

Report No.: FR042002D

FCC RADIO TEST REPORT

FCC ID : J9CQSIP7180

Equipment : 7c Modular Platform

Brand Name : Qualcomm Model Name : QSIP7180

Applicant: Qualcomm Technologies, Inc.

5775 Morehouse Dr.San Diego, CA 92121-1714 (USA)

Manufacturer : Qualcomm Technologies, Inc.

5775 Morehouse Dr.San Diego, CA 92121-1714 (USA)

Standard : FCC Part 15 Subpart E §15.407

The product was received on Jul. 29, 2020 and testing was started from Aug. 17, 2020 and completed on Aug. 27, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Louis Win

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

Table of Contents

Report No.: FR042002D

His	tory o	of this test report	3
Su	mmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Maximum Conducted Output Power Measurement	10
	3.2	Unwanted Emissions Measurement	12
	3.3	Antenna Requirements	16
4	List o	of Measuring Equipment	17
5	Unce	rtainty of Evaluation	18
Ap	pendi	x A. Conducted Test Results	
Ap	pendix	x B. Radiated Spurious Emission	
Ap	pendix	x C. Radiated Spurious Emission Plots	
Ap	pendix	x D. Duty Cycle Plots	
Ap	pendix	x E. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020 Report Version : 02

Report Template No.: BU5-FR15EWLAC MA Version 2.4

History of this test report

Report No.: FR042002D

Report No.	Version	Description	Issued Date
FR042002D	01	Initial issue of report	Sep. 17, 2020
FR042002D	02	Revise the typo in the note of summary of test result	Oct. 23, 2020

TEL: 886-3-327-3456 Page Number : 3 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

Summary of Test Result

Report No.: FR042002D

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.403(i)	26dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.407(a)	Maximum Conducted Output Power	Pass	-
-	15.407(a)	Power Spectral Density	Not Required	-
3.2	15.407(b)	Unwanted Emissions	Pass	Under limit 1.98 dB at 5147.420 MHz
-	15.207	AC Conducted Emission	Not Required	-
-	15.407(c)	Automatically Discontinue Transmission	Not Required	-
3.3	15.203 15.407(a)	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- QSIP7180 is a module including WCDMA, LTE, Wi-Fi and BT wireless communication technology. QSIP7180P is a variant module of QSIP7180, the design architecture of the two is the same, but QSIP7180P removes the WWAN functional blocks such as LTE and WCDMA. So, QSIP7180 keeps its' Wi-Fi and BT functional block with the same design and electrical characteristics as QSIP7180P. Therefore, we run spot check verification approach to confirm and certify the QSIP7180's EMC and RF performance which is theoretically equivalent to QSIP7180P.

As presented in this report which is the result of spot check verification for QSIP7180.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Ruby Zou

TEL: 886-3-327-3456 Page Number : 4 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac, and GNSS.

Report No.: FR042002D

	Antenna Information									
Antenna No.	Brand	Model	Antenna Net gain	Frequency Range (MHz)	Cable Loss (dBi)	Ant. Type	Connector Type	Cable Length (mm)		
			3.00	2400-2500 MHz	1.15	DIEA				
1	WNC	81.EBJ15.005	2.56	5150-5350 MHz	1.7		DIEA	DIEA	PIFA	IPEX
'	VVINC	61.EB315.005	4.76	5470-5725MHz	1.74	FIFA	IFEX	300		
			4.76	5725-5825 MHz	1.79					
			3.62	2400-2500 MHz	1.15					
2	WNC	81.EBJ15.005	3.08	5150-5350 MHz	1.7	PIFA	IPEX	Length		
	VVINC	61.EB315.005	3.31	5470-5725MHz	1.74	FIFA	IFEX			
			2.42	5725-5825 MHz	1.79					

Remark:

- 1. Above antenna gains of antenna are Total (H+V).
- 2. For Bluetooth mode was fixed transmission on Chain (0)
- 3. The maximum gain was chosen for test.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. TH05-HY		

Report No.: FR042002D

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
rest site NO.	03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- + ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in two degrees (0° or 90°). The worst cases (Degree 0) were recorded in this report.

Report No.: FR042002D

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz Band 1	38*	5190	46*	5230
(U-NII-1)	40	5200	48	5240
	42#	5210		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
(6 1111 271)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(0 1411 20)	108	5540	136	5680
	110*	5550	140	5700

TEL: 886-3-327-3456 Page Number : 7 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
	122#	5610	128	5640

Report No.: FR042002D

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Ctroddlo Chornol	138#	5690	144	5720
Straddle Channel	142*	5710		

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

MIMO Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

	Ch. #	Band I:5150-5250 MHz
	CII.#	802.11a
L	Low	36
M	Middle	-
Н	High	-
	Straddle	-

Remark: For radiation spurious emission, the final modulation and the worst data rate was reference the max RF conducted power.

TEL: 886-3-327-3456 Page Number : 8 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

2.3 Connection Diagram of Test System

Report No.: FR042002D

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	Power Supply	GW Instek	GPE-2323	N/A	Unshielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v 4.0.00156.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 9 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

3 Test Result

3.1 Maximum Conducted Output Power Measurement

3.1.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.15-5.25 GHz bands:

■ For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR042002D

For the 5.25-5.725 GHz bands:

■ The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 10 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

3.1.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Report No.: FR042002D

Method PM-G (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

3.1.4 Test Setup

3.1.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

3.2 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR042002D

3.2.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

TEL: 886-3-327-3456 Page Number : 12 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

Report No.: FR042002D

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (2) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 13 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

2. The EUT was placed on a turntable with 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR042002D

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

TEL: 886-3-327-3456 Page Number : 14 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

3.2.4 Test Setup

For radiated emissions above 1GHz

3.2.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.6 Duty Cycle

Please refer to Appendix D.

3.2.7 Test Result of Radiated Spurious Emissions

Please refer to Appendix B and C.

TEL: 886-3-327-3456 Page Number : 15 of 18
FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

Report Template No.: BU5-FR15EWL AC MA Version 2.4

Report Version : 02

Report No.: FR042002D

3.3 Antenna Requirements

3.3.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR042002D

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

The EUT supports beamforming for 802.11ac modes.

The directional gain calculation is following F)2)e)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	3.08	3.08	6.09	6.09	0.09	0.09
Band II	3.08	3.08	6.09	6.09	0.09	0.09
Band III	4.76	4.76	7.77	7.77	1.77	1.77

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

 $PSD \ Limit \ Reduction = DG(PSD) - 6dBi, (min = 0)$

TEL: 886-3-327-3456 Page Number : 16 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	Aug. 17, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054S NO10	10MHz~6GHz	Dec. 23, 2019	Aug. 17, 2020	Dec. 22, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Dec. 30, 2019	Aug. 17, 2020	Dec. 29, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Aug. 22, 2019	Aug. 17, 2020	Aug. 21, 2020	Conducted (TH05-HY)
Power Supply	GW Instek	SPS-606	GES84293 1	NA	Aug. 19, 2019	Aug. 17, 2020	Aug. 18, 2020	Conducted (TH05-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-162 0	1-18GHz	Oct. 28, 2019	Aug. 25, 2020~ Aug. 27, 2020	Oct. 27, 2020	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 10, 2019	Aug. 25, 2020~ Aug. 27, 2020	Dec. 09, 2020	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	171000180 0055006	1GHz~18GHz	May 07, 2020	Aug. 25, 2020~ Aug. 27, 2020	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 21, 2019	Aug. 25, 2020~ Aug. 27, 2020	Aug. 20, 2021	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 13, 2019	Aug. 25, 2020~ Aug. 27, 2020	Dec. 12, 2020	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY541300 85	20MHz~8.4GHz	Nov. 01, 2019	Aug. 25, 2020~ Aug. 27, 2020	Oct. 31, 2020	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	May 04, 2020	Aug. 25, 2020~ Aug. 27, 2020	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Aug. 25, 2020~ Aug. 27, 2020	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Aug. 25, 2020~ Aug. 27, 2020	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k5)	RK-000451	N/A	N/A	Aug. 25, 2020~ Aug. 27, 2020	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 14, 2020	Aug. 25, 2020~ Aug. 27, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4 PE	30M-18G	Apr. 14, 2020	Aug. 25, 2020~ Aug. 27, 2020	Apr. 13, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY37710/ 4	30M-18G	Apr. 17, 2020	Aug. 25, 2020~ Aug. 27, 2020	Apr. 16, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 25, 2020	Aug. 25, 2020~ Aug. 27, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 25, 2020	Aug. 25, 2020~ Aug. 27, 2020	Feb. 24, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN4	1.53G Low Pass	Jul. 03, 2020	Aug. 25, 2020~ Aug. 27, 2020	Jul. 02, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX8-5872.5 -6750-18000-40 ST	SN6	6.75GHz High Pass Filter	Jul. 03, 2020	Aug. 25, 2020~ Aug. 27, 2020	Jul. 02, 2021	Radiation (03CH15-HY)

Report No.: FR042002D

TEL: 886-3-327-3456 Page Number : 17 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	E 4
of 95% (U = 2Uc(y))	5.4

Report No.: FR042002D

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	3.0

TEL: 886-3-327-3456 Page Number : 18 of 18 FAX: 886-3-328-4978 Issued Date : Oct. 23, 2020

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Kathy Chen / Kai Liao / Shiming Liu	Temperature:	21~22	°C
Test Date:	2020/8/17	Relative Humidity:	51~52	%

TEST RESULTS DATA Average Power Table

	FCC Band I MIMO												
Mod.	Data Rate	KTN	CH.	Freq. (MHz)		Average FCC Conducted Conducted DG Power Power Limit (dBi) (dBm) (dBm)		Conducted DG Power Limit (dBi)			Pass/Fail		
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2		
11a	6Mbps		36	5180	17.40	17.80	20.61	23.	.91	6.09			Pass
11a	6Mbps	2	44	5220	18.00	18.30	21.16	23.	.91	6.09			Pass
11a	6Mbps	2	48	5240	18.00	18.40	21.21	23.	.91	6.09			Pass
HT20	MCS0	2	36	5180	17.10	18.10	20.64	23.	.91	6.09			Pass
HT20	MCS0	2	44	5220	17.40	18.20	20.83	23.	.91	6.09			Pass
HT20	MCS0	2	48	5240	17.60	18.20	20.92	23.	.91	6.09			Pass
HT40	MCS0	2	38	5190	14.30	15.10	17.73	23.	.91	6.0)9		Pass
HT40	MCS0	2	46	5230	17.40	18.10	20.77	23.	.91	6.0)9		Pass
VHT20	MCS0	2	36	5180	16.90	18.00	20.50	23.	.91	6.0)9		Pass
VHT20	MCS0	2	44	5220	17.10	18.10	20.64	23.	.91	6.0	9		Pass
VHT20	MCS0	2	48	5240	17.50	18.10	20.82	23.	.91	6.0	9		Pass
VHT40	MCS0	2	38	5190	14.10	15.00	17.58	23.	.91	6.0	9		Pass
VHT40	MCS0	2	46	5230	17.30	18.00	20.67	23.	.91	6.09			Pass
VHT80	MCS0	2	42	5210	12.50	12.80	15.66	23.	.91	6.0)9		Pass

TEST RESULTS DATA Average Power Table

	FCC Band II MIMO												
Mod.	Data Rate	ХТИ	CH.	Freq. (MHz)	Average Conducted Power (dBm)			FCC Conducted Power Limit (dBm)		DG (dBi)		EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(32)	
11a	6Mbps	2	52	5260	18.10	18.10	21.11	23.	89	6.0	9	30	Pass
11a	6Mbps	2	60	5300	18.10	18.30	21.21	23.	89	6.09		30	Pass
11a	6Mbps	2	64	5320	16.90	17.60	20.27	23.	89	6.09		30	Pass
HT20	MCS0	2	52	5260	17.80	18.10	20.96	23.	89	6.09		30	Pass
HT20	MCS0	2	60	5300	17.90	18.30	21.11	23.	89	6.09		30	Pass
HT20	MCS0	2	64	5320	16.90	17.60	20.27	23.	89	6.0)9	30	Pass
HT40	MCS0	2	54	5270	17.70	18.10	20.91	23.	89	6.0)9	30	Pass
HT40	MCS0	2	62	5310	10.80	11.10	13.96	23.	89	6.0)9	30	Pass
VHT20	MCS0	2	52	5260	17.70	18.00	20.86	23.	89	6.0)9	30	Pass
VHT20	MCS0	2	60	5300	17.70	18.20	20.97	23.	89	6.0)9	30	Pass
VHT20	MCS0	2	64	5320	16.80	17.50	20.17	23.	89	6.0)9	30	Pass
VHT40	MCS0	2	54	5270	17.60	18.00	20.81	23.	23.89)9	30	Pass
VHT40	MCS0	2	62	5310	10.60	11.00	13.81	23.	89	6.09		30	Pass
VHT80	MCS0	2	58	5290	11.20	11.80	14.52	23.	89	6.0)9	30	Pass

TEST RESULTS DATA Average Power Table

	FCC Band III MIMO												
Mod.	Data Rate	ХТИ	CH.	Freq. (MHz)		Average conducte Power (dBm)		FC Cond Power (dB	ucted r Limit	_	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(aBiii)	
11a	6Mbps	2	100	5500	17.50	17.90	20.71	22.	21	7.	77	30	Pass
11a	6Mbps	2	116	5580	16.80	16.80	19.81	22.	21	7.	77	30	Pass
11a	6Mbps	2	140	5700	17.90	17.60	20.76	22.	21	7.77		30	Pass
HT20	MCS0	2	100	5500	17.50	18.00	20.77	22.	21	7.77		30	Pass
HT20	MCS0	2	116	5580	17.90	17.70	20.81	22.	21	7.77		30	Pass
HT20	MCS0	2	140	5700	16.60	16.30	19.46	22.	21	7.77		30	Pass
HT40	MCS0	2	102	5510	15.30	16.20	18.78	22.	21	7.77		30	Pass
HT40	MCS0	2	110	5550	18.10	17.80	20.96	22.	21	7.77		30	Pass
HT40	MCS0	2	134	5670	17.60	17.20	20.41	22.	21	7.	77	30	Pass
VHT20	MCS0	2	100	5500	17.10	17.60	20.37	22.	21	7.	77	30	Pass
VHT20	MCS0	2	116	5580	17.40	17.30	20.36	22.	21	7.	77	30	Pass
VHT20	MCS0	2	140	5700	16.50	16.10	19.31	22.	21	7.	77	30	Pass
VHT40	MCS0	2	102	5510	15.20	16.00	18.63	22.	21	7.	77	30	Pass
VHT40	MCS0	2	110	5550	18.00	17.70	20.86	22.	21	7.	77	30	Pass
VHT40	MCS0	2	134	5670	17.50	17.10	20.31	22.	21	7.	77	30	Pass
VHT80	MCS0	2	106	5530	12.60	13.00	15.81	22.	21	7.	77	30	Pass
VHT80	MCS0	2	122	5610	18.00	17.60	20.81	22.	21	7.	77	30	Pass

	FCC Band III straddle channel MIMO																		
Mod.	Data Rate	KTN	СН.	Freq. (MHz)		Average Conducted Power (dBm)		Conducted Power		FCC Conducted Power Limit (dBm)		DG (dBi)		EIRP Power Limit (dBm)	Pass/Fail				
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(aBiii)							
11a	6Mbps	2	144	5720	17.30	17.10	20.21	21.	.60	7.7	77	30	Pass						
HT20	MCS0	2	144	5720	17.70	17.40	20.56	21.	21.91		21.91		77	30	Pass				
HT40	MCS0	2	142	5710	18.10	17.50	20.82	22.21		22.21		22.21		22.21		7.7	77	30	Pass
VHT20	MCS0	2	144	5720	17.60	17.30	20.46	22.21		7.7	77	30	Pass						
VHT40	MCS0	2	142	5710	17.80	17.20	20.52	22.	.21	7.7	77	30	Pass						
VHT80	MCS0	2	138	5690	18.30	17.50	20.93	22.21		7.7	77	30	Pass						

Appendix B. Radiated Spurious Emission

Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Temperature :	21.4~22.9°C
rest Engineer .		Relative Humidity :	52~61%

Report No.: FR042002D

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	5144.82	60.79	-13.21	74	48.22	32.09	10.49	30.01	100	49	Р	Н
	5147.42	52.02	-1.98	54	39.45	32.09	10.49	30.01	100	49	Α	Н
*	5180	114.51	-	-	102.06	31.92	10.54	30.01	100	49	Р	Н
*	5180	106.93	-	-	94.48	31.92	10.54	30.01	100	49	Α	Н
												Н
												Н
	5147.42	61.74	-12.26	74	49.17	32.09	10.49	30.01	393	340	Р	٧
	5148.46	51.85	-2.15	54	39.27	32.1	10.49	30.01	393	340	Α	V
*	5180	113.69	-	-	101.24	31.92	10.54	30.01	393	340	Р	V
*	5180	106.23	-	-	93.78	31.92	10.54	30.01	393	340	Α	V
												V
												٧
	* *	(MHz) 5144.82 5147.42 * 5180 * 5180 5147.42 5148.46 * 5180	(MHz) (dBμV/m) 5144.82 60.79 5147.42 52.02 * 5180 114.51 * 5180 106.93 5147.42 61.74 5148.46 51.85 * 5180 113.69	(MHz) (dBμV/m) (dB) 5144.82 60.79 -13.21 5147.42 52.02 -1.98 * 5180 114.51 - * 5180 106.93 - 5147.42 61.74 -12.26 5148.46 51.85 -2.15 * 5180 113.69 -	Limit Line (MHz) (dBμV/m) (dB) (dBμV/m) 5144.82 60.79 -13.21 74 5147.42 52.02 -1.98 54 * 5180 114.51 - - * 5180 106.93 - - 5147.42 61.74 -12.26 74 5148.46 51.85 -2.15 54 * 5180 113.69 - -	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) 5144.82 60.79 -13.21 74 48.22 5147.42 52.02 -1.98 54 39.45 * 5180 114.51 - - 102.06 * 5180 106.93 - - 94.48 5147.42 61.74 -12.26 74 49.17 5148.46 51.85 -2.15 54 39.27 * 5180 113.69 - - 101.24	Limit Line Level Factor (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) 5144.82 60.79 -13.21 74 48.22 32.09 5147.42 52.02 -1.98 54 39.45 32.09 * 5180 114.51 - - 102.06 31.92 * 5180 106.93 - - 94.48 31.92 5147.42 61.74 -12.26 74 49.17 32.09 5148.46 51.85 -2.15 54 39.27 32.1 * 5180 113.69 - - 101.24 31.92	Limit Line Level Factor Loss (MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 5144.82 60.79 -13.21 74 48.22 32.09 10.49 * 5147.42 52.02 -1.98 54 39.45 32.09 10.49 * 5180 114.51 - - 102.06 31.92 10.54 * 5180 106.93 - - 94.48 31.92 10.54 5147.42 61.74 -12.26 74 49.17 32.09 10.49 5148.46 51.85 -2.15 54 39.27 32.1 10.49 * 5180 113.69 - - 101.24 31.92 10.54	Limit Line Level Factor Loss Factor (MHz) (dBμV/m) (dBμV/m) (dBμV) (dBμV) (dBm) (dB) (dB) 5144.82 60.79 -13.21 74 48.22 32.09 10.49 30.01 5147.42 52.02 -1.98 54 39.45 32.09 10.49 30.01 * 5180 114.51 - - 102.06 31.92 10.54 30.01 * 5180 106.93 - - 94.48 31.92 10.54 30.01 5147.42 61.74 -12.26 74 49.17 32.09 10.49 30.01 5148.46 51.85 -2.15 54 39.27 32.1 10.49 30.01 * 5180 113.69 - - 101.24 31.92 10.54 30.01	(MHz) (dBμV/m) (dB) (dBμV/m) ((MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμν/m) (dμν/m) (dμν/m) (dμν/m) (dμν	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμV) (dBm) (dBm)

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: B1 of B4

Band 1 5150~5250MHz

Report No.: FR042002D

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	}	
Ant. 0+1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		10360	49.37	-18.83	68.2	55.96	39.9	14.41	60.9	100	0	Р	Н
		15540	47.53	-26.47	74	54.96	38	17.28	62.71	100	0	Р	Н
													Н
802.11a													Н
CH 36 5180MHz		10360	48.73	-19.47	68.2	55.32	39.9	14.41	60.9	100	0	Р	V
3100WIF12		15540	47.17	-26.83	74	54.6	38	17.28	62.71	100	0	Р	V
													V
													V
Remark		other spurious		Dook ond	Averagelim	it line							

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number: B2 of B4

Note symbol

Report No. : FR042002D

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : B3 of B4

A calculation example for radiated spurious emission is shown as below:

Report No.: FR042002D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0+1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : B4 of B4

Appendix C. Radiated Spurious Emission

Teet Engineer		Temperature :	21.4~22.9°C
Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Relative Humidity :	52~61%

Report No. : FR042002D

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number : C1 of C

Band 1 - 5150~5250MHz WIFI 802.11a (Band Edge @ 3m)

Report No.: FR042002D

TEL: 886-3-327-3456 Page Number : C2 of C4

Report No.: FR042002D

TEL: 886-3-327-3456 Page Number : C3 of C4

Band 1 - 5150~5250MHz WIFI 802.11a (Harmonic @ 3m)

Report No.: FR042002D

TEL: 886-3-327-3456 Page Number : C4 of C4

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
0+1	802.11a for Ant 0	97.64	2065	0.48	1kHz	0.10
0+1	802.11a for Ant 1	97.87	2070	0.48	1kHz	0.09

Report No. : FR042002D

TEL: 886-3-327-3456 Page Number : D1 of D2

C RADIO TEST REPORT Report No. : FR042002D

MIMO <Ant. 0>

Date: 11.JUN.2020 15:45:04

MIMO <Ant. 1>

802.11a

Date: 11.JUN.2020 15:46:58

TEL: 886-3-327-3456 Page Number : D2 of D2