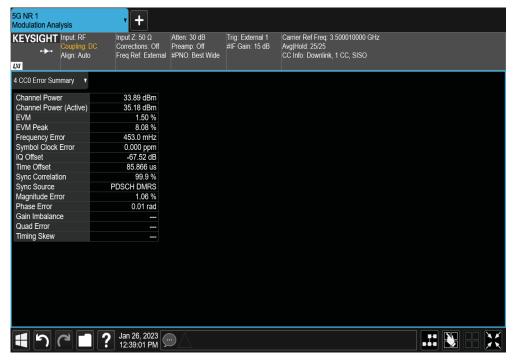
Report No. NOKI0052.1 65/373

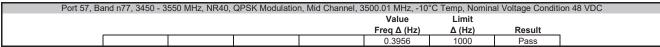


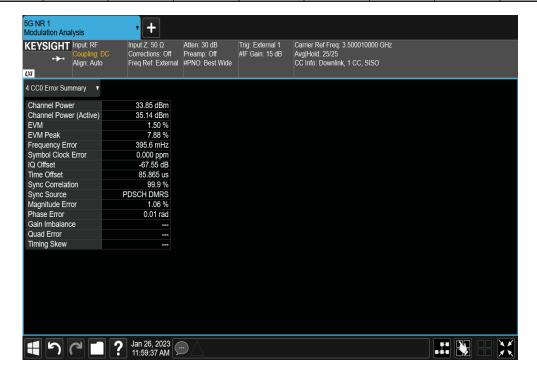
Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 100% Nominal Voltage Condition 48 VDC (@20°C)								
					Value	Limit		
					Freq ∆ (Hz)	Δ (Hz)	Result	_
					-0.1661	1000	Pass	



Report No. NOKI0052.1 66/373




Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, -30°C Temp, Nominal Voltage Condition 48 VDC									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result		
					0.2218	1000	Pass		



Report No. NOKI0052.1 67/373

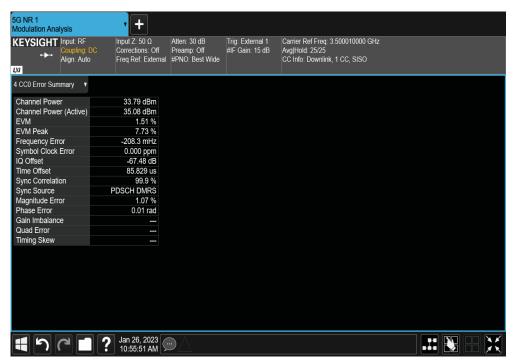
Report No. NOKI0052.1 68/373

Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 0°C Temp, Nominal Voltage Condition 48 VDC

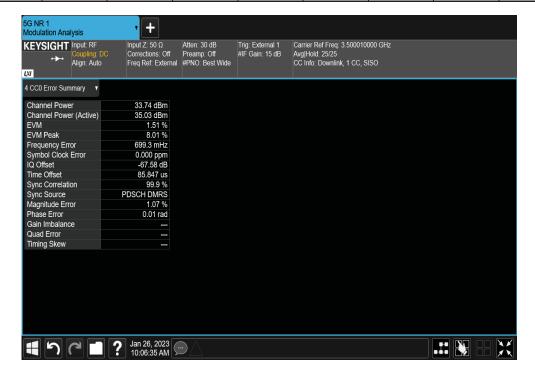
Value

Limit

Freq Δ (Hz)


Δ (Hz)

Result


-0.2083

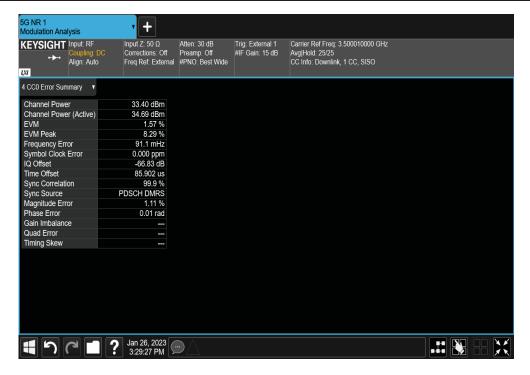
1000

Pass

Port 57, Ba	and n77, 3450 - 3	550 MHz, NR40,	QPSK Modulation	n, Mid Channel, 3	3500.01 MHz, 10°	°C Temp, Nomina	l Voltage Conditi	on 48 VDC
					Value	Limit		
					Freq ∆ (Hz)	Δ (Hz)	Result	
					0.6993	1000	Pass	

Report No. NOKI0052.1 69/373

Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 20°C Temp, Nominal Voltage Condition 48 VDC


Value Limit

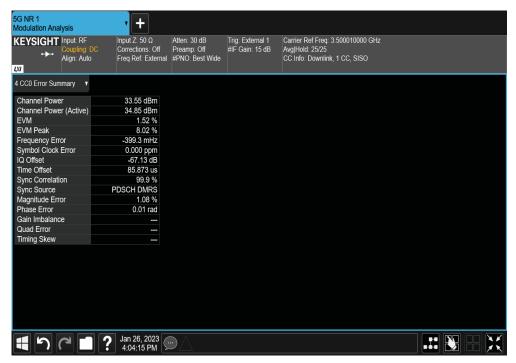
Freq Δ (Hz) Δ (Hz) Result

0.4298 1000 Pass

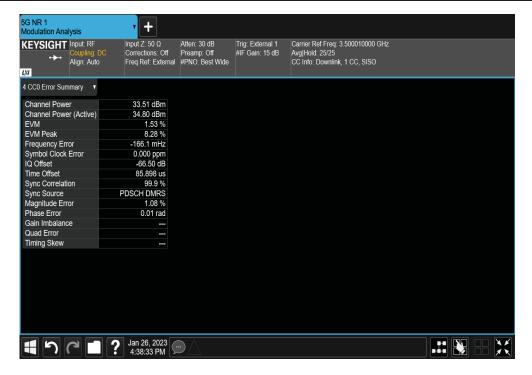
EYSIGHT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: External	Atten: 30 dB Preamp: Off	Trig: External 1 #IF Gain: 15 dB	Carrier Ref Freq. 3.500010000 GHz Avg Hold: 25/25 CC Info: Downlink, 1 CC, SISO
Align: Auto	Freq Rer. External	#PNO: Best Wide		CC Into: Downlink, 1 CC, SISO
CC0 Error Summary ▼				
Channel Power	33.47 dBm			
Channel Power (Active)	34.76 dBm			
EVM	1.52 %			
VM Peak	7.80 %			
requency Error	429.8 mHz			
Symbol Clock Error	0.000 ppm			
Q Offset	-67.06 dB			
ime Offset	85.905 us			
ync Correlation	99.9 %			
Sync Source	PDSCH DMRS			
Magnitude Error	1.08 %			
Phase Error	0.01 rad			
Sain Imbalance				
Quad Error				
Timing Skew				

Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 30°C Temp, Nominal Voltage Condition 48 VDC									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result		
1					0.0911	1000	Pass		

Report No. NOKI0052.1 70/373



Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 40°C Temp, Nominal Voltage Condition 48 VDC


Value Limit

Freq Δ (Hz) Δ (Hz) Result

-0.3993 1000 Pass

Port 57, Band n77, 3450 - 3550 MHz, NR40, QPSK Modulation, Mid Channel, 3500.01 MHz, 50°C Temp, Nominal Voltage Condition 48 VDC									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result		
					-0.1661	1000	Pass		

Report No. NOKI0052.1 71/373

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Meter - Multimeter	Fluke	77 IV	MLT	2023-01-18	2024-01-18
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Block - DC	Fairview Microwave	SD3239	ANC	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Attenuator	Fairview Microwave	SA3N10W-20	RKY	2022-11-15	2023-11-15
Signal Analyzer	Keysight	N9030B	R332	2022-07-28	2023-07-28

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

Measurements were made as called out on the data sheets. Testing was done using QPSK modulation with NR40 channel bandwidth mode of operation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50 ° C) and at 10 ° C intervals.

Per the requirements of FCC Part 27.54:

"The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation."

No specific limits are provided in either FCC 27.54, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 1000 Hz will still allow the radio to be operating within the band.

Report No. NOKI0052.1

						AMII 2022.02.07.
	AQQQA			Work Order:		
Serial Number:					I-Feb-23	
	Nokia of America Corpo			Temperature: 2		
	John Rattanavong, Mich	ell Hill		Humidity: 2		
Project:				Barometric Pres.: 1		
	Brandon Hobbs		Power: 54 VDC	Job Site: 1	TX07	
TEST SPECIFICAT	TONS		Test Method			
FCC 27:2023			ANSI C63.26:2015			
COMMENTS						
40 MHz Bandwidth	n, Mid channel, QPSK. The	EUT temperature was stabilized at each temperature step (for a mi	nimum of 30 mins) prior to measurments. The EUT	was operated with a 40 MHz channel ba	indwidth on the r	niddle channel
using QPSK modu	ılation.					
	M TEST STANDARD					
None						
Configuration #	9		1			
		Signature				
				Value	Limit	
				Freq ∆ (Hz)	Δ (Hz)	Result
Port 22						
	Band n77, 3700 - 3980 M					
	NR40, QPSF					
		Mid Channel, 3840.00 MHz				
		85% Low Voltage Condition 40.8 VDC (@20°C)		0.2726	1000	Pass
		100% Nominal Voltage Condition 48 VDC (@20°C)		0.1162	1000	Pass
		115% High Voltage Condition 55.2 VDC (@20°C)		-0.4332	1000	Pass
		-30°C Temp, Nominal Voltage Condition 48 VDC		-0.2440	1000	Pass
		-20°C Temp, Nominal Voltage Condition 48 VDC		-0.2164	1000	Pass
		-10°C Temp, Nominal Voltage Condition 48 VDC		0.0127	1000	Pass
		0°C Temp, Nominal Voltage Condition 48 VDC		1.2100	1000	Pass
		10°C Temp, Nominal Voltage Condition 48 VDC		0.0427	1000	Pass
		20°C Temp, Nominal Voltage Condition 48 VDC		0.1162	1000	Pass
		30°C Temp, Nominal Voltage Condition 48 VDC		-0.9040	1000	Pass
		40°C Temp, Nominal Voltage Condition 48 VDC		-0.0166	1000	Pass
		40°C Temp, Nominal Voltage Condition 48 VDC 50°C Temp, Nominal Voltage Condition 48 VDC		-0.0166 -1.4000	1000 1000	Pass Pass

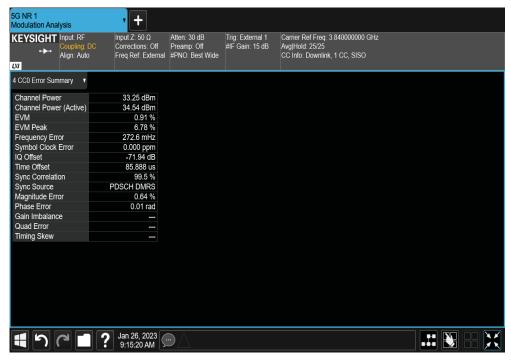
Report No. NOKI0052.1 73/373

Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 85% Low Voltage Condition 40.8 VDC (@20°C)

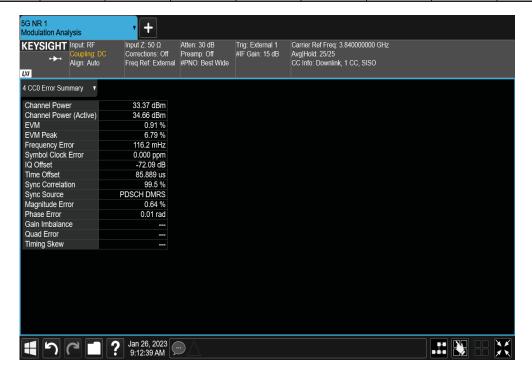
Value

Limit

Freq Δ (Hz)


Δ (Hz)

Result


0.2726

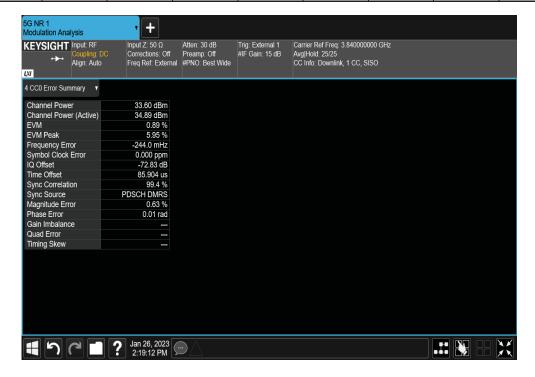
1000

Pass

Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 100% Nominal Voltage Condition 48 VDC (@20°C)									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result	_	
					0.1162	1000	Pass	ļ.	

Report No. NOKI0052.1 74/373

Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 115% High Voltage Condition 55.2 VDC (@20°C)

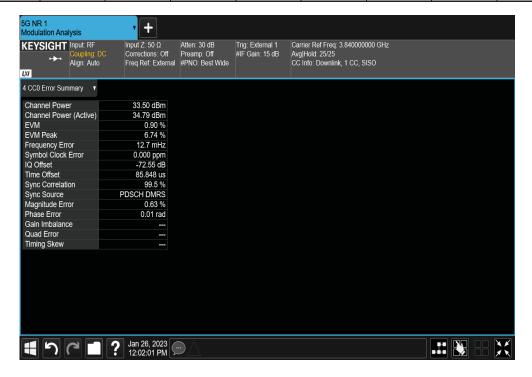

Value Limit

Freq Δ (Hz) Δ (Hz) Result

-0.4332 1000 Pass

CC0 Error Summary Channel Power Channel Power (Active)			
Channel Power (Active)			
	33.07 dBm		
:VM	34.36 dBm		
	0.91 %		
VM Peak	6.75 %		
requency Error	-433.2 mHz		
symbol Clock Error	0.000 ppm		
Q Offset	-71.93 dB		
ime Offset	85.889 us		
sync Correlation	99.4 %		
sync Source	PDSCH DMRS		
lagnitude Error	0.64 %		
hase Error	0.01 rad		
Sain Imbalance			
Quad Error			
iming Skew			

Port 22, Ba	and n77, 3700 - 3	980 MHz, NR40,	QPSK Modulatior	n, Mid Channel, 3	840.00 MHz, -30°	°C Temp, Nomina	al Voltage Conditi	on 48 VDC
					Value	Limit		
					Freq ∆ (Hz)	Δ (Hz)	Result	
					-0.244	1000	Pass	

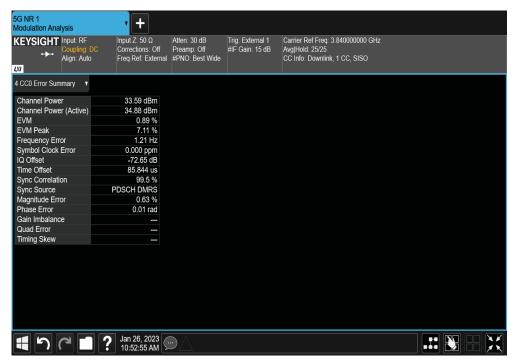


Report No. NOKI0052.1 75/373

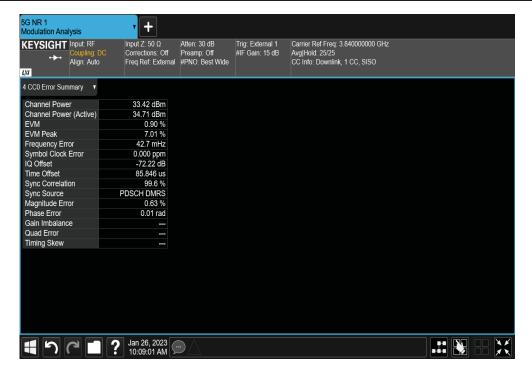
Channel Power 33.63	ons: Off Preamp: Off f: External #PNO: Best W #PNO: Best	Trig: External 1 #IF Gain: 15 dB Vide	Carrier Ref Freq. 3,8400000 Avg Hold: 25/25 CC Info: Downlink, 1 CC, SIS		
Align: Auto	f. External #PNO. Best W 3 dBm 2 dBm .89 % .61 % 4 mHZ J ppm 79 dB			50	
4 CC0 Error Summary ▼ Channel Power (Active) 34.92 EVM 0. EVM Peak 6. Frequency Error -216.4 Symbol Clock Error 0.000 IQ Offset -72.1 Time Offset 85.8 Sync Correlation 99 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	2 dBm .89 % .61 % 4 mHz 0 ppm 79 dB				
Channel Power 33.63 Channel Power (Active) 34.92 EVM 0. EVM Peak 6. Frequency Error -216.4 Symbol Clock Error 0.000 IQ Offset -72.7 Time Offset 85.8 Sync Correlation 95 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	2 dBm .89 % .61 % 4 mHz 0 ppm 79 dB				
Channel Power (Active) 34.92 EVM 0. EVM Peak 6. Frequency Error -216.4 Symbol Clock Error 0.000 IQ Offset -72.7 Time Offset 85.8 Sync Correlation 99 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	2 dBm .89 % .61 % 4 mHz 0 ppm 79 dB				
EVM 0. EVM Peak 6. Frequency Error -216.4 Symbol Clock Error 0.000 IQ Offset -72.7 Time Offset 85.8 Sync Correlation 99 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	.89 % .61 % 4 mHz 0 ppm 79 dB				
EVM Peak 6.5	.61 % 4 mHz 0 ppm 79 dB				
Frequency Error	1 mHz 0 ppm 79 dB				
Symbol Clock Error 0.000 IQ Offset -72.7 Time Offset 85.8 Sync Correlation 99 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	0 ppm 79 dB				
IQ Offset -72.1 Time Offset 85.8 Sync Correlation 90 Sync Source PDSCH D Magnitude Error 0.0 Gain Imbalance Quad Error	79 dB				
Time Offset 85.8 Sync Correlation 90 Sync Source PDSCH D Magnitude Error 0.0 Phase Error 0.0 Gain Imbalance Quad Error					
Sync Correlation 99 Sync Source PDSCH D Magnitude Error 0.0 Phase Error 0.0 Gain Imbalance Quad Error	65 us				
Sync Source PDSCH D Magnitude Error 0. Phase Error 0.0 Gain Imbalance 0.0 Quad Error 0.0					
Magnitude Error 0.0 Phase Error 0.0 Gain Imbalance Quad Error	9.5 %				
Phase Error 0.0 Gain Imbalance Quad Error					
Gain Imbalance Quad Error	.63 %				
Quad Error	01 rad				
Iming Skew					
1 9 P 1 ? Jan 26, 12:37:5					

Port 22, Ba	and n77, 3700 - 3	980 MHz, NR40,	QPSK Modulation	n, Mid Channel, 3	840.00 MHz, -10°	°C Temp, Nomina	al Voltage Conditi	on 48 VDC
					Value	Limit		
					Freq ∆ (Hz)	Δ (Hz)	Result	
					0.0127	1000	Pass	

Report No. NOKI0052.1 76/373



Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 0°C Temp, Nominal Voltage Condition 48 VDC

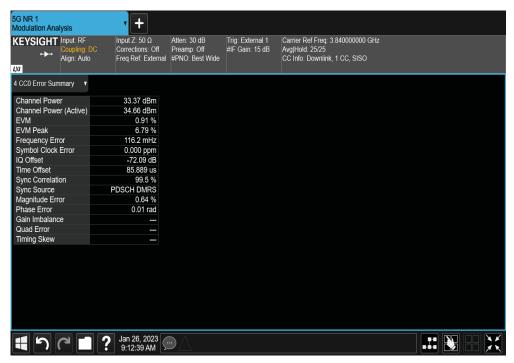

Value Limit

Freq Δ (Hz) Δ (Hz) Result

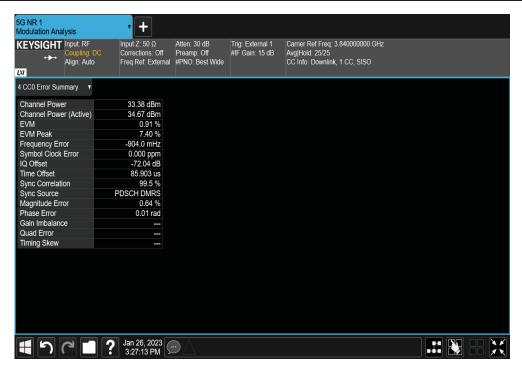
1.21 1000 Pass

Port 22, B	and n77, 3700 - 3	980 MHz, NR40,	QPSK Modulatio	n, Mid Channel, 3	3840.00 MHz, 10°	C Temp, Nomina	I Voltage Conditi	on 48 VDC
					Value	Limit		
					Freq ∆ (Hz)	Δ (Hz)	Result	
					0.0427	1000	Pass	

Report No. NOKI0052.1 77/373



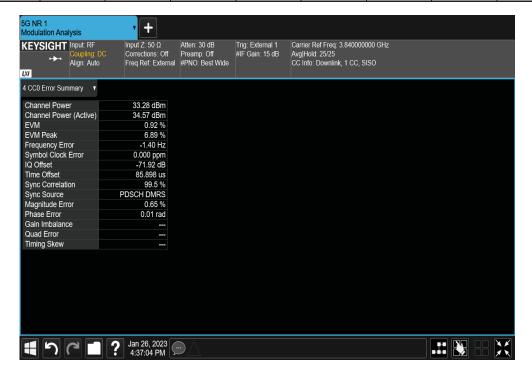
Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 20°C Temp, Nominal Voltage Condition 48 VDC


Value Limit

Freq Δ (Hz) Δ (Hz) Result

0.1162 1000 Pass

Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 30°C Temp, Nominal Voltage Condition 48 VDC									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result		
					-0.904	1000	Pass		



Report No. NOKI0052.1 78/373

KEYSIGHT Input: RF Coupling: DC	Input Z: 50 Ω Corrections: Off	Atten: 30 dB Preamp: Off	Trig: External 1 #IF Gain: 15 dB	Carrier Ref Freq: 3.840000000 GHz Avg Hold: 25/25	
Align: Auto	Freq Ref: External	#PNO: Best Wide		CC Info: Downlink, 1 CC, SISO	
4 CC0 Error Summary ▼					
Channel Power	33.31 dBm				
Channel Power (Active)	34.60 dBm				
EVM	0.92 %				
EVM Peak	6.81 %				
Frequency Error	-16.6 mHz				
Symbol Clock Error	0.000 ppm				
Q Offset	-71.94 dB				
Time Offset	85.905 us				
Sync Correlation	99.5 %				
Sync Source	PDSCH DMRS				
Magnitude Error	0.65 %				
Phase Error	0.01 rad				
Gain Imbalance					
Quad Error					
Timing Skew					
	? Jan 26, 2023 4:06:45 PM				

Port 22, Band n77, 3700 - 3980 MHz, NR40, QPSK Modulation, Mid Channel, 3840.00 MHz, 50°C Temp, Nominal Voltage Condition 48 VDC									
					Value	Limit			
					Freq ∆ (Hz)	Δ (Hz)	Result	_	
					-1.4	1000	Pass		

Report No. NOKI0052.1 79/373