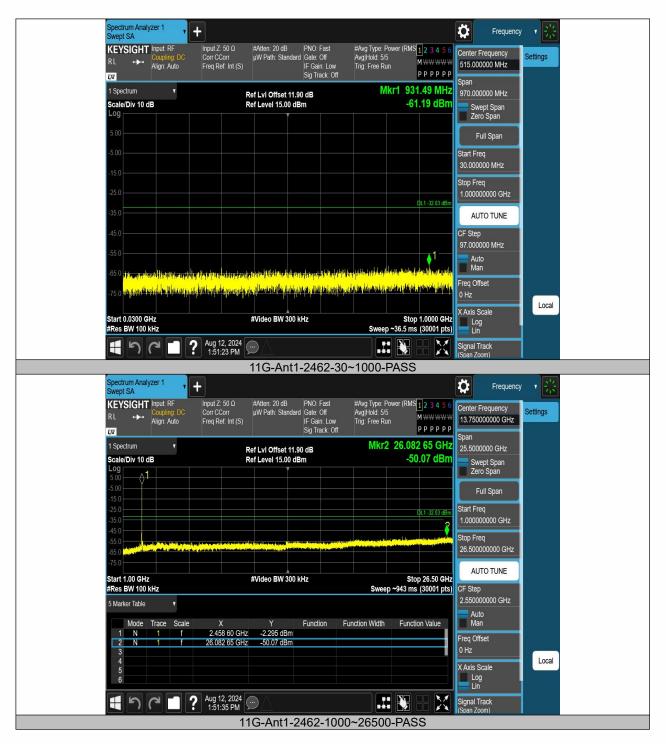


EMTEK (Dongguan) Co., Ltd.


Access to the World

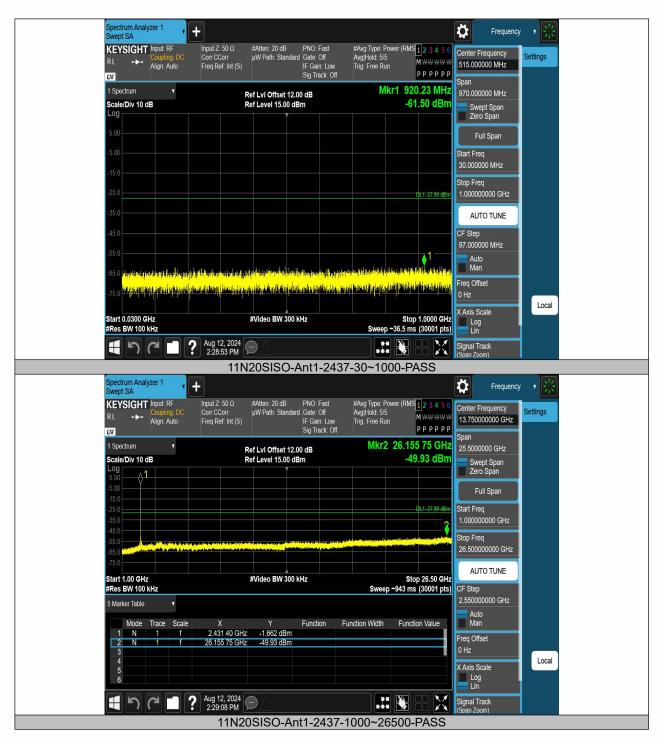
EMTEK (Dongguan) Co., Ltd.

Access to the World

EMTEK (Dongguan) Co., Ltd.

pectrum Analyzer 1 wept SA Ö + Frequency #Atten: 30 dB PNO: Fast µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 Avg[Hold: 10/10 Trig: Free Run Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) KEYSIGHT Input: RF Center Frequency Settings Align: Auto 2.412000000 GHz рррррр L)(I Span Mkr1 2.413 38 GHz 1 Spectrum 30.0000000 MHz Ref LvI Offset 12.04 dB Ref Level 30.00 dBm -1.96 dBm Scale/Div 10 dB Swept Span Zero Span Log Full Span Start Freq 2 397000000 GHz Stop Freq 2.427000000 GHz AUTO TUNE Arrive CF Step 3.000000 MHz Auto Man Freq Offset 0 Hz Local X Axis Scale Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 1.13 ms (1001 pts) #Video BW 300 kHz Log Lin **?** Aug 12, 2024 ... \mathbb{X} ちる Signal Track H Γ1 11N20SISO-Ant1-2412-0~Reference-PASS Spectrum Analyzer 1 Swept SA Ö + Frequency Input Z: 50 Ω #Atten: 20 dB PNO: Fast KEYSIGHT Input RF #Avg Type: Power (RMS 1 2 3 4 5 6 #Atten: 20 db T Ho, Hay μW Path: Standard Gate: Off IF Gain: Low Sig Track: Off Center Frequency Corr CCorr Freq Ref: Int (S) Avg|Hold: 5/5 Trig: Free Run Settings +++ M₩₩₩₩ 515.000000 MHz Align: Auto рррррр L)(I Span Mkr1 895.34 MHz 1 Spectrum Ref LvI Offset 12.04 dB Ref Level 15.00 dBm 970.000000 MHz -60.93 dBm Scale/Div 10 dB Swept Span Zero Span Loc Full Span Start Freq 30.000000 MHz Stop Freq 1.000000000 GHz DL1-3196 dE AUTO TUNE CF Step 97.000000 MHz Auto Man Freq Offset Å, kan op stillet hildet i strong van i de dat gekongen neves til set kan proving had bij te skryvers i gebist u skryvet set i de starfiket Local X Axis Scale Start 0.0300 GHz #Res BW 100 kHz Stop 1.0000 GHz Sweep ~36.5 ms (30001 pts) #Video BW 300 kHz Log Lin モッペロ? Aug 12, 2024 💬 \mathbf{X} .# 🔖 Signal Track 11N20SISO-Ant1-2412-30~1000-PASS

EMTEK (Dongguan) Co., Ltd.



pectrum Analyzer 1 wept SA Ö + Frequency #Atten: 20 dB PNO: Fast µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) KEYSIGHT Input: RF Center Frequency Settings Align: Auto 13,750000000 GHz рррррр L)(I Span Mkr2 25.919 45 GHz 1 Spectrum . 25.5000000 GHz Ref LvI Offset 12.04 dB Ref Level 15.00 dBm -50.05 dBm Scale/Div 10 dB Swept Span Zero Span og Full Span Start Freq DL1 -31.96 dE 1 00000000 GHz Stop Freq 26.50000000 GHz AUTO TUNE #Video BW 300 kHz Start 1.00 GHz Stop 26.50 GHz #Res BW 100 kHz Sweep ~943 ms (30001 pts) CF Step 2.550000000 GHz 5 Marker Table Auto Man Mode Trace Scale Function Function Width Function Value 2.410 15 GHz -1.567 dBm Freq Offse 25.919 45 GHz -50.05 dBm Local X Axis Scale 5 Log Lin モンマロ Aug 12, 2024 🗩 X Signal Track (Span Zoom) 11N20SISO-Ant1-2412-1000~26500-PASS Spectrum Analyzer 1 Swept SA Ö + Frequency #Atten: 30 dB PNO: Fast µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off Input Z: 50 Ω KEYSIGHT Input: RF #Avg Type: Power (RMS 1 2 3 4 5 6 Center Frequency Corr CCorr Freq Ref: Int (S) Avg|Hold: 10/10 Trig: Free Run Settings Align: Auto M₩₩₩₩ 2.437000000 GHz рррррр L)XI Span Mkr1 2.430 76 GHz 1 Spectrum Ref LvI Offset 12.00 dB Ref Level 30.00 dBm 30.0000000 MHz Scale/Div 10 dB 2.11 dBm Swept Span Zero Span Loc Full Span Start Freq 2.422000000 GHz manuprounding porrelated and wood and Stop Freq 2.452000000 GHz AUTO TUNE Mannuman CF Step 3.000000 MHz Marmont Auto Man Freq Offset Local X Axis Scale Span 30.00 MHz Sweep 1.13 ms (1001 pts) Center 2.43700 GHz #Video BW 300 kHz Log Lin #Res BW 100 kHz モッペロ? Aug 12, 2024 💬 \mathbf{X} .II 🔖 Signal Track 11N20SISO-Ant1-2437-0~Reference-PASS

EMTEK (Dongguan) Co., Ltd.

Access to the World

EMTEK (Dongguan) Co., Ltd.

pectrum Analyzer 1 wept SA Ö + Marker #Atten: 30 dB PNO: Fast µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold:>10/10 Trig: Free Run Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) KEYSIGHT Input: RF Select Marker Align: Auto Marker 1 рррррр Da Marker Frequency Settings Mkr1 2.458 22 GHz 1 Spectrum 2.458220000 GHz Ref LvI Offset 11.90 dB Ref Level 30.00 dBm 1.58 dBm Scale/Div 10 dB Peak Log Peak Search Pk Search Config Next Peak 1 Arthrong me Next Pk Right Properties nhanh por have marginess have been Marker Function Next Pk Left and and Minimum Peak Marker→ AN Pk-Pk Search Counter 10.0 marganether all mapple Marker Delta Mkr→CF Mkr→Ref Lvl Continuous Peak Search Span 30.00 MHz Sweep 1.13 ms (1001 pts) Center 2.46200 GHz #Res BW 100 kHz #Video BW 300 kHz On Off **?** Aug 12, 2024 2:29:36 PM X うつ H Γ1 11N20SISO-Ant1-2462-0~Reference-PASS Spectrum Analyzer 1 Swept SA Ö + Marker #Atten: 20 dB PNO: Fast µW Path: Standard Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Select Marker Input Z: 50 Ω KEYSIGHT Input: RF Corr CCorr Freq Ref: Int (S) Avg|Hold: 5/5 Trig: Free Run Align: Auto MWWWW Marker 1 рррррр L)(I Marker Frequency Settings Mkr1 882.47 MHz 1 Spectrum Ref LvI Offset 11.90 dB Ref Level 15.00 dBm 882.468333 MHz Scale/Div 10 dB -60.96 dBm Peak Peak Search Loc Pk Search Config Next Peak Next Pk Right Properties Marker Function Next Pk Left DL1 -32.13 dB Minimum Peak Marker→ Pk-Pk Search Counter Marker Delta Mkr→CF angler en de slange de litere per litere des proves er en este filiplas en filiplas per de den a la prove per de sitere des stands per de la sectifica de la prove de stands per de s Mkr→Ref Lvl Local Continuous Peak Start 0.0300 GHz #Res BW 100 kHz Stop 1.0000 GHz Search Sweep ~36.5 ms (30001 pts) #Video BW 300 kHz On Off モッペロ? Aug 12, 2024 💬 .# 🔖 X 11N20SISO-Ant1-2462-30~1000-PASS

EMTEK (Dongguan) Co., Ltd.

Access t	o the	World
----------	-------	-------

Spectrum Analyzer 1	·		Marker	· *
RL +++ Align: Auto	Input Z: 50 Ω #Atten: 20 dB PNO: Fast Corr CCorr μW Path: Standard Gate: Off Freq Ref: Int (S) IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS 1 2 3 4 5 6 Avg Hold: 5/5 Trig: Free Run PPPPPP	[8.3.0797 - 1923]	•
1 Spectrum v	Ref Lvl Offset 11.90 dB	Mkr2 26.061 40 GHz	Marker Frequency	Settings
Scale/Div 10 dB	Ref Level 15.00 dBm	-49.59 dBm		Peak Search
Log 5.00 -5.00 -15.0			Next Peak	Pk Search Config
-25.0		DL1 -32.13 dBm	Next Pk Right	Properties
-45.0 -55.0			Next Pk Left	Marker Function
-65.0			Minimum Peak	Marker→
Start 1.00 GHz #Res BW 100 kHz	#Video BW 300 kHz	Stop 26.50 GHz Sweep ~943 ms (30001 pts)		Counter
5 Marker Table 🔹 🔻			Marker Delta	
Mode Trace Scale	X Y Function 2.464 55 GHz 1.631 dBm	Function Width Function Value	Mkr→CF	
2 N 1 f	26.061 40 GHz -49.59 dBm		Mkr→Ref Lvi	
4 5 6			Continuous Peak Search On	Local
4 h C 1 ?	Aug 12, 2024	 .	Off	
	11N20SISO-Ant1-2462	2-1000~26500-PASS		

东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

8.6 RADIATED SPURIOUS EMISSION

8.6.1 Applicable Standard

According to FCC Part 15.247(d), 15.205, 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02 According to IC RSS-Gen and RSS-247

8.6.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205 the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.6.3 Test Configuration

Test according to clause 6.2 radio frequency test setup

8.6.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

余莞布信濃科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F.,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn

For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz for $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT,

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.6.5 **Test Results**

Temperature:	26° C					
Relative Humidity:	54%					
ATM Pressure:	1011 mbar					

Spurious Emission below 30MHz(9KHz to 30MHz)

Freq. (MHz)	Ant.Pol.	Emis Level(d		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK È	ÁV	PK	AV	PK	AV
		AV					

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All the antenna(Antenna 1) and modes(802.11b/g/n) have been tested and the worst(Antenna 1, 802.11b) result recorded was report as below:

Test mode:	802.1	11b	Freque	ency:	ncy: Channel 1: 2412MHz			
Freq. (MHz)	Ant.Pol.		nission (dBuV/m) Limit 3m(d		(dBuV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
9466.535	V	57.77	44.75	74.00	54.00	-16.23	-9.25	
9942.763	V	57.86	45.68	74.00	54.00	-16.14	-8.32	
14022.63	V	57.33	44.05	74.00	54.00	-16.67	-9.95	
8276.84	Н	57.46	44.94	74.00	54.00	-16.54	-9.06	
12322.58	Н	57.56	44.43	74.00	54.00	-16.44	-9.57	
15382.37	Н	57.46	43.82	74.00	54.00	-16.54	-10.18	

Test mode: 802.11b Frequency:

Channel 6: 2437MHz

Freq. (MHz)	Ant.Pol.	bl. Emission Level(dBuV/m)		Limit 3m(dBuV/m)	Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
8242.054	V	57.10	44.36	74.00	54.00	-16.90	-9.64	
10010.22	V	57.33	44.60	74.00	54.00	-16.67	-9.40	
12900.03	V	57.32	44.23	74.00	54.00	-16.68	-9.77	
8174.174	4.174 H 57.56 44.50 74.00 54.0		54.00	-16.44	-9.50			
9024.433	Н	57.30	44.96	74.00	54.00	-16.70	-9.04	
11880.25	Н	57.25	44.94	74.00	54.00	-16.75	-9.06	

Test mode: 802.11b Channel 11: 2462MHz Frequency:

Freq.	Ant.Pol.	Emis Level(d	ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
9500.395	V	58.15	44.70	74.00	54.00	-15.85	-9.30	
11574.41	V	57.82	44.48	74.00	54.00	-16.18	-9.52	
13342.25	V	57.90	44.29	74.00	54.00	-16.10	-9.71	
8174.714	Н	56.39	43.44	74.00	54.00	-17.61	-10.56	
11506.54	Н	56.06	42.92	74.00	54.00	-17.94	-11.08	
1497435	Н	56.32	42.96	74.00	54.00	-17.68	-11.04	

Note:

(1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

EMTEK (Dongguan) Co., Ltd.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All the antenna(Antenna 1) and modes(802.11b/g/n) have been tested and the worst(Antenna 1, 802.11b) result recorded was report as below:

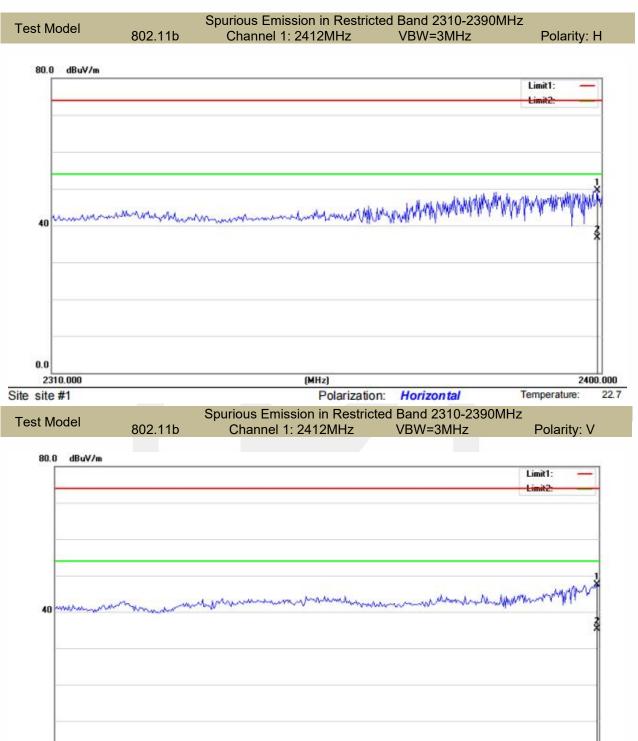
Test mode:	802.11b	Frequ	ency: (Channel 1: 2412MHz			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2399.28	Н	49.60	74.00	36.65	54.00		
2399.64	V	47.60	74.00	35.22	54.00		

Test mode: 802.11b		Freque	ency: C	Channel 11: 2462MHz			
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2489.47	Н	52.67 74.00		39.46	54.00		
2488.15	V 50.36		74.00	37.51	54.00		

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant_F + Cab_L - Preamp

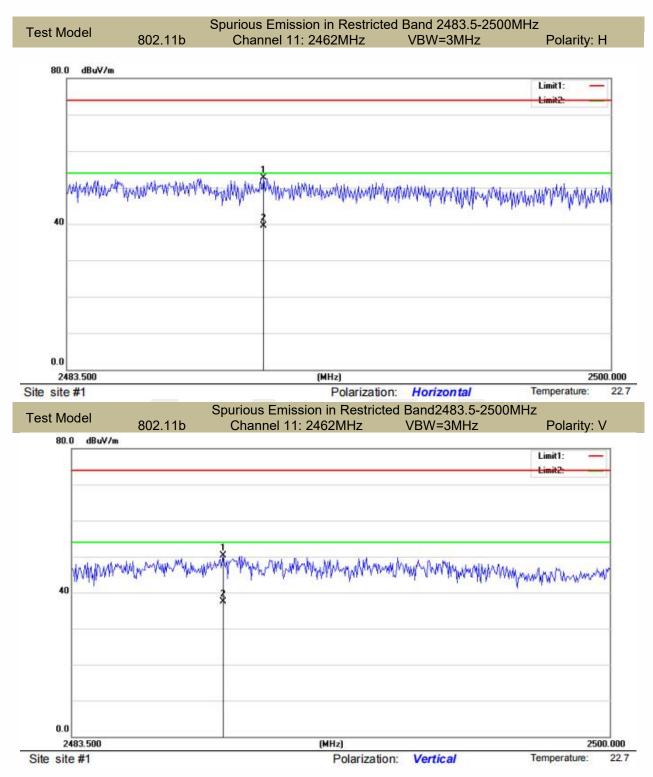

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

 东莞市信源科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China

 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn

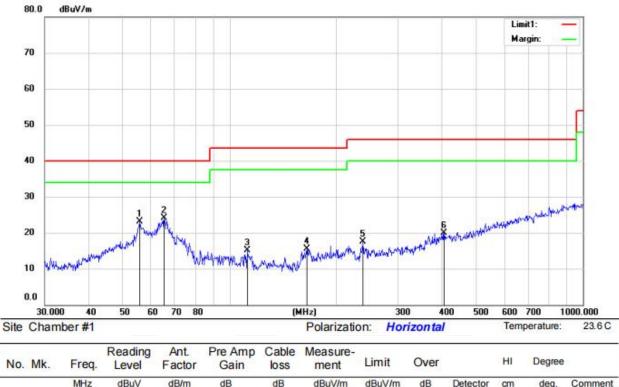
 0.0
 2310.000
 (MHz)
 2400.000


 Site site #1
 Polarization: Vertical
 Temperature: 22.7

 东赛市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

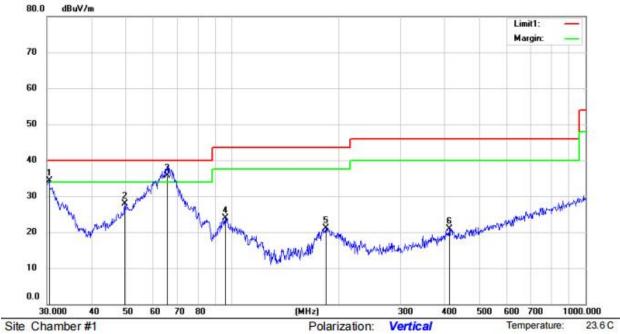
 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn



Spurious Emission below 1GHz (30MHz to 1GHz)

All the antenna(Antenna 1) and modes(802.11b/g/n) have been tested and the worst(Antenna 1, 802.11b) result recorded was report as below:



	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1	55.6092	39.23	13.35	30.5	0.93	23.01	40.00	-16.99	QP			
2 '	65.3431	42.67	10.83	30.54	1.08	24.04	40.00	-15.96	QP			
3	112.5241	33.66	11.05	30.82	1.17	15.06	43.50	-28.44	QP			
4	165.4866	35.33	9.23	30.54	1.52	15.54	43.50	-27.96	QP			
5	238.3101	32.93	12.67	30.16	2.03	17.47	46.00	-28.53	QP			
6	404.6664	29.79	16.36	29.82	3.61	19.94	46.00	-26.06	QP			
-2024	2010/2012/2012/2012	CORTOCOM	000000000000	10074-012-055	0.497.5981	2000-000-00	57.500 Sec.40	1000021002000	0.000			_

*:Maximum data x:Over limit l:over margin Operator: Ccyf

EMTEK (Dongguan) Co., Ltd.

one	0110	THOUT IT I				i oldrization.						0.000	
No	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1	1	30.4237	53.10	11.23	30.57	0.58	34.34	40.00	-5.66	QP			
2		49.7066	43.54	13.99	30. <mark>4</mark> 8	0.78	27.83	40.00	-12.17	QP			
3	*	65.5726	54.37	10.79	30.54	1.08	35.70	40.00	-4.30	QP			
4		95.7622	42.74	10.92	30.83	1.08	23.91	43.50	-19.59	QP			
5		184.4898	39.78	10.24	30.44	1.62	21.20	43.50	-22.30	QP			
6		411.8240	30.84	16.44	29.82	3.46	20.92	46.00	-25.08	QP			
						1.0				1.5			

*:Maximum data x:Over limit I:over margin Operator: Ccyf

8.7 CONDUCTED EMISSION TEST

8.7.1 Applicable Standard

According to FCC Part 15.207(a) According to IC RSS-Gen 8.8

8.7.2 Conformance Limit

	Conducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.7.3 Test Configuration

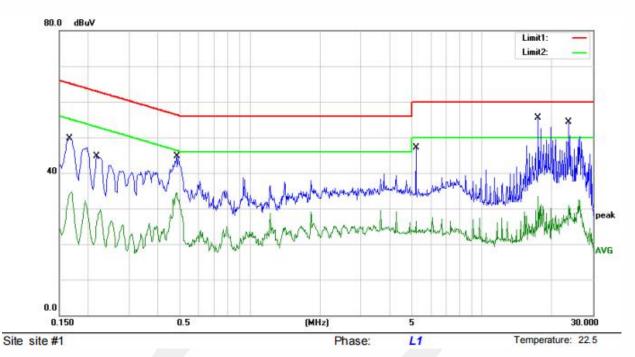
Test according to clause 6.3 conducted emission test setup

8.7.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.7.5 Test Results

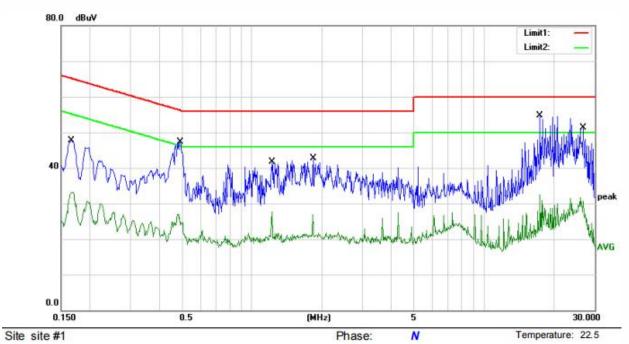
Pass


The AC120V &240V voltage have been tested, and the worst result recorded was report as below:

 余葉市信源科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -182/F "Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1660	32.62	17.05	49.67	65.16	-15.49	QP	
2		0.1660	17.73	17.05	34.78	55.16	-20.38	AVG	
3		0.2180	27.65	17.04	44.69	62.89	-18.20	QP	
4		0.2180	12.70	17.04	29.74	52.89	-23.15	AVG	
5		0.4820	27.54	17.10	44.64	56.30	- <mark>11.6</mark> 6	QP	
6		0.4820	17.46	17.10	34.56	46.30	-11.74	AVG	
7		5.1780	30.14	16.96	47.10	60.00	-12.90	QP	
8		5.1780	9.50	16.96	26.46	50.00	-23.54	AVG	
9	•	17.4140	38.72	16.87	55.59	60.00	-4.41	QP	
10		17.4140	16.58	16.87	33.45	50.00	-16.55	AVG	
11		23.5300	37.16	17.07	54.23	60.00	-5.77	QP	
12		23.5300	13.83	17.07	30.90	50.00	-19.10	AVG	

*:Maximum data

x:Over limit !:over margin Comment: Factor build in receiver.

Operator:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1660	30.58	17.05	47.63	65.16	-17.53	QP	
	0.1660	16.13	17.05	33.18	55.16	-21.98	AVG	
	0.4900	30.11	17.10	47.21	56.17	-8.96	QP	
	0.4900	9.90	17.10	27.00	46.17	-19.17	AVG	
	1.2180	24.59	17.05	41.64	56.00	-14.36	QP	
	1.2180	10.55	17.05	27.60	46.00	-18.40	AVG	
	1.8300	25.61	17.10	42.71	56.00	-13.29	QP	
	1.8300	9.71	17.10	26.81	46.00	-19.19	AVG	
*	17.4140	37.74	16.87	54.61	60.00	-5.39	QP	
	17.4140	15.55	16.87	32.42	50.00	-17.58	AVG	
	26.8260	34.06	17.14	51.20	60.00	-8.80	QP	
	26.8260	14.60	17.14	31.74	50.00	-18.26	AVG	
		MHz 0.1660 0.4900 0.4900 1.2180 1.2180 1.2180 1.8300 * 17.4140 17.4140 26.8260	Mk. Freq. Level MHz dBuV 0.1660 30.58 0.1660 16.13 0.4900 30.11 0.4900 9.90 1.2180 24.59 1.2180 10.55 1.8300 25.61 1.8300 9.71 * 17.4140 37.74 17.4140 34.06	Mk. Freq. Level Factor MHz dBuV dB 0.1660 30.58 17.05 0.1660 16.13 17.05 0.1660 16.13 17.05 0.4900 30.11 17.10 0.4900 9.90 17.10 1.2180 24.59 17.05 1.2180 10.55 17.05 1.8300 25.61 17.10 1.8300 9.71 17.10 * 17.4140 37.74 16.87 17.4140 15.55 16.87 26.8260 34.06 17.14	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1660 30.58 17.05 47.63 0.1660 16.13 17.05 33.18 0.4900 30.11 17.10 47.21 0.4900 9.90 17.10 27.00 1.2180 24.59 17.05 21.64 1.2180 25.61 17.10 27.60 1.8300 9.71 17.10 42.71 1.8300 9.71 17.10 26.81 * 17.4140 37.74 16.87 54.61 17.4140 15.55 16.87 32.42 26.8260 34.06 17.14 51.20	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dDD dDD 10.1600 30.11 17.10 47.21 56.17 0.4900 9.90 17.10 27.00 46.17 1.2180 10.55 17.05 27.60 46.00 1.8300 25.61 17.10 42.71 56.00 1.8300 9.71 17.10 26.81 46.00 * 17.4140 37.74 16.87 54.61	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dB dBuV dB dB <td>Mk.Freq.LevelFactormentLimitOverMHzdBuVdBdBuVdBuVdBDetector0.166030.5817.0547.6365.16-17.53QP0.166016.1317.0533.1855.16-21.98AVG0.490030.1117.1047.2156.17-8.96QP0.49009.9017.1027.0046.17-19.17AVG1.218024.5917.0541.6456.00-14.36QP1.218010.5517.0527.6046.00-18.40AVG1.830025.6117.1042.7156.00-13.29QP1.83009.7117.1026.8146.00-19.19AVG*17.414037.7416.8754.6160.00-5.39QP17.414015.5516.8732.4250.00-17.58AVG26.826034.0617.1451.2060.00-8.80QP</td>	Mk.Freq.LevelFactormentLimitOverMHzdBuVdBdBuVdBuVdBDetector0.166030.5817.0547.6365.16-17.53QP0.166016.1317.0533.1855.16-21.98AVG0.490030.1117.1047.2156.17-8.96QP0.49009.9017.1027.0046.17-19.17AVG1.218024.5917.0541.6456.00-14.36QP1.218010.5517.0527.6046.00-18.40AVG1.830025.6117.1042.7156.00-13.29QP1.83009.7117.1026.8146.00-19.19AVG*17.414037.7416.8754.6160.00-5.39QP17.414015.5516.8732.4250.00-17.58AVG26.826034.0617.1451.2060.00-8.80QP

*:Maximum data

x:Over limit l:over margin Comment: Factor build in receiver.

Operator:

8.8 ANTENNA APPLICATION

8.8.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
FCC 47 CFR Part 15.247 (b)	If transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.
RSS-Gen Section 6.8	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.
RSS-247 Section 5.4	If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output power limit. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

8.8.2 Result

PASS.

- Note: Antenna use a permanently attached antenna which is not replaceable. \checkmark
 - Not using a standard antenna jack or electrical connector for antenna replacement
 - The antenna has to be professionally installed (please provide method of installation)

Please refer to the attached document Internal Photos to show the antenna connector.

Detail of factor for rad	iated emission			
Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	/	20.38
30	18.8	0.45	/	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

*** End of Report ***