

FCC TEST REPORT

Test report
On Behalf of
AQUA-AMP, LLC
For

Aqua-Amp ACT Wireless charger Model No.: AA-01-ACT, NB-A01WC FCC ID: 2A64N-AA01ACT

Prepared For: AQUA-AMP, LLC

1108 ELDRIDGE ST, CLEARWATER, FL 33755, USA

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jul. 12, 2023 ~ Jul. 19, 2023

Date of Report: Jul. 19, 2023

Report Number: HK2307122999-1E

TEST RESULT CERTIFICATION

Applicant's name AQUA-AMP, LI	Applicant's	name:	AQUA-AMP	LLC
-------------------------------	-------------	-------	----------	-----

Address: 1108 ELDRIDGE ST, CLEARWATER, FL 33755, USA

Manufacture's Name NEWBELL INTERNATIONAL ELECTRONIC CO.,LTD

RM701, BLDG-3, NO.19, Du Shi Zhi Gu, JinPeng Road.

FengGang. DongGuan, China

Product description

Trade Mark: N/A

Product name Aqua-Amp ACT Wireless charger

Model and/or type reference : AA-01-ACT, NB-A01WC

Standards :: FCC CFR 47 PART 18

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date of Issue Jul. 19, 2023

Test Result Pass

Testing Engineer :

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Table of Contents Page TEST SUMMARY 1.1 . Test Procedures And Results 1.2 . Information of the Test Laboratory 1.3 . Measurement Uncertainty 2. GENERAL INFORMATION 2.1. General Description of EUT 2.2. Carrier Frequency of Channels 2.3. Operation of EUT during testing 2.4. Description of Test Setup 2.5. Description of Support Units 2.6. Measurement Instruments List CONDUCTED EMISSION TEST 10 3.1. Block Diagram of Test Setup 10 3.2. Conducted Power Line Emission Limit 10 3.3. Test Procedure 10 4. RADIATED EMISSIONS 12 4.1. Block Diagram of Test Setup 12 4.2. Rules and specifications 12 4.3. Test Procedure 13 5. ANTENNA REQUIREMENT 17 6. PHOTOGRAPH OF TEST 18 7. PHOTOS OF THE EUT 19

** Modified History **

Revision	Description	Issued Data	Remark	
Revision 1.0	Initial Test Report Release	Jul. 19, 2023	Jason Zhou	
TESTING	TESTING.	(ESTING	TESTING	
JAN HUAI	HUAN HUA	HUPAN HUPAN	HUAN-	

1. TEST SUMMARY

1.1. Test Procedures And Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	18.307	N/A
RADIATED EMISSION TEST	18.305	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3. Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

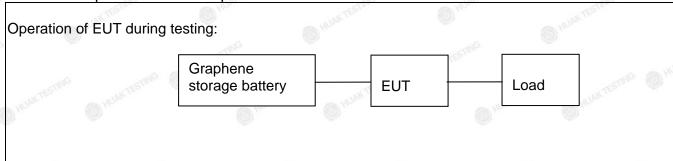
2. GENERAL INFORMATION

2.1. General Description of EUT

Equipment:	Aqua-Amp ACT Wireless charger	N. TESTING	NY TESTING
• •		₩ HU	€ HUN
Model Name:	AA-01-ACT	-NO	
Series Models:	NB-A01WC	AKTESTIN	"NG
Model Difference:	All model's the function, software and e with model named different. Test sample		M. HO.
Trade Mark:	N/A		
FCC ID:	2A64N-AA01ACT	LAKTESTING	- HUAKTESTII.
Antenna Type:	Coil Antenna		(ii)
Antenna Gain:	0dBi		
Operation frequency:	112KHz~205KHz	W TESTING	V TESTING
Test frequency:	140KHz	O HUAD	MUA.
Modulation Type:	ASK	STNG	
	Input Voltage Range: DC 10-30V(12/24	V system)	TESTING
Power Source:	Input Current Max: 2A		
	Output Power: 10W (9V, 1.1A)		
	Input Voltage Range: DC 10-30V(12/24	V system)	STING
Power Rating:	Input Current Max: 2A Output Power: 10W (9V, 1.1A)		

AFIGATIO,

2.2. Carrier Frequency of Channels


Operation I	Frequency each of channel	, LAK TESTING	- WAY TESTING	MAKTESTIN	- WAK TESTI
Channel	Frequency	9 m	0	O 100	
1	140KHz				

2.3. Operation of EUT during testing Operating Mode

The mode is used: Transmitting mode

EUT Mode	Description
HARTES.	Full Load
Working	Half Load
	No Load

2.4. Description of Test Setup

The sample was placed (0.8m (30MHz~1GHz), 0.8m (9KHz~30MHz)) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

2.5. Description of Support Units

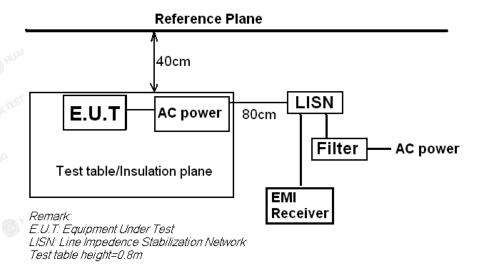
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/ Trade Mark	Model/Type No.	Specification	Note
_{in} G1	Aqua-Amp ACT Wireless charger	N/A	AA-01-ACT	N/A	EUT
2	Graphene storage battery	N/A	N/A	12V399Ah	Peripherals
3	Load	YBZ	N/A	15W MAX	Peripherals
LAKTES	INVE WAKTEST		JAKTESTING - WAKTES	JAN TESTING	HUAK TESTING P
	(iii)	0	(a)	0,	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co


2.6. Measurement Instruments List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains R&S Network		ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Feb. 17, 2023	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
9.	Loop Antenna Schwarzbeck		FMZB 1519 B	HKE-014	Feb. 17, 2023	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 17, 2023	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Feb. 17, 2023	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
13.	3. EMI Test Software EZ-EMC Tonscend		JS1120-B Version	HKE-083	N/A	N/A
14.	4. Power Sensor Agilent		E9300A	HKE-086	Feb. 17, 2023	1 Year
15.	. Spectrum analyzer Agilent		N9020A	HKE-048	Feb. 17, 2023	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Year

3. CONDUCTED EMISSION TEST

3.1. Block Diagram of Test Setup

3.2. Conducted Power Line Emission Limit

According to FCC Part 18.307(b)

F	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLAS	SS A	CLASS B			
(111112)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §18.307 Line Conducted Emission Limit is same as above table.

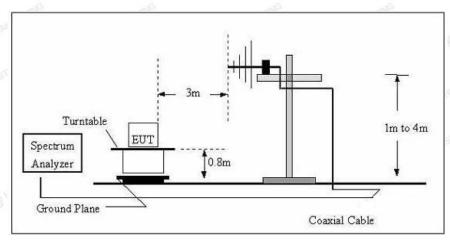
3.3. Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

Page 11 of 19 Report No.: HK2307122999-1E

3.4. Test Result


Not applicable


Note: Since EUT is only for on-car use, so this test item not applicable.

4. RADIATED EMISSIONS

4.1. Block Diagram of Test Setup

4.2. Rules and specifications

Except as provided elsewhere in this Subpart 18.305 (b), the field strength levels of emissions which lie outside the bands specified in §18.301, unless otherwise indicated, shall not exceed the following table:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
(miscellaneous)				
	Any non- ISM frequency	Below 500 500 or more	15 15 × SQRT(power/500)	300 1300

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 13 of 19 Report No.: HK2307122999-1E

Remark:

- (1) Emission level dBuV/m for $0.009\sim30$ MHz = $20\log(15) + 40\log(300/3)$ dBuV/m;
- (2) Calculated according FCC 18.305.
- (3) The smaller limit shall apply at the cross point between two frequency bands.
- (4) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

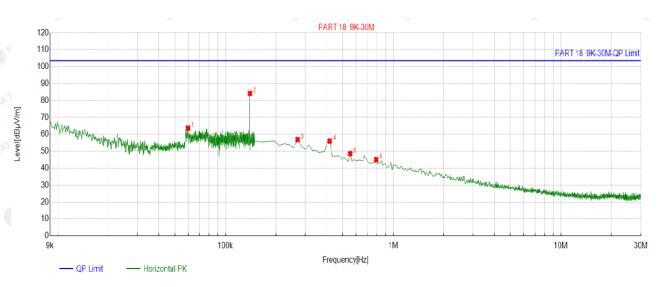
4.3. Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurements are extrapolated to 300m and 30m distance respectively, by 40dB/decade, Per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:


For battery operated equipment, the equipment tests shall be performed using a new battery.

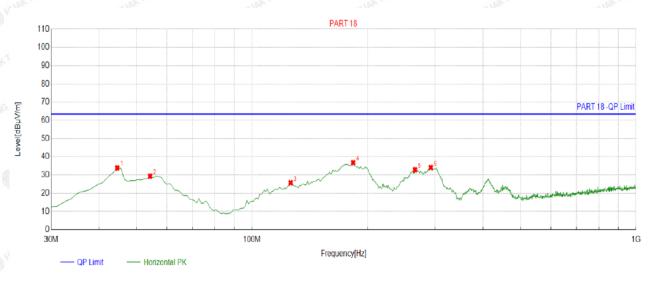
4.4. Test Result

PASS

Note: All the test modes completed for test. Only the worst result (Full Load) was reported as below:

For 9KHz - 30MHz

QP Detecto

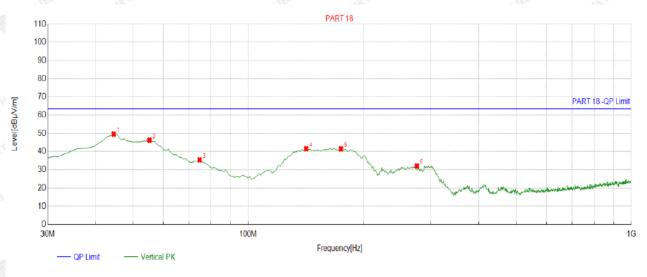

Suspected List							
5	NO	Freq.	Factor	Reading	Level	Limit	Margin
	NO.	[MHz]	[dB]	[dBµ√/m]	[dBµ√/m]	[dBµV/m]	[dB]
3	1	0.0598	13.97	49.71	63.68	103.50	39.82
	2	0.1397	13.78	70.68	84.46	103.50	19.04
	3	0.2695	13.68	43.20	56.88	103.50	46.62
ě	4	0.4188	13.77	42.25	56.02	103.50	47.48
	5	0.5532	13.72	34.88	48.60	103.50	54.90
	6	0.7921	14.02	31.03	45.05	103.50	58.45

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

For 30MHz-1GHz

Antenna polarity: H

QP Detector


Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	44.5646	-15.07	48.96	33.89	63.50	29.61	100	183	Horizontal
2	54.2743	-14.45	43.83	29.38	63.50	34.12	100	274	Horizontal
3	126.1261	-16.21	41.92	25.71	63.50	37.79	100	289	Horizontal
4	183.4134	-16.65	53.45	36.80	63.50	26.70	100	72	Horizontal
5	265.9459	-12.71	45.54	32.83	63.50	30.67	100	301	Horizontal
6	292.1622	-12.24	46.35	34.11	63.50	29.39	100	313	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

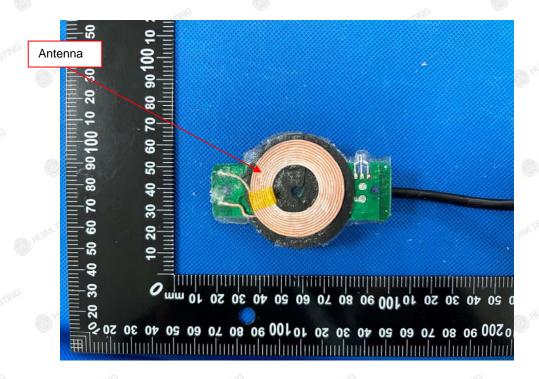
Antenna polarity: V

QP Detector

Suspected List									
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	44.5646	-15.07	64.71	49.64	63.50	13.86	100	292	Vertical
2	55.2452	-14.33	60.55	46.22	63.50	17.28	100	276	Vertical
3	74.6647	-16.61	52.09	35.48	63.50	28.02	100	0	Vertical
4	141.6617	-18.11	59.66	41.55	63.50	21.95	100	308	Vertical
5	174.6747	-16.88	58.37	41.49	63.50	22.01	100	308	Vertical
6	275.6557	-12.53	44.69	32.16	63.50	31.34	100	304	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor;

Margin = Limit – Level

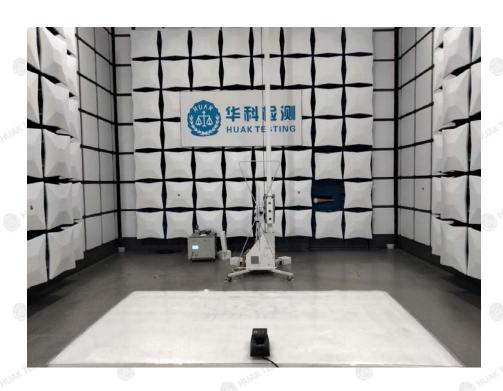

5. ANTENNA REQUIREMENT

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOGRAPH OF TEST

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

W. TESTI

Report No.: HK2307122999-1E

7. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----