

# FCC TEST REPORT

REPORT NO.: RF940829A02
MODEL NO.: HS-24W
VERSION: HW:1.1+, PS:1.0, MV:1.0, V1.2 (B4.2)+
RECEIVED: Jan. 6, 2006
TESTED: Jan. 9 ~ 27, 2006
ISSUED: Feb. 6, 2006

APPLICANT: Nokia Corporation

ADDRESS: P.O. BOX 86 (Joensuunkatu 7E) FIN-24101 Salo, Finland

#### **ISSUED BY:** Advance Data Technology Corporation

**LAB LOCATION:** No. 47, 14<sup>th</sup> Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

This test report consists of 58 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.





# TABLE OF CONTENTS

| 1.             | CERTIFICATION                                     | 4  |
|----------------|---------------------------------------------------|----|
| 2.             | SUMMARY OF TEST RESULTS                           |    |
| 2.1            | MEASUREMENT UNCERTAINTY                           | 6  |
| 3.             | GENERAL INFORMATION                               | 7  |
| 3.1            | GENERAL DESCRIPTION OF EUT                        |    |
| 3.2            | DESCRIPTION OF TEST MODES                         |    |
| 3.2.1          | CONFIGURATION OF SYSTEM UNDER TEST                |    |
| 3.2.2          | TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL | -  |
| 3.3.3          | GENERAL DESCRIPTION OF APPLIED STANDARDS          |    |
| 3.3.4          | DESCRIPTION OF SUPPORT UNITS                      |    |
| 4.             | TEST TYPES AND RESULTS                            |    |
| 4.1            | CONDUCTED EMISSION MEASUREMENT                    |    |
| 4.1.1          | LIMITS OF CONDUCTED EMISSION MEASUREMENT          | 13 |
| 4.1.2          | TEST INSTRUMENTS                                  |    |
| 4.1.3          | TEST PROCEDURES                                   |    |
| 4.1.4          | DEVIATION FROM TEST STANDARD                      |    |
| 4.1.5          | TEST SETUP                                        | 15 |
| 4.1.6          | EUT OPERATING CONDITIONS                          |    |
|                | TEST RESULTS                                      | 16 |
| 4.2            |                                                   |    |
| 4.2.1          | LIMITS OF RADIATED EMISSION MEASUREMENT           |    |
| 4.2.2<br>4.2.3 | TEST INSTRUMENTS<br>TEST PROCEDURES               |    |
| 4.2.3          | DEVIATION FROM TEST STANDARD                      |    |
|                | TEST SETUP                                        |    |
| 4.2.5          | EUT OPERATING CONDITIONS                          | 25 |
| 4.2.7          | TEST RESULTS                                      |    |
| 4.3            | NUMBER OF HOPPING FREQUENCY USED                  |    |
| 4.3.1          | LIMIT OF HOPPING FREQUENCY USED                   |    |
| 4.3.2          | TEST INSTRUMENTS                                  |    |
| 4.3.3          | TEST PROCEDURES                                   |    |
| 4.3.4          | DEVIATION FROM TEST STANDARD                      | 31 |
| 4.3.5          | TEST SETUP                                        | 31 |
|                | TEST RESULTS                                      |    |
|                | DWELL TIME ON EACH CHANNEL                        |    |
|                | LIMIT OF DWELL TIME USED                          |    |
|                | TEST INSTRUMENTS                                  |    |
|                | TEST PROCEDURES                                   |    |
|                | DEVIATION FROM TEST STANDARD                      |    |
|                | TEST SETUP                                        |    |
|                | TEST RESULTS                                      |    |
| 4.5            |                                                   | 38 |
|                | LIMITS OF CHANNEL BANDWIDTH                       |    |
| 4.5.2          | TEST INSTRUMENTS                                  | 38 |



|       | TEST PROCEDURE                                  |     |
|-------|-------------------------------------------------|-----|
| 4.5.4 | DEVIATION FROM TEST STANDARD                    | 39  |
| 4.5.5 | TEST SETUP                                      | 39  |
|       | EUT OPERATING CONDITION                         |     |
| 4.5.7 | TEST RESULTS                                    |     |
| 4.6   | HOPPING CHANNEL SEPARATION                      |     |
| 4.6.1 | LIMIT OF HOPPING CHANNEL SEPARATION             |     |
| 4.6.2 | TEST INSTRUMENTS                                |     |
| 4.6.3 | TEST PROCEDURES                                 |     |
| 4.6.4 | DEVIATION FROM TEST STANDARD                    |     |
| 4.6.5 | TEST SETUP                                      |     |
| 4.6.6 | TEST RESULTS                                    |     |
| 4.7   | MAXIMUM PEAK OUTPUT POWER                       |     |
| 4.7.1 | LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT | -   |
| 4.7.2 |                                                 |     |
| 4.7.3 | TEST PROCEDURES                                 |     |
| 4.7.4 | DEVIATION FROM TEST STANDARD                    | -   |
| 4.7.5 | TEST SETUP                                      |     |
| -     | EUT OPERATING CONDITION                         |     |
| 4.7.7 | TEST RESULTS                                    |     |
| 4.8   | BAND EDGES MEASUREMENT                          |     |
| 4.8.1 | LIMITS OF BAND EDGES MEASUREMENT                |     |
| 4.8.2 | TEST INSTRUMENTS                                |     |
| 4.8.3 | TEST PROCEDURE                                  |     |
| 4.8.4 | DEVIATION FROM TEST STANDARD                    |     |
| 4.8.5 | EUT OPERATING CONDITION                         |     |
| 4.8.6 | TEST RESULTS                                    | 51  |
| 4.9   | ANTENNA REQUIREMENT                             |     |
| 4.9.1 | STANDARD APPLICABLE                             |     |
| 4.9.2 | ANTENNA CONNECTED CONSTRUCTION                  | 54  |
| 5.    | PHOTOGRAPHS OF THE TEST CONFIGURATION           | 55  |
| 6.    | INFORMATION ON THE TESTING LABORATORIES         | 57  |
| APPE  | NDIX-A                                          | A-1 |



### 1. CERTIFICATION

| PRODUCT:     | Bluetooth Headset                        |
|--------------|------------------------------------------|
| MODEL NO.:   | HS-24W                                   |
| BRAND NAME:  | NOKIA                                    |
| APPLICANT:   | Nokia Corporation                        |
| TESTED:      | Jan. 9 ~ 27, 2006                        |
| TEST SAMPLE: | ENGINEERING SAMPLE                       |
| STANDARDS:   | FCC Part 15, Subpart C (Section 15.247), |
|              | ANSI C63.4-2003                          |

The above equipment has been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| PREPARED BY | : | Annie Chang<br>(Annie Chang)            | , | DATE:_ | Feb. 6, 2006 |  |
|-------------|---|-----------------------------------------|---|--------|--------------|--|
|             |   | (************************************** |   |        |              |  |

 $\frac{\text{ACCEPTANCE}}{\text{Responsible for RF}} : \underbrace{\text{Ken Liu}}_{(\text{Ken Liu})}, \text{ DATE: Feb. 6, 2006}$   $\frac{\text{APPROVED BY}}{(\text{Gary Chang / Supervisor})}, \text{ DATE: Feb. 6, 2006}$ 



# 2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

| APPLIED STANDARD: FCC Part 15, Subpart C |                                                                                                                                                                                                                                                |        |                                                                                           |  |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|--|--|--|--|
| STANDARD<br>SECTION                      | TEST TYPE AND LIMIT                                                                                                                                                                                                                            | RESULT | REMARK                                                                                    |  |  |  |  |
| 15.207                                   | AC Power Conducted Emission                                                                                                                                                                                                                    | PASS   | Meet the requirement of<br>limit.<br>Minimum passing margin<br>is –31.39dB at 0.451MHz.   |  |  |  |  |
| 15.247(a)(1)<br>(iii)                    | Number of Hopping Frequency<br>Used Spec.: At least 15 channels                                                                                                                                                                                | PASS   | Meet the requirement of limit.                                                            |  |  |  |  |
| 15.247(a)(1)<br>(iii)                    | Dwell Time on Each Channel<br>Spec. : Max. 0.4 second within 31.6<br>second                                                                                                                                                                    | PASS   | Meet the requirement of limit.                                                            |  |  |  |  |
| 15.247(a)(1)                             | <ol> <li>Hopping Channel Separation</li> <li>Spec. : Min. 25 kHz or 20 dB<br/>bandwidth, whichever is greater</li> <li>(see Note 1)</li> <li>Spectrum Bandwidth of a<br/>Frequency Hopping Sequence</li> <li>Spread Spectrum System</li> </ol> | PASS   | Meet the requirement of limit.                                                            |  |  |  |  |
| 15.247(b)                                | Maximum Peak Output Power<br>Spec.: max. 30dBm<br>(see Note 1)                                                                                                                                                                                 | PASS   | Meet the requirement of limit.                                                            |  |  |  |  |
| 15.247(d)                                | Transmitter Radiated Emissions<br>Spec.: Table 15.209                                                                                                                                                                                          | PASS   | Meet the requirement of<br>limit.<br>Minimum passing margin<br>is –6.59 dB at 1602.00MHz. |  |  |  |  |
| 15.247(d)                                | Band Edge Measurement                                                                                                                                                                                                                          | PASS   | Meet the requirement of limit.                                                            |  |  |  |  |

**NOTE:** If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.



# 2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| MEASUREMENT         | UNCERTAINTY |
|---------------------|-------------|
| Conducted emissions | 2.44 dB     |
| Radiated emissions  | 3.63 dB     |



### 3. GENERAL INFORMATION

### 3.1 GENERAL DESCRIPTION OF EUT

| PRODUCT            | Bluetooth Headset                          |
|--------------------|--------------------------------------------|
| MODEL NO.          | HS-24W                                     |
| FCC ID             | PYAWE02M                                   |
| POWER SUPPLY       | 3.7Vdc from battery<br>5.0Vdc from adapter |
| MODULATION TYPE    | GFSK                                       |
| RADIO TECHNOLOGY   | FHSS                                       |
| TRANSFER RATE      | 723Kbps                                    |
| FREQUENCY RANGE    | 2402 MHz ~ 2480 MHz                        |
| NUMBER OF CHANNEL  | 79                                         |
| OUTPUT POWER       | 2.421mW                                    |
| ANTENNA TYPE       | Dipole antenna with -3dBi gain             |
| DATA CABLE         | NA                                         |
| I/O PORTS          | NA                                         |
| ASSOCIATED DEVICES | NA                                         |

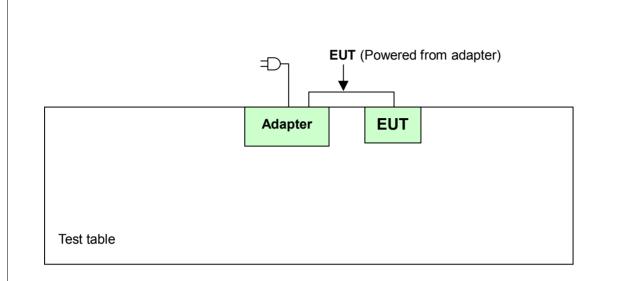
### NOTE:

- 1. The EUT is Headset with Bluetooth technology.
- 2. The EUT was power supplied from the following power adapter:

| Brand         | NOKIA                    |
|---------------|--------------------------|
| Model         | AC-4U                    |
| AC I/P Rating | 100-240V, 125mA, 50-60Hz |
| DC O/P Rating | 5.0V, 890mA              |

3. For more detailed features description, please refer to the manufacturer's specifications or User's Manual.




# 3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

| CHANNEL | FREQ.<br>(MHz) | CHANNEL | FREQ.<br>(MHz) | CHANNEL | FREQ.<br>(MHz) | CHANNEL | FREQ.<br>(MHz) |
|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
| 0       | 2402           | 20      | 2422           | 40      | 2442           | 60      | 2462           |
| 1       | 2403           | 21      | 2423           | 41      | 2443           | 61      | 2463           |
| 2       | 2404           | 22      | 2424           | 42      | 2444           | 62      | 2464           |
| 3       | 2405           | 23      | 2425           | 43      | 2445           | 63      | 2465           |
| 4       | 2406           | 24      | 2426           | 44      | 2446           | 64      | 2466           |
| 5       | 2407           | 25      | 2427           | 45      | 2447           | 65      | 2467           |
| 6       | 2408           | 26      | 2428           | 46      | 2448           | 66      | 2468           |
| 7       | 2409           | 27      | 2429           | 47      | 2449           | 67      | 2469           |
| 8       | 2410           | 28      | 2430           | 48      | 2450           | 68      | 2470           |
| 9       | 2411           | 29      | 2431           | 49      | 2451           | 69      | 2471           |
| 10      | 2412           | 30      | 2431           | 50      | 2452           | 70      | 2472           |
| 11      | 2413           | 31      | 2433           | 51      | 2453           | 71      | 2473           |
| 12      | 2414           | 32      | 2434           | 52      | 2454           | 72      | 2474           |
| 13      | 2415           | 33      | 2435           | 53      | 2455           | 73      | 2475           |
| 14      | 2416           | 34      | 2436           | 54      | 2456           | 74      | 2476           |
| 15      | 2417           | 35      | 2437           | 55      | 2457           | 75      | 2477           |
| 16      | 2418           | 36      | 2438           | 56      | 2458           | 76      | 2478           |
| 17      | 2419           | 37      | 2439           | 57      | 2459           | 77      | 2479           |
| 18      | 2420           | 38      | 2440           | 58      | 2460           | 78      | 2480           |
| 19      | 2421           | 39      | 2441           | 59      | 2461           |         |                |



# 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST





### 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UT<br>IGURE                                                                                             |                                                                                                                     | Appli                                                                                                   | icable to                                                                                                                                       |                                                                               |                                                                                                           | Description                                                                                                    |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ODE                                                                                                     | PLC                                                                                                                 | RE<1G                                                                                                   | RE≥1G                                                                                                                                           | АРСМ                                                                          |                                                                                                           |                                                                                                                |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                       | $\checkmark$                                                                                                        | $\checkmark$                                                                                            | $\checkmark$                                                                                                                                    | $\checkmark$                                                                  | EUT with adapter<br>(powered from adapter)                                                                |                                                                                                                |           |  |
| Wher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Where         PLC: Power Line Conducted Emission         RE<1G: Radiated Emission below 1GHz            |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               |                                                                                                           |                                                                                                                |           |  |
| <b>RE≥1G:</b> Radiated Emission above 1GHz <b>APCM:</b> Antenna Port Conducted Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               |                                                                                                           |                                                                                                                |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               |                                                                                                           |                                                                                                                |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               |                                                                                                           |                                                                                                                |           |  |
| WERL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INE CC                                                                                                  | DNDUCT                                                                                                              | <u>-D EMIS</u>                                                                                          | SION TEST:                                                                                                                                      |                                                                               |                                                                                                           |                                                                                                                |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                                     |                                                                                                         | l to determin<br>le modulatio                                                                                                                   |                                                                               |                                                                                                           | mode from all pes.                                                                                             | possible  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               |                                                                                                           | as listed below.                                                                                               |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         | . ,                                                                                                                 |                                                                                                         | •                                                                                                                                               |                                                                               |                                                                                                           |                                                                                                                | 1         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AILABLE<br>IANNEL                                                                                       |                                                                                                                     | STED<br>ANNEL                                                                                           | MODULATIO                                                                                                                                       |                                                                               | ULATION                                                                                                   | PACKET TYPE                                                                                                    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                                     |                                                                                                         |                                                                                                                                                 |                                                                               | 0501/                                                                                                     |                                                                                                                |           |  |
| DIATEI<br>Pre-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | can ha                                                                                                  | SION TE                                                                                                             | onducted                                                                                                |                                                                                                                                                 | e the wo                                                                      |                                                                                                           | DH5<br>mode from all and X, Y, Z Axi                                                                           |           |  |
| ADIATEI<br>Pre-S<br>comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>) EMIS</b><br>ican ha                                                                                | SION TE<br>s been c<br>s betwee                                                                                     | <b>ST (BEL</b><br>onducted<br>n availab                                                                 | <b>OW 1 GHz):</b><br>I to determin<br>le modulatio                                                                                              | e the wo                                                                      | orst-case<br>ket types                                                                                    | mode from all                                                                                                  |           |  |
| ADIATEI<br>Pre-S<br>comb<br>Follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>) EMIS</b><br>ican ha                                                                                | SION TE<br>s been co<br>s betwee<br>hannel(s)                                                                       | <b>ST (BEL</b><br>onducted<br>n availab                                                                 | <b>OW 1 GHz):</b><br>I to determin<br>le modulatio                                                                                              | e the wons, pack                                                              | orst-case<br>ket types                                                                                    | mode from all<br>and X, Y, Z Axi                                                                               |           |  |
| DIATEI<br>Pre-S<br>comb<br>Follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D EMIS<br>ican ha<br>ination:<br>wing ch                                                                | SION TE<br>s been co<br>s betwee<br>hannel(s)                                                                       | ST (BEL<br>onducted<br>n availab<br>was (wer<br>STED                                                    | OW 1 GHz):<br>I to determin<br>le modulatio<br>re) selected f                                                                                   | e the wons, pack                                                              | orst-case<br>ket types<br>inal test a                                                                     | mode from all<br>and X, Y, Z Axi<br>as listed below.                                                           | s.        |  |
| Pre-S<br>comb<br>Follov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D EMIS<br>ican ha<br>ination:<br>wing ch<br>AILABLE<br>IANNEL<br>D to 78                                | SION TE<br>s been c<br>s betwee<br>annel(s)<br>E TE<br>CH                                                           | ST (BEL<br>onducted<br>n availab<br>was (wer<br>sted<br>ANNEL<br>78                                     | OW 1 GHz):<br>I to determin<br>le modulatio<br>re) selected f                                                                                   | e the wons, pack<br>or the find<br>MOE                                        | orst-case<br>ket types<br>inal test a                                                                     | mode from all<br>and X, Y, Z Axi<br>as listed below.                                                           | s.        |  |
| ADIATEI<br>Pre-S<br>comb<br>Follow<br>AV<br>CH<br>DIATEI<br>Pre-S<br>comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D EMIS<br>can ha<br>ination:<br>wing ch<br>AILABLE<br>IANNEL<br>D to 78<br>D EMIS<br>can ha<br>ination: | SION TE<br>s been ca<br>s betwee<br>annel(s)<br>E TE<br>CH<br>SION TE<br>s been ca<br>s betwee                      | ST (BEL<br>onducted<br>n availab<br>was (wer<br>STED<br>ANNEL<br>78<br>ST (ABC<br>onducted<br>n availab | OW 1 GHz):<br>I to determin<br>le modulatio<br>re) selected f<br>MODULATIO<br>TECHNOLOG<br>FHSS<br>OVE 1 GHz):<br>I to determin<br>le modulatio | e the wo<br>ns, pack<br>or the fine<br><b>MOE</b><br>Y                        | orst-case<br>ket types<br>inal test a<br><b>DULATION</b><br><b>TYPE</b><br>GFSK<br>Orst-case<br>ket types | mode from all<br>and X, Y, Z Axi<br>as listed below.<br>PACKET TYPE<br>DH5<br>mode from all<br>and X, Y, Z Axi | AXIS<br>Z |  |
| ADIATEI<br>Pre-S<br>comb<br>Follov<br>AV<br>CH<br>DIATEI<br>Pre-S<br>comb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D EMIS<br>can ha<br>ination:<br>wing ch<br>AILABLE<br>IANNEL<br>D to 78<br>D EMIS<br>can ha<br>ination: | SION TE<br>s been ca<br>s betwee<br>annel(s)<br>E TE<br>CH<br>SION TE<br>s been ca<br>s betwee                      | ST (BEL<br>onducted<br>n availab<br>was (wer<br>STED<br>ANNEL<br>78<br>ST (ABC<br>onducted<br>n availab | OW 1 GHz):<br>I to determin<br>le modulatio<br>re) selected f<br>MODULATIO<br>TECHNOLOG<br>FHSS<br>OVE 1 GHz):<br>I to determin<br>le modulatio | e the wo<br>ns, pack<br>or the fine<br><b>MOE</b><br>Y                        | orst-case<br>ket types<br>inal test a<br><b>DULATION</b><br><b>TYPE</b><br>GFSK<br>Orst-case<br>ket types | mode from all<br>and X, Y, Z Axi<br>as listed below.<br>PACKET TYPE<br>DH5<br>Mode from all                    | AXIS<br>Z |  |
| ADIATEI<br>Pre-S<br>comb<br>Follov<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV.<br>CI<br>AV<br>AV<br>A<br>AV<br>A<br>AV<br>A<br>AV<br>A<br>AV<br>A<br>AV<br>A<br>AV | D EMIS<br>can ha<br>ination:<br>wing ch<br>AILABLE<br>IANNEL<br>D to 78<br>D EMIS<br>can ha<br>ination: | SION TE<br>s been co<br>s betwee<br>annel(s)<br>E TE<br>CH.<br>SION TE<br>s been co<br>s betwee<br>annel(s)<br>E TE | ST (BEL<br>onducted<br>n availab<br>was (wer<br>STED<br>ANNEL<br>78<br>ST (ABC<br>onducted<br>n availab | OW 1 GHz):<br>I to determin<br>le modulatio<br>re) selected f<br>MODULATIO<br>TECHNOLOG<br>FHSS<br>OVE 1 GHz):<br>I to determin<br>le modulatio | e the words, pack<br>for the find<br>MOE<br>MOE<br>MOE<br>Sor the find<br>MOD | orst-case<br>ket types<br>inal test a<br><b>DULATION</b><br><b>TYPE</b><br>GFSK<br>Orst-case<br>ket types | mode from all<br>and X, Y, Z Axi<br>as listed below.<br>PACKET TYPE<br>DH5<br>mode from all<br>and X, Y, Z Axi | AXIS<br>Z |  |



#### **BANDEDGE MEASUREMENT:**

- $\bowtie$ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

| AVAILABLE | TESTED  | MODULATION | MODULATION | PACKET TYPE |
|-----------|---------|------------|------------|-------------|
| CHANNEL   | CHANNEL | TECHNOLOGY | TYPE       |             |
| 0 to 78   | 0, 78   | FHSS       | GFSK       | DH5         |

#### ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

| AVAILABLE | TESTED    | MODULATION | MODULATION | PACKET TYPE |
|-----------|-----------|------------|------------|-------------|
| CHANNEL   | CHANNEL   | TECHNOLOGY | TYPE       |             |
| 0 to 78   | 0, 39, 78 | FHSS       | GFSK       | DH5         |



# 3.3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247)

### ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

# 3.3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with its power adapter.



### 4. TEST TYPES AND RESULTS

### 4.1 CONDUCTED EMISSION MEASUREMENT

### 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

| FREQUENCY OF EMISSION (MHz) | CONDUCTED LIMIT (dBµV) |          |  |  |  |
|-----------------------------|------------------------|----------|--|--|--|
|                             | Quasi-peak             | Average  |  |  |  |
| 0.15 ~ 0.5                  | 66 to 56               | 56 to 46 |  |  |  |
| 0.5 ~ 5                     | 56                     | 46       |  |  |  |
| 5 ~ 30                      | 60                     | 50       |  |  |  |

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

### 4.1.2 TEST INSTRUMENTS

| DESCRIPTION &<br>MANUFACTURER                                 | MODEL NO.       | SERIAL NO.   | CALIBRATED<br>UNTIL |
|---------------------------------------------------------------|-----------------|--------------|---------------------|
| ROHDE & SCHWARZ Test<br>Receiver                              | ESCS 30         | 838251/021   | Nov. 23, 2006       |
| ROHDE & SCHWARZ Artificial<br>Mains Network (for EUT)         | ESH3-Z5         | 100218       | Nov. 22, 2006       |
| LISN With Adapter (for EUT)                                   | AD10            | C10Ada-001   | Nov. 22, 2006       |
| ROHDE & SCHWARZ Artificial<br>Mains Network (for peripherals) | ESH3-Z5         | 100219       | Nov. 22, 2006       |
| ROHDE & SCHWARZ Artificial<br>Mains Network (for peripherals) | ESH3-Z5         | 100220       | Nov. 22, 2006       |
| Software                                                      | ADT_Cond_V7.3.2 | NA           | NA                  |
| Software                                                      | ADT_ISN_V7.3.2  | NA           | NA                  |
| RF cable (JYEBAO)                                             | 5D-FB           | Cable-C10.01 | Apr. 05, 2006       |
| SUHNER Terminator (For ROHDE & SCHWARZ LISN)                  | 65BNC-5001      | E1-010773    | Mar. 04, 2006       |

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in ADT Shielded Room No. 10.
- 3. The VCCI Site Registration No. C-1852.




# 4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

### 4.1.4 DEVIATION FROM TEST STANDARD

No deviation

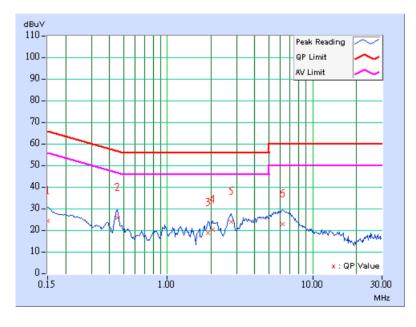


For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

# 4.1.6 EUT OPERATING CONDITIONS

Set the EUT under transmission/receiving condition continuously at specific channel frequency.



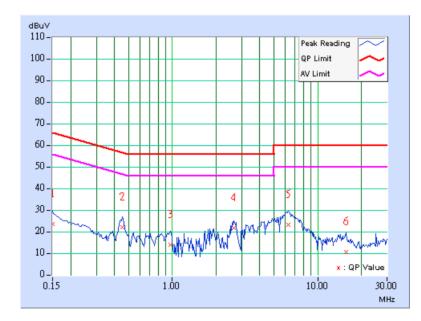

# 4.1.7 TEST RESULTS

#### CONDUCTED WORST CASE DATA

| MODULATION TYPE             | GFSK                        | CHANNEL       | 0      |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 1 |
| TESTED BY                   | Jamison Chan                |               |        |

|    | Freq. | Corr.  | Rea<br>Va | •     | Emis<br>Le | sion<br>vel | Limit          |       | Margin |     |
|----|-------|--------|-----------|-------|------------|-------------|----------------|-------|--------|-----|
| No |       | Factor | [dB (     | (uV)] | [dB        | (uV)]       | uV)] [dB (uV)] |       | (dB)   |     |
|    | [MHz] | (dB)   | Q.P.      | AV.   | Q.P.       | AV.         | Q.P.           | AV.   | Q.P.   | AV. |
| 1  | 0.150 | 0.20   | 23.87     | -     | 24.07      | -           | 66.00          | 56.00 | -41.93 | -   |
| 2  | 0.451 | 0.20   | 25.27     | -     | 25.47      | -           | 56.86          | 46.86 | -31.39 | -   |
| 3  | 1.906 | 0.29   | 18.21     | -     | 18.50      | -           | 56.00          | 46.00 | -37.50 | -   |
| 4  | 2.055 | 0.31   | 19.94     | -     | 20.25      | -           | 56.00          | 46.00 | -35.75 | -   |
| 5  | 2.762 | 0.38   | 23.45     | -     | 23.83      | -           | 56.00          | 46.00 | -32.17 | -   |
| 6  | 6.246 | 0.61   | 22.50     | -     | 23.11      | -           | 60.00          | 50.00 | -36.89 | -   |

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



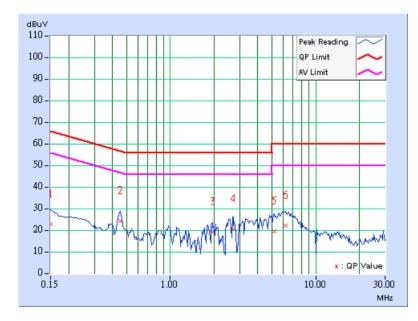



| MODULATION TYPE             | GFSK                        | CHANNEL       | 0      |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 2 |
| TESTED BY                   | Jamison Chan                | ·             |        |

|    | Freq.  | Corr.  | Rea<br>Va | ding<br>lue         | Emission<br>Level Lin |           | nit   | Mar   | gin    |     |
|----|--------|--------|-----------|---------------------|-----------------------|-----------|-------|-------|--------|-----|
| No |        | Factor | [dB(      | [dB (uV)] [dB (uV)] |                       | [dB (uV)] |       | (dB)  |        |     |
|    | [MHz]  | (dB)   | Q.P.      | AV.                 | Q.P.                  | AV.       | Q.P.  | AV.   | Q.P.   | AV. |
| 1  | 0.150  | 0.20   | 22.74     | -                   | 22.94                 | -         | 66.00 | 56.00 | -43.06 | -   |
| 2  | 0.451  | 0.19   | 21.44     | -                   | 21.63                 | -         | 56.86 | 46.86 | -35.23 | -   |
| 3  | 0.966  | 0.11   | 13.31     | -                   | 13.42                 | -         | 56.00 | 46.00 | -42.58 | -   |
| 4  | 2.664  | 0.17   | 20.90     | -                   | 21.07                 | -         | 56.00 | 46.00 | -34.93 | -   |
| 5  | 6.297  | 0.38   | 22.56     | -                   | 22.94                 | -         | 60.00 | 50.00 | -37.06 | -   |
| 6  | 15.605 | 0.82   | 9.88      | -                   | 10.70                 | -         | 60.00 | 50.00 | -49.30 | -   |

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



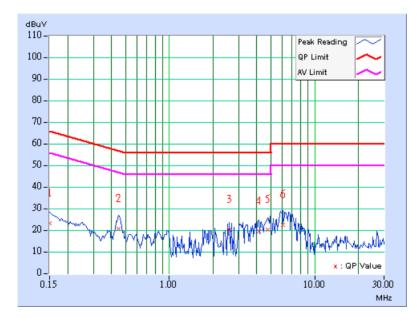



| MODULATION TYPE             | GFSK                        | CHANNEL       | 39     |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 1 |
| TESTED BY                   | Jamison Chan                | •             |        |

|    | Freq. | Corr.  | Rea<br>Va | •     | Emis<br>Le | sion<br>vel | Limit |       | Margin |     |
|----|-------|--------|-----------|-------|------------|-------------|-------|-------|--------|-----|
| No |       | Factor | [dB (     | (uV)] | [dB        | (uV)]       | [dB   | (uV)] | (dl    | 3)  |
|    | [MHz] | (dB)   | Q.P.      | AV.   | Q.P.       | AV.         | Q.P.  | AV.   | Q.P.   | AV. |
| 1  | 0.150 | 0.20   | 22.40     | -     | 22.60      | -           | 66.00 | 56.00 | -43.40 | -   |
| 2  | 0.455 | 0.20   | 23.88     | -     | 24.08      | -           | 56.79 | 46.79 | -32.71 | -   |
| 3  | 1.945 | 0.29   | 18.60     | -     | 18.89      | -           | 56.00 | 46.00 | -37.11 | -   |
| 4  | 2.711 | 0.37   | 19.99     | -     | 20.36      | -           | 56.00 | 46.00 | -35.64 | -   |
| 5  | 5.184 | 0.56   | 19.07     | -     | 19.63      | -           | 60.00 | 50.00 | -40.37 | -   |
| 6  | 6.227 | 0.61   | 21.71     | -     | 22.32      | -           | 60.00 | 50.00 | -37.68 | -   |

2. "-": The Quasi-peak reading value also meets average limit and

- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.






| MODULATION TYPE             | GFSK                        | CHANNEL       | 39     |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 2 |
| TESTED BY                   | Jamison Chan                | •             |        |

|    | Freq. | Corr.  | Rea<br>Va | •     | Emis<br>Le | sion<br>vel | Limit |       | Margin |     |
|----|-------|--------|-----------|-------|------------|-------------|-------|-------|--------|-----|
| No |       | Factor | [dB (     | (uV)] | [dB        | (uV)]       | [dB   | (uV)] | (dl    | 3)  |
|    | [MHz] | (dB)   | Q.P.      | AV.   | Q.P.       | AV.         | Q.P.  | AV.   | Q.P.   | AV. |
| 1  | 0.150 | 0.20   | 22.82     | -     | 23.02      | -           | 66.00 | 56.00 | -42.98 | -   |
| 2  | 0.447 | 0.19   | 20.34     | -     | 20.53      | -           | 56.93 | 46.93 | -36.40 | -   |
| 3  | 2.594 | 0.16   | 19.95     | -     | 20.11      | -           | 56.00 | 46.00 | -35.89 | -   |
| 4  | 4.133 | 0.30   | 19.31     | -     | 19.61      | -           | 56.00 | 46.00 | -36.39 | -   |
| 5  | 4.730 | 0.32   | 19.96     | -     | 20.28      | -           | 56.00 | 46.00 | -35.72 | -   |
| 6  | 6.039 | 0.37   | 22.39     | -     | 22.76      | -           | 60.00 | 50.00 | -37.24 | -   |

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

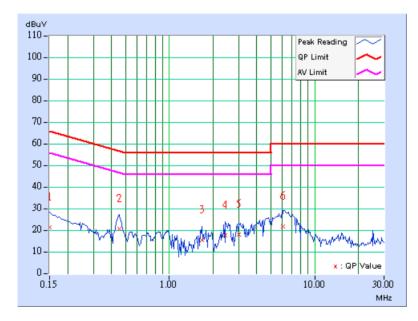




| MODULATION TYPE             | GFSK                        | CHANNEL       | 78     |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 1 |
| TESTED BY                   | Jamison Chan                | •             |        |

|    | Freq. | Corr.  | Rea<br>Val | •     | Emis<br>Le <sup>v</sup> | sion<br>vel |       |       | Margin |     |
|----|-------|--------|------------|-------|-------------------------|-------------|-------|-------|--------|-----|
| No |       | Factor | [dB (      | (uV)] | [dB(                    | (uV)]       | [dB   | (uV)] | (dl    | B)  |
|    | [MHz] | (dB)   | Q.P.       | AV.   | Q.P.                    | AV.         | Q.P.  | AV.   | Q.P.   | AV. |
| 1  | 0.150 | 0.20   | 21.67      | -     | 21.87                   | -           | 66.00 | 56.00 | -44.13 | -   |
| 2  | 0.451 | 0.20   | 23.63      | -     | 23.83                   | -           | 56.86 | 46.86 | -33.03 | -   |
| 3  | 2.539 | 0.35   | 21.55      | -     | 21.90                   | -           | 56.00 | 46.00 | -34.10 | -   |
| 4  | 3.238 | 0.42   | 19.73      | -     | 20.15                   | -           | 56.00 | 46.00 | -35.85 | -   |
| 5  | 5.137 | 0.56   | 19.18      | -     | 19.74                   | -           | 60.00 | 50.00 | -40.26 | -   |
| 6  | 6.066 | 0.60   | 21.21      | -     | 21.81                   | -           | 60.00 | 50.00 | -38.19 | -   |

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.






| MODULATION TYPE             | GFSK                        | CHANNEL       | 78     |
|-----------------------------|-----------------------------|---------------|--------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz               | 6dB BANDWIDTH | 9 kHz  |
| ENVIRONMENTAL<br>CONDITIONS | 20deg. C, 80%RH,<br>1007hPa | PHASE         | Line 2 |
| TESTED BY                   | Jamison Chan                | •             |        |

|    | Freq. | Corr.  | Rea<br>Val | •     |       | Emission<br>Level Limit Margin |           | Limit |        | gin |
|----|-------|--------|------------|-------|-------|--------------------------------|-----------|-------|--------|-----|
| No |       | Factor | [dB (      | (uV)] | [dB   | (uV)]                          | [dB (uV)] |       | (dB)   |     |
|    | [MHz] | (dB)   | Q.P.       | AV.   | Q.P.  | AV.                            | Q.P.      | AV.   | Q.P.   | AV. |
| 1  | 0.150 | 0.20   | 21.13      | -     | 21.33 | -                              | 66.00     | 56.00 | -44.67 | -   |
| 2  | 0.451 | 0.19   | 20.20      | -     | 20.39 | -                              | 56.86     | 46.86 | -36.47 | -   |
| 3  | 1.672 | 0.10   | 15.05      | -     | 15.15 | -                              | 56.00     | 46.00 | -40.85 | -   |
| 4  | 2.430 | 0.14   | 17.34      | -     | 17.48 | -                              | 56.00     | 46.00 | -38.52 | -   |
| 5  | 3.000 | 0.20   | 17.77      | -     | 17.97 | -                              | 56.00     | 46.00 | -38.03 | -   |
| 6  | 6.086 | 0.37   | 21.66      | -     | 22.03 | -                              | 60.00     | 50.00 | -37.97 | -   |

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.





### 4.2 RADIATED EMISSION MEASUREMENT

### 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

| FREQUENCIES (MHz) | FIELD STRENGTH<br>(microvolts/meter) | MEASUREMENT DISTANCE<br>(meters) |  |
|-------------------|--------------------------------------|----------------------------------|--|
| 0.009 ~ 0.490     | 2400/F(kHz)                          | 300                              |  |
| 0.490 ~ 1.705     | 24000/F(kHz)                         | 30                               |  |
| 1.705 ~ 30.0      | 30                                   | 30                               |  |
| 30 ~ 88           | 100                                  | 3                                |  |
| 88 ~ 216          | 150                                  | 3                                |  |
| 216 ~ 960         | 200                                  | 3                                |  |
| Above 960         | 500                                  | 3                                |  |

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.



### 4.2.2 TEST INSTRUMENTS

| DESCRIPTION &<br>MANUFACTURER        | MODEL NO.       | SERIAL NO.   | CALIBRATED<br>UNTIL |
|--------------------------------------|-----------------|--------------|---------------------|
| HP Preamplifier                      | 8447D           | 2432A03504   | May 22, 2006        |
| HP Preamplifier                      | 8449B           | 3008A01924   | Sep. 06, 2006       |
| HP Preamplifier                      | 8449B           | 3008A01638   | Sep. 21, 2006       |
| ROHDE & SCHWARZ TEST<br>RECEIVER     | ESI7            | 836697/012   | Nov. 01, 2006       |
| Schwarzbeck Antenna                  | VULB 9168       | 137          | Feb. 27, 2006       |
| Schwarzbeck Antenna                  | VHBA 9123       | 480          | Apr. 11, 2006       |
| EMCO Horn Antenna                    | 3115            | 6714         | Oct. 26, 2006       |
| EMCO Horn Antenna                    | 3115            | 9312-4192    | Feb. 28, 2006       |
| ADT. Turn Table                      | TT100           | 0306         | NA                  |
| ADT. Tower                           | AT100           | 0306         | NA                  |
| Software                             | ADT_Radiated_V6 | NA           | NA                  |
| TIMES RF cable                       | LL142           | CABLE-CH6-01 | Dec. 19, 2006       |
| ROHDE & SCHWARZ<br>Spectrum Analyzer | FSP 40          | 100036       | Mar. 20. 2006       |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

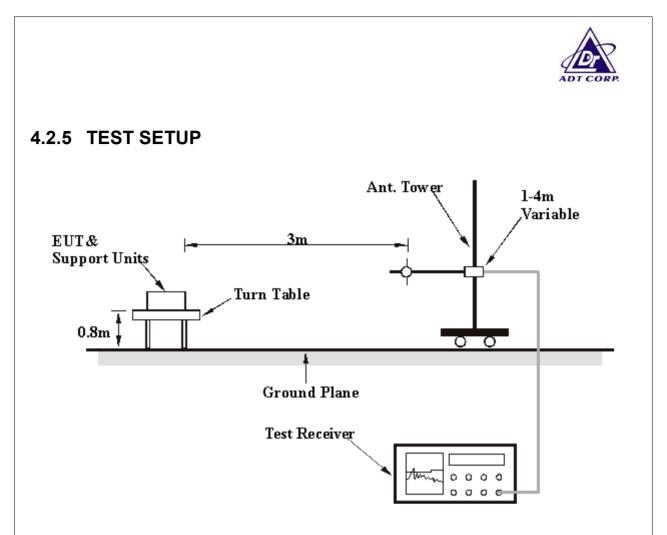
2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in ADT Chamber No. 6.

4. The Industry Canada Reference No. IC 3789-6.



### 4.2.3 TEST PROCEDURES


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength.
   Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection (PK) at frequency above 1GHz.

# 4.2.4 DEVIATION FROM TEST STANDARD

No deviation



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

# 4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6



# 4.2.7 TEST RESULTS

#### RADIATED WORST CASE DATA: BELOW 1GHz

| MODULATION TYPE             | GFSK                           | CHANNEL              | 78            |
|-----------------------------|--------------------------------|----------------------|---------------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz                  | FREQUENCY<br>RANGE   | Below 1000MHz |
| ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa | DETECTOR<br>FUNCTION | Quasi-Peak    |
| TESTED BY                   | Jamison Chan                   |                      |               |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |          |            |        |         |          |        |            |  |
|-----|-----------------------------------------------------|----------|------------|--------|---------|----------|--------|------------|--|
|     | Freq.                                               | Emission | Limit      | Margin | Antenna | Table    | Raw    | Correction |  |
| No. | •                                                   | Level    | (dBuV/m)   | (dB)   | Height  | Angle    | Value  | Factor     |  |
|     | (MHz) (dBuV/r                                       | (dBuV/m) | (ubuv/iii) | (ub)   | (m)     | (Degree) | (dBuV) | (dB/m)     |  |
| 1   | 57.21                                               | 23.73 QP | 40.00      | -16.27 | 2.00 H  | 271      | 10.56  | 13.17      |  |
| 2   | 107.76                                              | 22.35 QP | 43.50      | -21.15 | 3.00 H  | 97       | 12.92  | 9.43       |  |
| 3   | 179.68                                              | 21.27 QP | 43.50      | -22.23 | 1.75 H  | 73       | 9.44   | 11.83      |  |
| 4   | 774.51                                              | 24.42 QP | 46.00      | -21.58 | 1.00 H  | 265      | -0.32  | 24.73      |  |
| 5   | 887.26                                              | 25.51 QP | 46.00      | -20.49 | 1.25 H  | 307      | -0.59  | 26.09      |  |
| 6   | 945.57                                              | 26.12 QP | 46.00      | -19.88 | 1.75 H  | 121      | -1.03  | 27.15      |  |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                    | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 53.82                                             | 28.01 QP                      | 40.00             | -11.99         | 1.00 V                   | 218                        | 14.61                  | 13.41                          |  |
| 2   | 111.64                                            | 23.89 QP                      | 43.50             | -19.61         | 1.00 V                   | 112                        | 13.94                  | 9.95                           |  |
| 3   | 127.19                                            | 19.30 QP                      | 43.50             | -24.20         | 1.00 V                   | 16                         | 7.71                   | 11.59                          |  |
| 4   | 776.45                                            | 23.70 QP                      | 46.00             | -22.30         | 1.00 V                   | 10                         | -1.04                  | 24.74                          |  |
| 5   | 889.20                                            | 24.84 QP                      | 46.00             | -21.16         | 1.25 V                   | 217                        | -1.24                  | 26.08                          |  |
| 6   | 926.13                                            | 25.29 QP                      | 46.00             | -20.71         | 1.00 V                   | 115                        | -1.37                  | 26.66                          |  |

**REMARKS**:1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)3The other emission levels were very low against the limit.4. Margin value = Emission level – Limit value.



#### RADIATED WORST CASE DATA: 1 ~ 25GHz

| MODULATION TYPE             | GFSK                           | CHANNEL              | 0                         |
|-----------------------------|--------------------------------|----------------------|---------------------------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz                  | FREQUENCY<br>RANGE   | 1 ~ 25GHz                 |
| ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
| TESTED BY                   | Jamison Chan                   |                      |                           |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                |                        |                                |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                      | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 1602.00                                             | 62.30 PK                      | 74.00             | -11.70         | (III)<br>1.29 H          | (Degree)<br>65 | 29.59                  | 32.71                          |  |
| 1   | 1602.00                                             | 46.39 AV                      | 54.00             | -7.61          | 1.29 H                   | 65             | 13.68                  | 32.71                          |  |
| 2   | 2377.00                                             | 43.35 PK                      | 74.00             | -30.65         | 1.36 H                   | 28             | 8.29                   | 35.06                          |  |
| 2   | 2377.00                                             | 30.85 AV                      | 54.00             | -23.15         | 1.36 H                   | 28             | -4.21                  | 35.06                          |  |
| 3   | *2402.00                                            | 95.34 PK                      |                   |                | 1.36 H                   | 28             | 60.18                  | 35.16                          |  |
| 3   | *2402.00                                            | 65.34 AV                      |                   |                | 1.36 H                   | 28             | 30.18                  | 35.16                          |  |
| 4   | 4804.00                                             | 65.21 PK                      | 74.00             | -8.79          | 1.12 H                   | 26             | 22.38                  | 42.83                          |  |
| 4   | 4804.00                                             | 35.21 AV                      | 54.00             | -18.79         | 1.12 H                   | 26             | -7.62                  | 42.83                          |  |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                    | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 1602.00                                           | 62.32 PK                      | 74.00             | -11.68         | 1.00 V                   | 336                        | 29.61                  | 32.71                          |  |
| 1   | 1602.00                                           | 47.41 AV                      | 54.00             | -6.59          | 1.00 V                   | 336                        | 14.70                  | 32.71                          |  |
| 2   | 2377.00                                           | 45.33 PK                      | 74.00             | -28.67         | 1.03 V                   | 326                        | 10.27                  | 35.06                          |  |
| 2   | 2377.00                                           | 32.23 AV                      | 54.00             | -21.77         | 1.03 V                   | 326                        | -2.83                  | 35.06                          |  |
| 3   | *2402.00                                          | 99.42 PK                      |                   |                | 1.03 V                   | 326                        | 64.26                  | 35.16                          |  |
| 3   | *2402.00                                          | 69.42 AV                      |                   |                | 1.03 V                   | 326                        | 34.26                  | 35.16                          |  |
| 4   | 4804.00                                           | 66.25 PK                      | 74.00             | -7.75          | 1.05 V                   | 3                          | 23.42                  | 42.83                          |  |
| 4   | 4804.00                                           | 36.25 AV                      | 54.00             | -17.75         | 1.05 V                   | 3                          | -6.58                  | 42.83                          |  |

**REMARKS**:

: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 \* 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30 dB.
- 6. Average value = peak reading + 20log(duty cycle).



| MODULATION TYPE             | GFSK                           | CHANNEL              | 39                        |
|-----------------------------|--------------------------------|----------------------|---------------------------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz                  | FREQUENCY<br>RANGE   | 1 ~ 25GHz                 |
| ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
| TESTED BY                   | Jamison Chan                   | •                    |                           |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                      | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 1628.00                                             | 62.31 PK                      | 74.00             | -11.69         | 1.00 H                   | 321                        | 29.56                  | 32.75                          |  |
| 1   | 1628.00                                             | 47.26 AV                      | 54.00             | -6.74          | 1.00 H                   | 321                        | 14.51                  | 32.75                          |  |
| 2   | *2441.00                                            | 94.52 PK                      |                   |                | 1.24 H                   | 321                        | 59.16                  | 35.35                          |  |
| 2   | *2441.00                                            | 64.52 AV                      |                   |                | 1.24 H                   | 321                        | 29.16                  | 35.35                          |  |
| 3   | 4882.00                                             | 66.38 PK                      | 74.00             | -7.62          | 1.39 H                   | 271                        | 23.70                  | 42.68                          |  |
| 3   | 4882.00                                             | 36.38 AV                      | 54.00             | -17.62         | 1.39 H                   | 271                        | -6.30                  | 42.68                          |  |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                    | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 1628.00                                           | 62.37 PK                      | 74.00             | -11.63         | 1.00 V                   | 287                        | 29.62                  | 32.75                          |  |
| 1   | 1628.00                                           | 46.38 AV                      | 54.00             | -7.62          | 1.00 V                   | 287                        | 13.63                  | 32.75                          |  |
| 2   | *2441.00                                          | 100.23 PK                     |                   |                | 1.00 V                   | 215                        | 64.87                  | 35.35                          |  |
| 2   | *2441.00                                          | 70.23 AV                      |                   |                | 1.00 V                   | 215                        | 34.88                  | 35.35                          |  |
| 3   | 4882.00                                           | 65.32 PK                      | 74.00             | -8.68          | 1.00 V                   | 325                        | 22.64                  | 42.68                          |  |
| 3   | 4882.00                                           | 35.32 AV                      | 54.00             | -18.68         | 1.00 V                   | 325                        | -7.36                  | 42.68                          |  |

#### **REMARKS**:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 \* 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30 dB.
- 6. Average value = peak reading + 20log(duty cycle).



| MODULATION TYPE             | GFSK                           | CHANNEL              | 78                        |
|-----------------------------|--------------------------------|----------------------|---------------------------|
| INPUT POWER<br>(SYSTEM)     | 120Vac, 60 Hz                  | FREQUENCY<br>RANGE   | 1 ~ 25GHz                 |
| ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
| TESTED BY                   | Jamison Chan                   | •                    |                           |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                      | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 1654.00                                             | 62.38 PK                      | 74.00             | -11.62         | 1.29 H                   | 247                        | 29.59                  | 32.79                          |  |
| 1   | 1654.00                                             | 46.38 AV                      | 54.00             | -7.62          | 1.29 H                   | 247                        | 13.59                  | 32.79                          |  |
| 2   | *2480.00                                            | 93.62 PK                      |                   |                | 1.35 H                   | 227                        | 58.07                  | 35.55                          |  |
| 2   | *2480.00                                            | 63.62 AV                      |                   |                | 1.35 H                   | 227                        | 28.07                  | 35.55                          |  |
| 3   | 2483.50                                             | 37.62 PK                      | 74.00             | -36.38         | 1.35 H                   | 227                        | 2.05                   | 35.57                          |  |
| 3   | 2483.50                                             | 25.52 AV                      | 54.00             | -28.48         | 1.35 H                   | 227                        | -10.05                 | 35.57                          |  |
| 4   | 4960.00                                             | 65.32 PK                      | 74.00             | -8.68          | 1.45 H                   | 26                         | 22.51                  | 42.81                          |  |
| 4   | 4960.00                                             | 35.32 AV                      | 54.00             | -18.68         | 1.45 H                   | 26                         | -7.49                  | 42.81                          |  |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                   |       |        |                   |                |              |                      |  |
|-----|---------------------------------------------------|-------------------|-------|--------|-------------------|----------------|--------------|----------------------|--|
| No. | Freq.<br>(MHz)                                    | Emission<br>Level |       | Margin | Antenna<br>Height | Table<br>Angle | Raw<br>Value | Correction<br>Factor |  |
|     |                                                   | (dBuV/m)          |       | (dB)   | (m)               | (Degree)       | (dBuV)       | (dB/m)               |  |
| 1   | 1654.00                                           | 63.88 PK          | 74.00 | -10.12 | 1.00 V            | 247            | 31.09        | 32.79                |  |
| 1   | 1654.00                                           | 47.15 AV          | 54.00 | -6.85  | 1.00 V            | 247            | 14.36        | 32.79                |  |
| 2   | *2480.00                                          | 99.87 PK          |       |        | 1.00 V            | 217            | 64.32        | 35.55                |  |
| 2   | *2480.00                                          | 69.87 AV          |       |        | 1.00 V            | 217            | 34.32        | 35.55                |  |
| 3   | 2483.50                                           | 44.58 PK          | 74.00 | -29.42 | 1.00 V            | 217            | 9.01         | 35.57                |  |
| 3   | 2483.50                                           | 31.68 AV          | 54.00 | -22.32 | 1.00 V            | 217            | -3.89        | 35.57                |  |
| 4   | 4960.00                                           | 66.52 PK          | 74.00 | -7.48  | 1.15 V            | 26             | 23.71        | 42.81                |  |
| 4   | 4960.00                                           | 36.52 AV          | 54.00 | -17.48 | 1.15 V            | 26             | -6.29        | 42.81                |  |

**REMARKS**:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 \* 5 per 296.25 ms per channel. Therefore, the duty cycle be equal to: 20log(3.125/100)= -30 dB.
- 6. Average value = peak reading + 20log(duty cycle).



# 4.3 NUMBER OF HOPPING FREQUENCY USED

### 4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

### 4.3.2 TEST INSTRUMENTS

| DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |
|----------------------------|-----------|------------|------------------|
| SPECTRUM ANALYZER          | FSEK30    | 100049     | Aug. 14, 2006    |

**NOTE:** The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

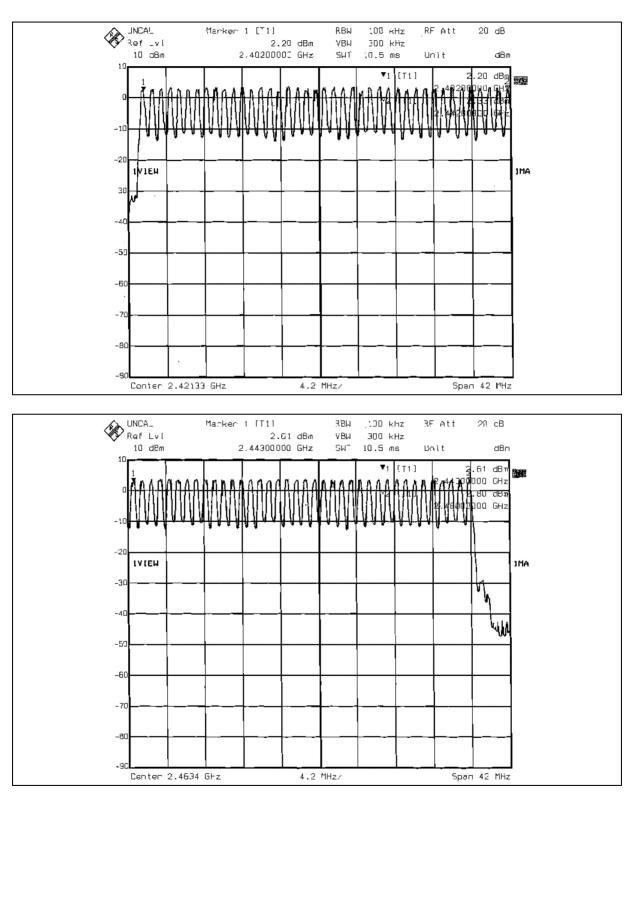
### 4.3.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.



# 4.3.4 DEVIATION FROM TEST STANDARD

No deviation.


### 4.3.5 TEST SETUP



### 4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.







### 4.4 DWELL TIME ON EACH CHANNEL

### 4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### **4.4.2 TEST INSTRUMENTS**

| DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |  |
|----------------------------|-----------|------------|------------------|--|
| SPECTRUM ANALYZER          | FSEK30    | 100049     | Aug. 14, 2006    |  |

**NOTES:** The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

### 4.4.3 TEST PROCEDURES

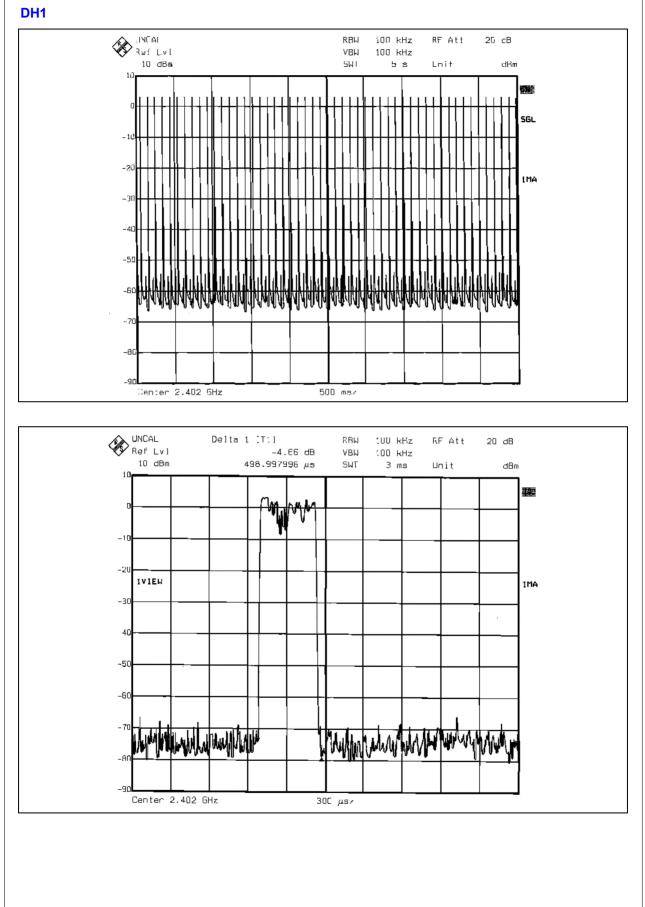
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

### 4.4.4 DEVIATION FROM TEST STANDARD

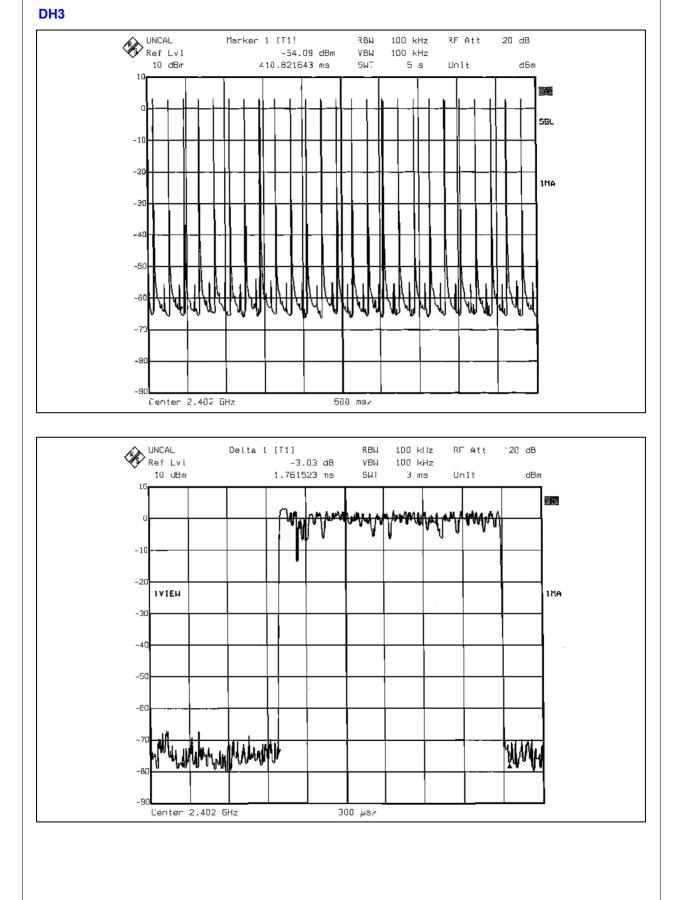
No deviation.



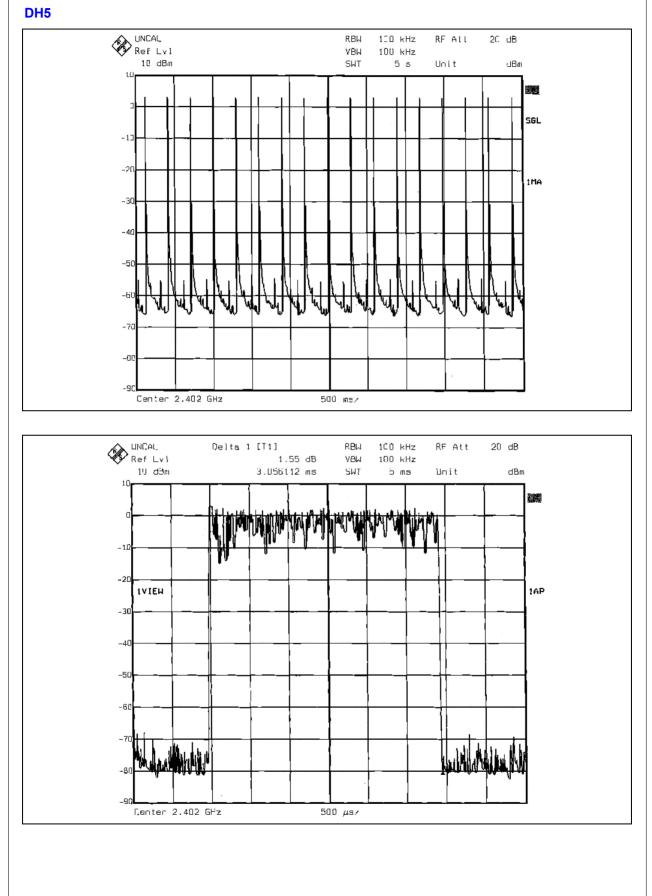
### 4.4.5 TEST SETUP




### 4.4.6 TEST RESULTS


| Mode | Number of transmission in a<br>31.6 (79Hopping*0.4) | Length of<br>transmission<br>time (msec) | Result<br>(msec) | Limit<br>(msec) |
|------|-----------------------------------------------------|------------------------------------------|------------------|-----------------|
| DH1  | 51 (times / 5 sec) *6.32=322.32 times               | 0.499                                    | 160.838          | 400             |
| DH3  | 26 (times / 5 sec) *6.32=164.32 times               | 1.762                                    | 289.532          | 400             |
| DH5  | 17 (times / 5 sec) *6.32=107.44 times               | 3.056                                    | 328.337          | 400             |

**NOTE:** Test plots of the transmitting time slot are shown on next 3 pages.
















# 4.5 CHANNEL BANDWIDTH

### 4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

#### 4.5.2 TEST INSTRUMENTS

| DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |
|----------------------------|-----------|------------|------------------|
| SPECTRUM ANALYZER          | FSEK30    | 100049     | Aug. 14, 2006    |

**NOTE:** The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.5.3 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.



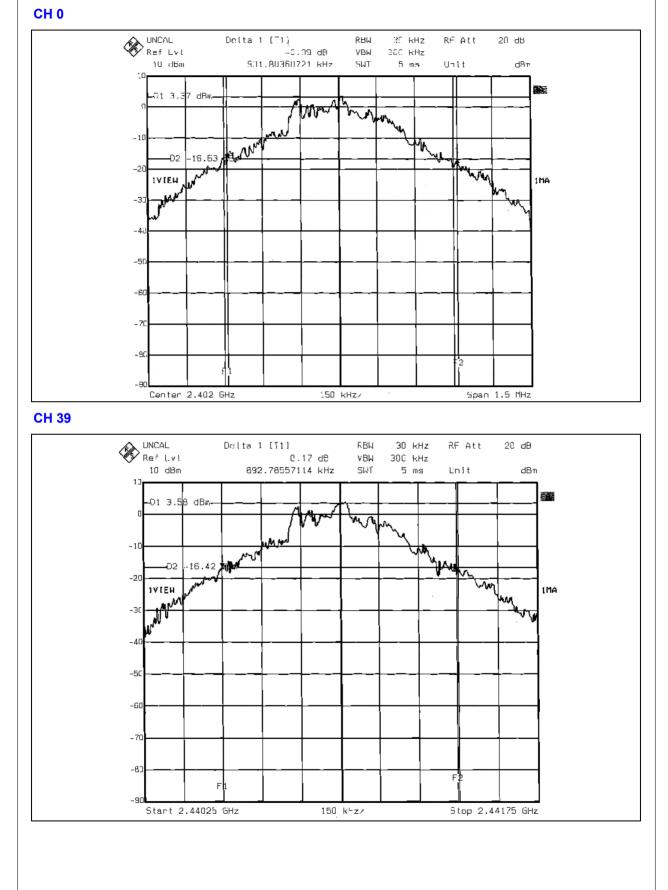
### 4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

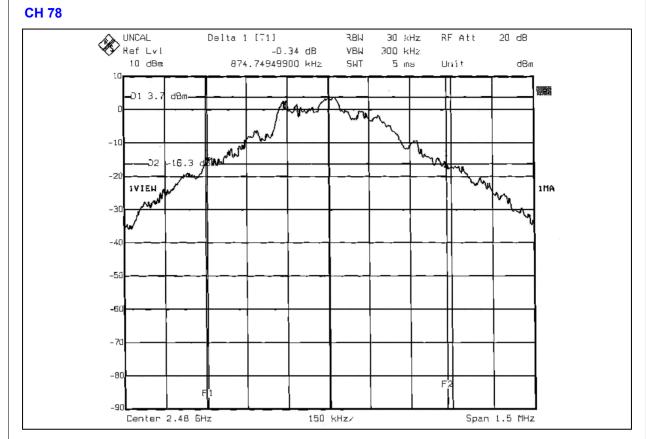
#### 4.5.5 TEST SETUP



#### 4.5.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

#### 4.5.7 TEST RESULTS


| MODULATION TYPE         | GFSK          | CHANNEL | 0, 39, 78                      |
|-------------------------|---------------|---------|--------------------------------|
| INPUT POWER<br>(SYSTEM) | 120Vac, 60 Hz |         | 18 deg. C, 75% RH,<br>1007 hPa |
| TESTED BY               | Jamison Chan  |         |                                |

| CHANNEL | CHANNEL FREQUENCY (MHz) | 20dB BANDWIDTH (MHz) |
|---------|-------------------------|----------------------|
| 0       | 2402                    | 0.902                |
| 39      | 2441                    | 0.893                |
| 78      | 2480                    | 0.875                |











### 4.6 HOPPING CHANNEL SEPARATION

#### 4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

#### 4.6.2 TEST INSTRUMENTS

| DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |
|----------------------------|-----------|------------|------------------|
| SPECTRUM ANALYZER          | FSEK30    | 100049     | Aug. 14, 2006    |

**NOTES:** The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.6.3 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.



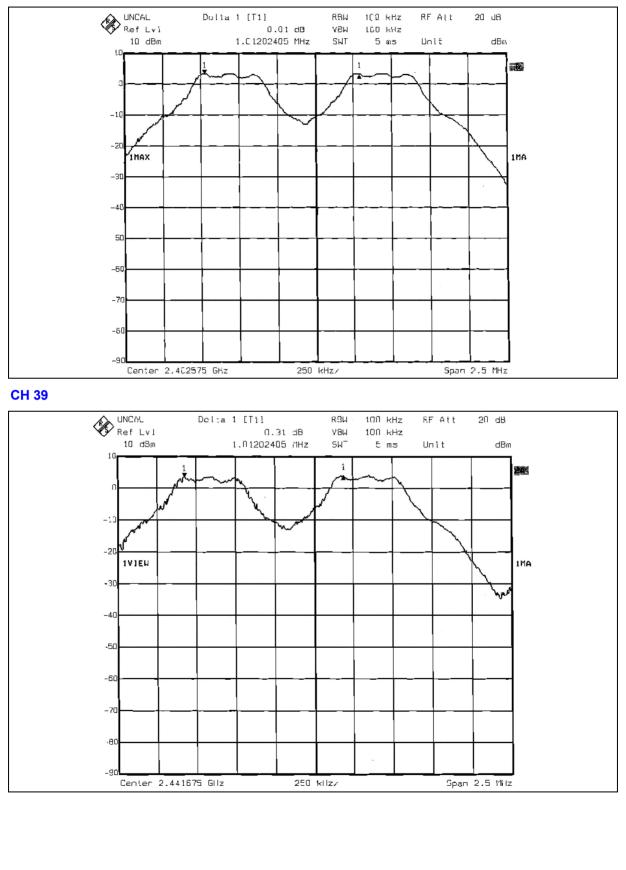
#### 4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

#### 4.6.5 TEST SETUP

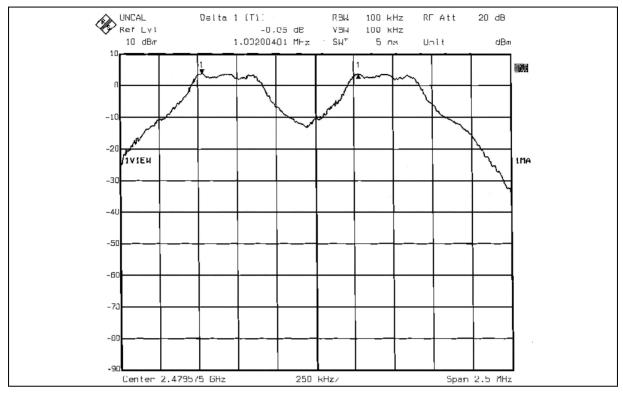


#### 4.6.6 TEST RESULTS


| MODULATION TYPE         | GFSK          | CHANNEL                     | 0, 39, 78                      |
|-------------------------|---------------|-----------------------------|--------------------------------|
| INPUT POWER<br>(SYSTEM) | 120Vac, 60 Hz | ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa |
| TESTED BY               | Jamison Chan  |                             |                                |

| CHANNEL | FREQUENCY<br>(MHz) | ADJACENT<br>CHANNEL<br>SEPARATION<br>(MHz) | MINIMUM LIMIT<br>(MHz) | PASS / FAIL |
|---------|--------------------|--------------------------------------------|------------------------|-------------|
| 0       | 2402               | 1.012                                      | 0.902                  | PASS        |
| 39      | 2441               | 1.012                                      | 0.893                  | PASS        |
| 78      | 2480               | 1.002                                      | 0.875                  | PASS        |

**NOTE:** The minimum limit is 20dB bandwidth. Test results please refer to next two pages.




CH 0





CH 78





#### 4.7 MAXIMUM PEAK OUTPUT POWER

#### 4.7.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

#### **4.7.2 TEST INSTRUMENTS**

| DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |
|----------------------------|-----------|------------|------------------|
| SPECTRUM ANALYEER          | FSEK30    | 100049     | Aug. 14, 2006    |

**NOTE:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

#### **4.7.3 TEST PROCEDURES**

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 1 MHz RBW and 3 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

#### 4.7.4 DEVIATION FROM TEST STANDARD

No deviation

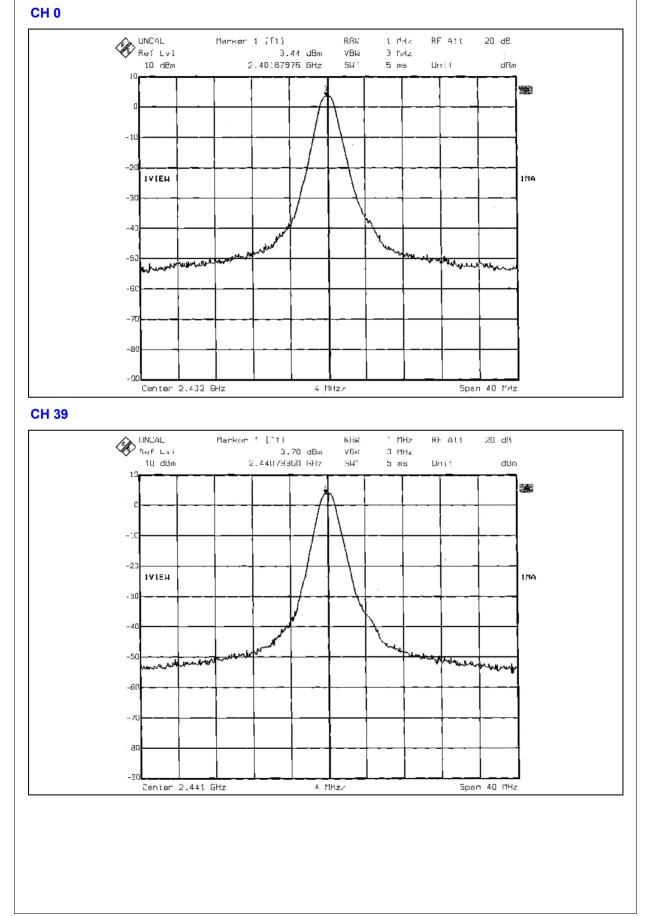


### 4.7.5 TEST SETUP



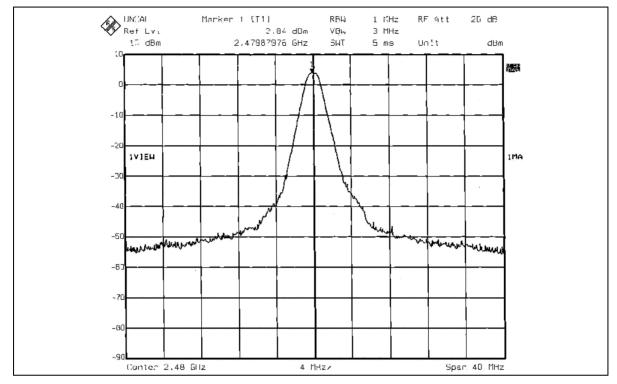
For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

#### 4.7.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

#### 4.7.7 TEST RESULTS

| MODULATION TYPE         | GFSK          | CHANNEL                     | 0, 39, 78                      |
|-------------------------|---------------|-----------------------------|--------------------------------|
| INPUT POWER<br>(SYSTEM) | 120Vac, 60 Hz | ENVIRONMENTAL<br>CONDITIONS | 18 deg. C, 75% RH,<br>1007 hPa |
| TESTED BY               | Jamison Chan  |                             |                                |


| CHANNEL | CHANNEL<br>FREQUENCY<br>(MHz) | PEAK POWER<br>OUTPUT (mW) | PEAK POWER<br>OUTPUT (dBm) | PEAK POWER<br>LIMIT<br>(dBm) | PASS/FAIL |
|---------|-------------------------------|---------------------------|----------------------------|------------------------------|-----------|
| 0       | 2402                          | 2.208                     | 3.44                       | 30                           | PASS      |
| 39      | 2441                          | 2.344                     | 3.70                       | 30                           | PASS      |
| 78      | 2480                          | 2.421                     | 3.84                       | 30                           | PASS      |







#### CH 78





#### 4.8 BAND EDGES MEASUREMENT

#### 4.8.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

#### **4.8.2 TEST INSTRUMENTS**

| <b>DESCRIPTION &amp; MANUFACTURER</b> | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL |
|---------------------------------------|-----------|------------|------------------|
| SPECTRUM ANALYZER                     | FSEK30    | 100049     | Aug. 14, 2006    |

**NOTES:** The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

#### 4.8.4 DEVIATION FROM TEST STANDARD

No deviation.

#### 4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

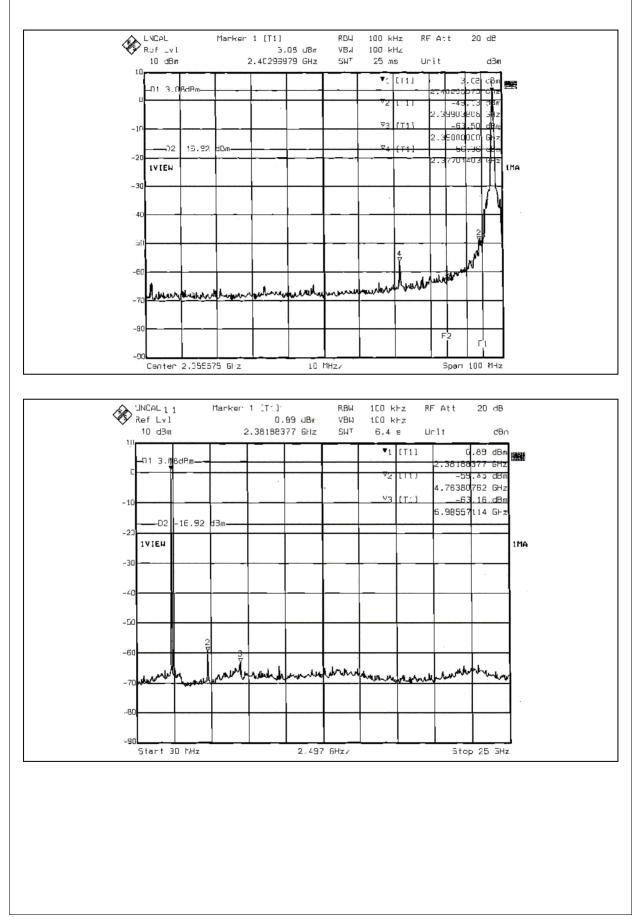


## 4.8.6 TEST RESULTS

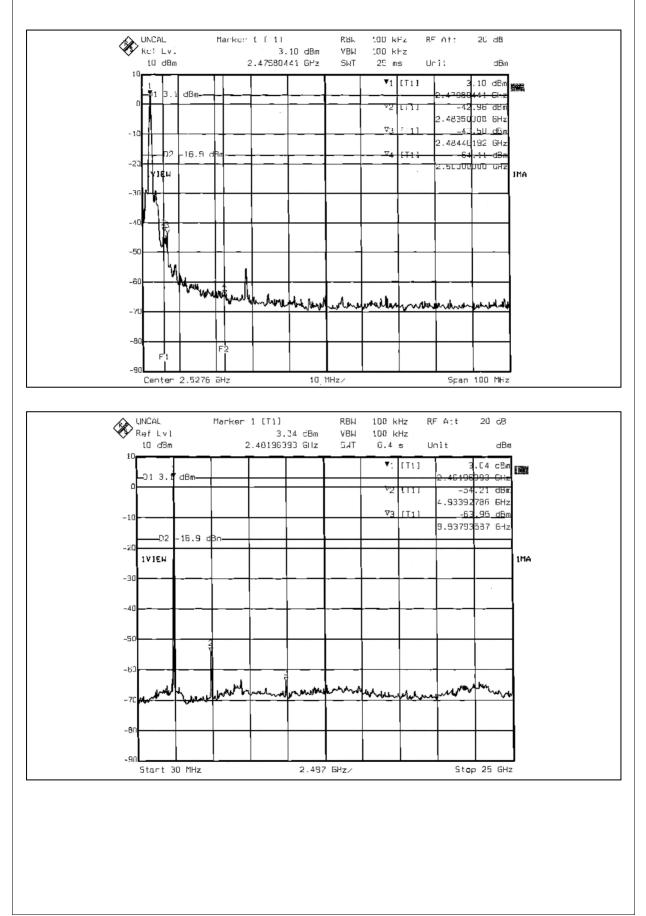
The spectrum plots are attached on the following 4 images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

#### NOTE 1:

The band edge emission plot on page 52 shows 59.44dBc between carrier maximum power and local maximum emission in restrict band (2.3770GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2.7 is 99.42dBuV/m (Peak), so the maximum field strength in restrict band is 99.42 –59.44 = 39.98dBuV/m, which is under 74 dBuV/m limit.


The band edge emission plot on page 52 shows 59.44dBc between carrier maximum power and local maximum emission in restrict band (2.3770GHz). The emission of carrier strength list in the test result of channel 0 at the item 4.2.7 is 69.42dBuV/m (Average), so the maximum field strength in restrict band is 69.42 - 59.44 = 9.98dBuV/m, which is under 54 dBuV/m limit.

#### NOTE 2:


The band edge emission plot on page 53 shows 46.06dBc between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2.7 is 99.87dBuV/m (Peak), so the maximum field strength in restrict band is 99.87-46.06 = 53.81dBuV/m, which is under 74 dBuV/m limit.

The band edge emission plot on page 53 shows 46.06dBc between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 78 at the item 4.2.7 is 69.87dBuV/m (Average), so the maximum field strength in restrict band is 69.87 - 46.06 = 23.81dBuV/m, which is under 54 dBuV/m limit.











#### 4.9 ANTENNA REQUIREMENT

#### 4.9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 4.9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Dipole antenna without antenna connector. The maximum gain of this antenna is -3dBi.



#### 5. PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST





RADIATED EMISSION TEST

111





#### 6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

| USA         | FCC, UL, A2LA         |
|-------------|-----------------------|
| Germany     | TUV Rheinland         |
| Japan       | VCCI                  |
| Norway      | NEMKO                 |
| Canada      | INDUSTRY CANADA , CSA |
| R.O.C.      | CNLA, BSMI, DGT       |
| Netherlands | Telefication          |
| Singapore   | PSB , GOST-ASIA(MOU)  |
| Russia      | CERTIS(MOU)           |

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

**Hwa Ya EMC/RF/Safety Telecom Lab**: Tel: 886-3-3183232 Fax: 886-3-3185050 Linko RF Lab. Tel: 886-3-3270910 Fax: 886-3-3270892

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.



#### **APPENDIX-A**

# MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.