

TEST REPORT

Test report no.: 1-9100/19-01-13

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: +49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Hexagon Geosystems Services AG Zweigniederlassung Hexagon Mining

Baarerstrasse 133 6300 Zug / SWITZERLAND

Phone: -/-

Contact: André Reichmuth

e-mail: andre.reichmuth@hexagon.com

Phone: -/-

Manufacturer

Hexagon Geosystems Services AG Zweigniederlassung Hexagon Mining

Baarerstrasse 133

6300 Zug / SWITZERLAND

Radio Communications & EMC

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

For further applied test standards please refer to section 3 of this test report.

24 V DC, by battery

Test Item

Kind of test item: Collison Avoidance Main Unit

Model name: QC1000 FCC ID: ZKSQC1000A

Frequency: 5.925 GHz to 7.250 GHZ
Antenna: Integrated antenna

Temperature range: -30°C to +70°C

Radio Communications & EMC

Power supply:

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Meheza Walla	Sebastian Janoschka
Lab Manager	Lab Manager

Table of contents

1	Table	of contents	
2		ral information	
_	2.1	Notes and disclaimer	
	2.1	Application details	
	2.3	Test laboratories sub-contracted	
3	_	standard/s and references	
4		ting statements of conformity – decision rule	
5	_	environment	
6		tem	
	6.1	General description	6
	6.2	Additional information	
7	Descr	iption of the test setup	8
	7.1	Shielded semi anechoic chamber	
	7.2	Shielded fully anechoic chamber	
	7.3	Radiated measurements > 18 GHz	12
8	Seque	ence of testing	13
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	13
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	15
	8.4	Sequence of testing radiated spurious above 18 GHz	16
9	Meas	urement uncertainty	17
10	Sur	nmary of measurement results	18
11	Mea	asurement results	19
	11.1	10 dB - Bandwidth	19
	11.2	TX Radiated Emissions	
12	Glo	ssary	39
13	Doo	cument history	40
11	٨٥٥	eraditation Cartificate _ D.DI -12076-01-05	40

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2019-11-06
Date of receipt of test item: 2020-07-06
Start of test: 2020-07-06
End of test: 2021-03-24

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

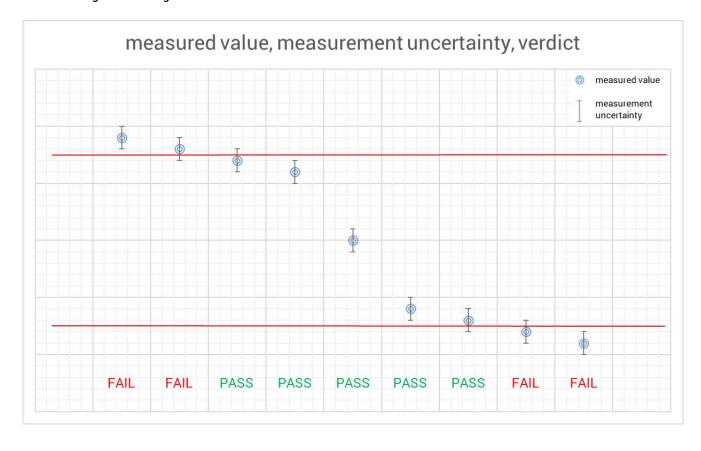
None

© CTC advanced GmbH Page 3 of 40

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices


© CTC advanced GmbH Page 4 of 40

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 40

5 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +70 °C during high temperature tests -30 °C during low temperature tests			
Relative humidity content	:		47 %			
Barometric pressure			1021 hpa			
Power supply	:	V_{nom}	24 V DC, by external power supply			

6 Test item

6.1 General description

Kind of test item :	Collison Avoidance Main Unit
Model name :	QC1000
S/N serial number :	Sample 101
Frequency band :	5.925 GHz to 7.250 GHZ
Type of radio transmission: Use of frequency spectrum:	UWB
Type of modulation :	BPSK / BPM
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	24 V DC, by battery
Temperature range :	-30°C to +70°C

© CTC advanced GmbH Page 6 of 40

6.2 Additional information

A special test mode is used with a cycle time of 1ms:

To set up the EUT in transmitter test mode, the following commands where send via serial interface

Channel 7
1. \$radio,init,1,7,101
2. \$radio,cf,w,1000,200

Transmitter test mode parameters:

Channel	7 / 6489.6GHz*
Power Setting	101 (program setting)
Cycle time	1000 ms
Pulse length	200 ms

^{*}IEEE802.15.4.-2011 UWB channel centre frequency

Test setup- and EUT-photos are included in test report: 1-9100/19-01-13_AnnexA

1-9100/19-01-13_AnnexB

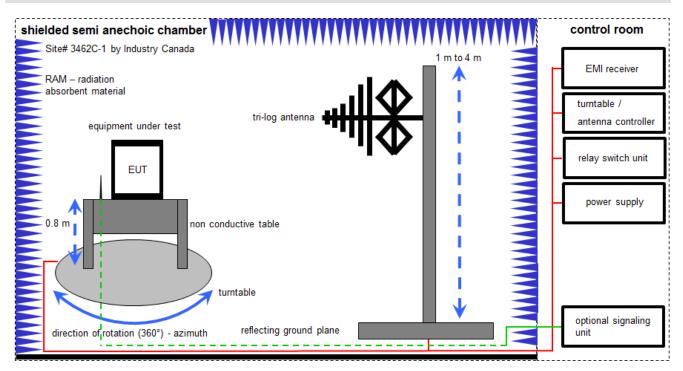
1-9100/19-01-13_AnnexD

© CTC advanced GmbH Page 7 of 40

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 40

7.1 Shielded semi anechoic chamber

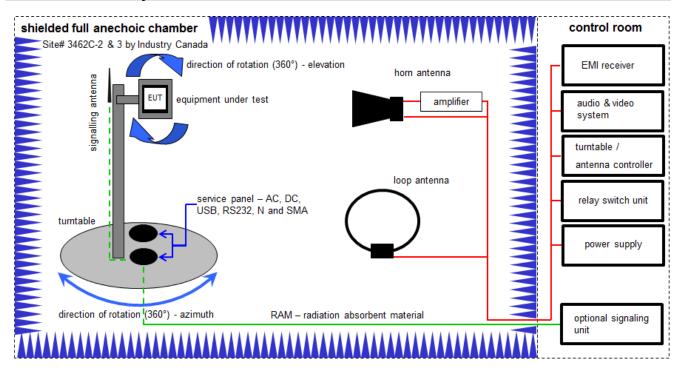
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	04.09.2019	03.09.2021
9	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
10	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022
11	n. a.	PC	TecLine	F+W		300004388	ne	-/-	-/-

© CTC advanced GmbH Page 9 of 40

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

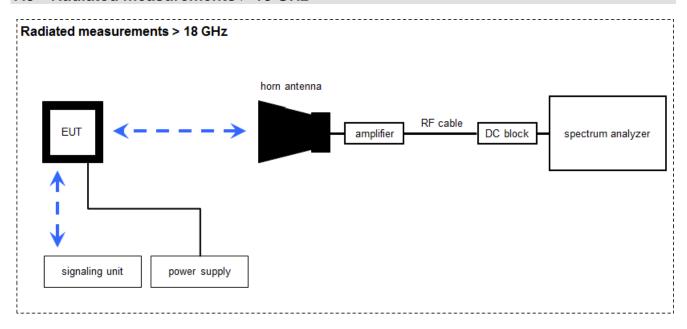
Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μ W)

© CTC advanced GmbH Page 10 of 40

Equipment table (Chamber C):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B,C	Switch / Control Unit	3488A	НР	*	300000199	ne	-/-	-/-
4	A,B,C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
5	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
6	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
8	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-
9	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021


Equipment table (OTA):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	Power supply GPIB dc power supply, 0- 50 Vdc, 0-2 A	6633A	НР	2851A01222	300001530	vlKI!	10.12.2019	09.12.2022
2	A,B,C	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland		300003327	ne	-/-	-/-
3	A,B,C	CTIA-Chamber - Positioning Equipment	CTIA-Chamber - Positioning Equipment	EMCO/2		300003328	ne	-/-	-/-
4	A,B,C	Signal- and Spectrum Analyzer	FSW26	R&S	101371	300005697	k	09.12.2020	08.12.2021
5	A,B,C	PC	Precision M4800	DELL	19414201934	300004957	-/-		
6	A,B,C	EMC Software Chamber A	EMC32-MEB	R&S	n.a.	300005477	-/-		
7	A,B,C	RF Amplifier	AMF-7D-01001800- 22-10P	NARDA-MITEQ Inc	2089864	300005633	ev		
8	А	Std. Gain Horn Antenna 11.90- 18.00 GHz	1824-20	Flann	263	300002471	ev	-/-	-/-
9	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	ev	-/-	-/-
10		Lowpass Filter (Chebyshev)	WLKX14-4700-4900- 21000-30SS	Wainwright Instruments GmbH	1	300005655	ev		
11		High Pass Filter (Chebyshev)	WHNX6-8374- 10600-26500-40CC	Wainwright Instruments GmbH	1	300005656	ev		

© CTC advanced GmbH Page 11 of 40

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μ W)

Equipment table:

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No CTC	Kind of Calibration	Last Calibration	Next Calibration
1	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000487	ev	-/-	-/-
3	А	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	17.06.2020	16.06.2021
4	А	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
5	А	DC Power Supply, 60V, 10A	6038A	НР	2933A08295	300001519	vlKI!	08.12.2020	07.12.2023

© CTC advanced GmbH Page 12 of 40

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 13 of 40

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 40

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 40

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 16 of 40

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHZ)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHZ)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1 °C
Humidity	± 3 %

© CTC advanced GmbH Page 17 of 40

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained	
	There were deviations from the technical specifications ascertained	
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR47 Part 15	see table	2021-03-26	-/-

Test specification clause	Test case	Temperature conditions	Power source	Pass	Fail	NA	NP	Remark
§15.250 (b)	10 dB Bandwidth	Nominal	Nominal	\boxtimes				complies
§15.250 (d) (1)-(5) §15.209	TX Radiated Emissions	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

© CTC advanced GmbH Page 18 of 40

11 Measurement results

11.1 10 dB - Bandwidth

Description:

(a) WB bandwidth. For the purpose of this subpart, the WB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M .

Measurement:

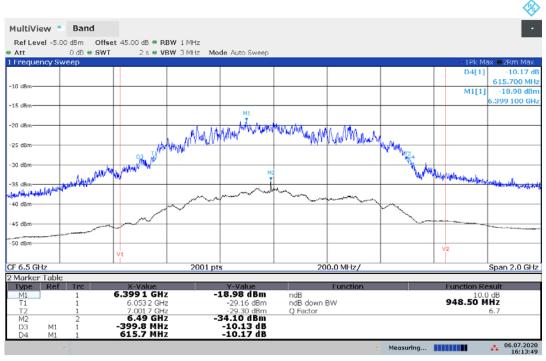
Measurement parameter				
Detector:	Peak			
Video bandwidth:	1 MHz			
Resolution bandwidth:	3 MHz			
Trace-Mode:	Max Hold			

Test Setup: 7.3

Limits:

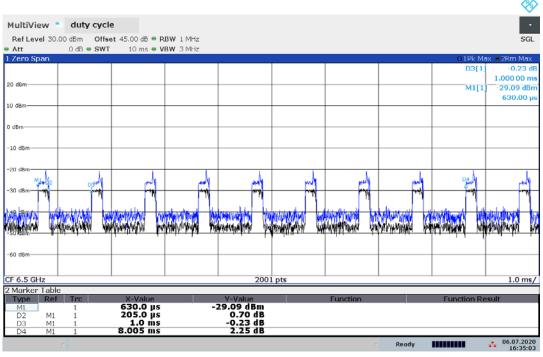
50 MH-
>50 MHz

Results:


Temperature	Lower -10 dB point [GHz]	Higher -10 dB point [GHz]	UWB bandwidth [MHz]
22 °C	6.0532	7.0017	948.5

Verdict: Compliant

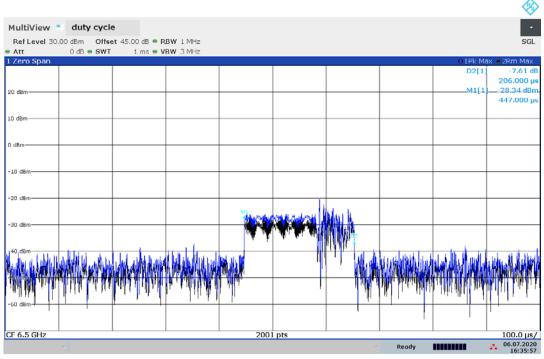
© CTC advanced GmbH Page 19 of 40



Plot 1: 10 dB down

16:13:50 06.07.2020

Plot 2: Duty Cycle, test mode



16:35:03 06.07.2020

© CTC advanced GmbH Page 20 of 40

Plot 3: Duty Cycle, Burst duration, test mode

16:35:57 06.07.2020

© CTC advanced GmbH Page 21 of 40

11.2 TX Radiated Emissions

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

§15.209 / §15.250 (d) (4):

313.2097 313.200 (d) (4).				
Average Measurement parameter				
Detector:	Peak/QPeak			
Sweep time:	1 s			
Number of points	8001			
Resolution bandwidth:	120kHz			
Video bandwidth:	≥ RBW			
Trace-Mode:	Max Hold			

§15.250 (d) (1):

Average Measurement parameter				
Detector:	RMS			
Sweep time:	1 ms/pt			
Number of points	1001/10001			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Trace-Mode:	Max Hold			

§15.250 (d) (2):

0 (-) ()				
Average Measurement parameter				
Detector:	RMS			
Sweep time:	1 ms/pt			
Number of points	10001			
Resolution bandwidth:	1 kHz			
Video bandwidth:	3 kHz			
Trace-Mode:	Max Hold			

§15.250 (d) (3):

Peak Measurement parameter				
Detector:	Max Peak			
Sweep time:	101 ms			
Resolution bandwidth:	50 MHz			
Video bandwidth:	80 MHz			
Span:	Zero span			
Trace-Mode:	Max Hold			

© CTC advanced GmbH Page 22 of 40

Emission limits below 960 MHz (§15.209):

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dBμV/m)	30
30 – 88	100 (40 dBμv/m)	3
88 – 216	150 (43.5 dBµV/m)	3
216 – 960	200 (46 dBμV/m)	3
> 960	500 (54 dBµV/m)	3

WB-emission-Limits:

FCC CFR 47:

§15.250 (d) (1)

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 1990	-63.3
1990 to 3100	-61.3
3100 to 5925	-51.3
5925 to 7250	-41.3
7250 to 10600	-51.3
Above 10600	-61.3

§15.250 (d) (2)

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

§15.250 (d) (3)

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs and this 50 MHz bandwidth must be contained within the 5925-7250 MHz band. The peak EIRP limit is 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed by the measurement instrument. RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than RBW. If RBW is greater than 3 MHz, the application for certification filed with the Commission shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

§15.250 (d) (4)

Radiated emissions at or below 960 MHz shall not exceed the emission levels in §15.209.

© CTC advanced GmbH Page 23 of 40

§15.250 (d) (5)

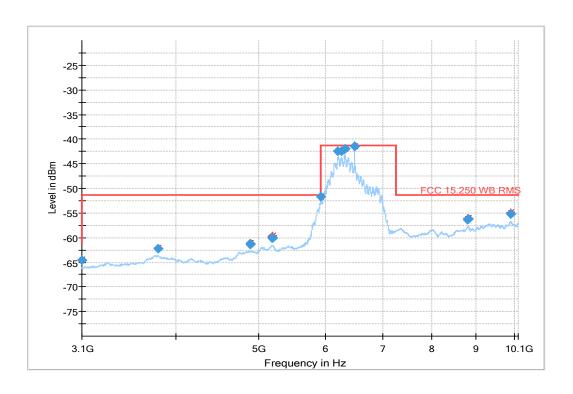
Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209 provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B of this part. Emissisons from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

© CTC advanced GmbH Page 24 of 40

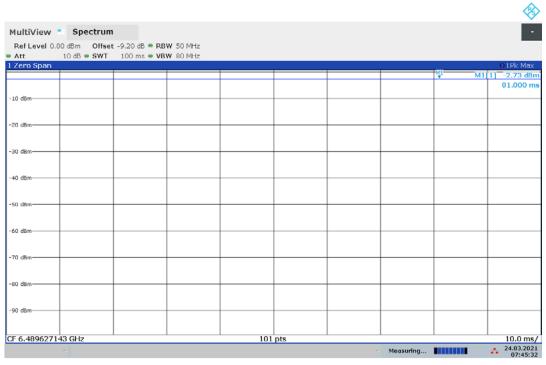
Result:

	Channel	Frequency in MHz	Max e.i.r	Plot	
	Channel	Frequency in Minz	average value	peak value	FIOL
Max E.I.R.P	7	6489.63	-41.41	-2.73	9,10

Emissions outside the band:

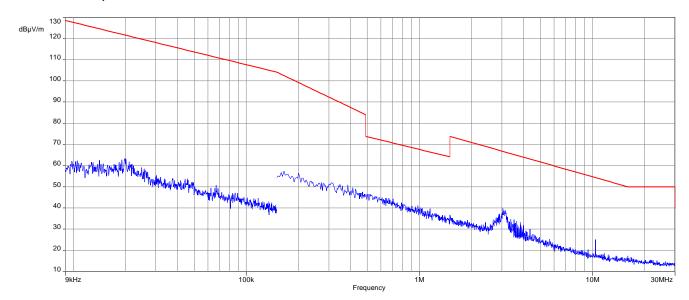

For emissions below 1 GHz, please refer to plots 7 and 8. For emissions above 1 GHz, please refer to plots 7 and 8.

Verdict: complies


© CTC advanced GmbH Page 25 of 40

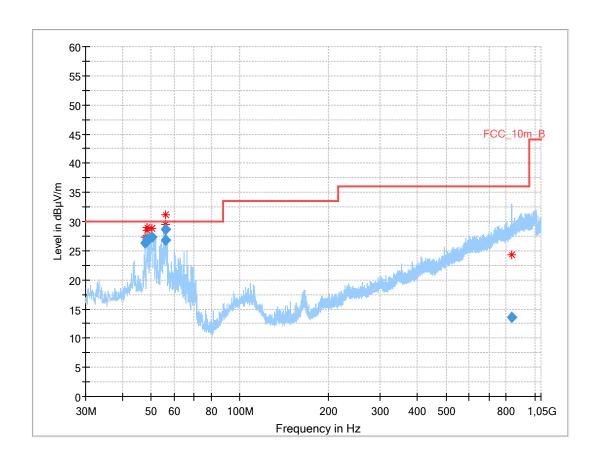
Plot 4: RMS power

Plot 5: Peak power



07:45:32 24.03.2021

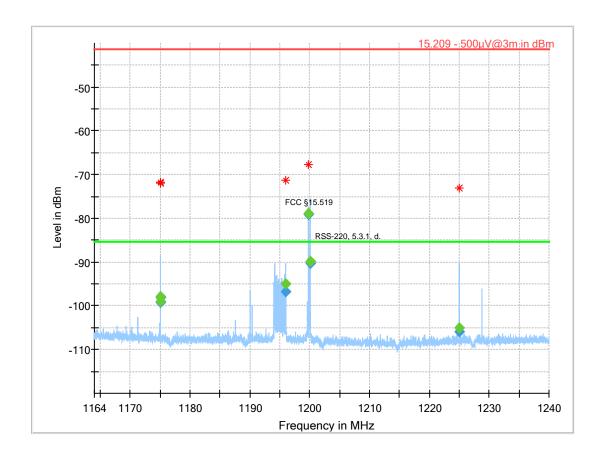
© CTC advanced GmbH Page 26 of 40


Plot 6: 15.209, TX 9 kHz - 30 MHz

© CTC advanced GmbH Page 27 of 40

Plot 7: 30 MHz - 1 GHz

Final_Result

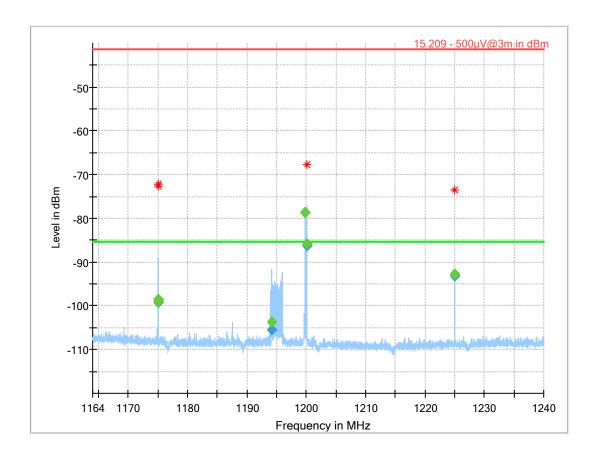

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
47.802	26.29	30.0	3.7	1000	120.0	100.0	٧	60	14
48.441	26.79	30.0	3.2	1000	120.0	103.0	٧	-19	14
48.461	27.05	30.0	3.0	1000	120.0	115.0	٧	270	14
50.442	27.27	30.0	2.7	1000	120.0	104.0	٧	-17	14
55.828	26.80	30.0	3.2	1000	120.0	216.0	٧	150	15
56.021	28.74	30.0	1.3	1000	120.0	211.0	٧	-35	15
832.774	13.64	36.0	22.4	1000	120.0	400.0	V	76	23

© CTC advanced GmbH Page 28 of 40

Plot 8: Lower GPS Band, UWB Module on

According to §15.250 (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209.

Final_Result

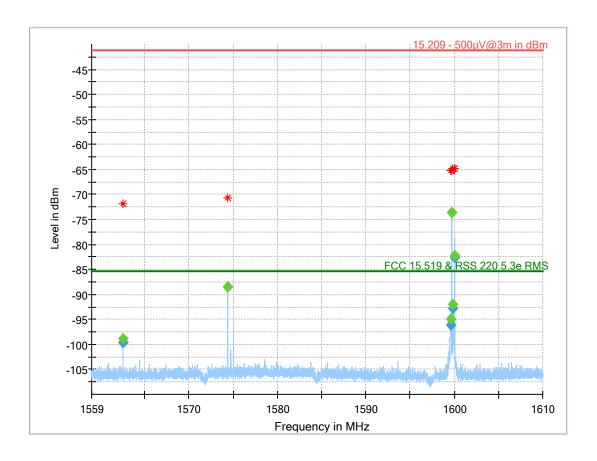

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1175.024905	-99.21	-85.30	13.91	1.000	٧	10.0	105.0	-144.0
1175.024947	-98.16	-85.30	12.86	1.000	٧	10.0	78.0	-144.0
1195.908253	-96.79	-85.30	11.49	1.000	Н	324.0	165.0	-144.2
1199.818621	-79.04	-85.30	-6.26	1.000	Н	301.0	162.0	-144.3
1200.033280	-90.30	-85.30	5.00	1.000	Н	9.0	237.0	-144.3
1225.038617	-105.83	-85.30	20.53	1.000	٧	330.0	135.0	-144.3

© CTC advanced GmbH Page 29 of 40

Plot 9: Lower GPS Band, UWB Module off

According to $\S15.250$ (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in $\S15.209$.

Final Result


Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1175.023998	-99.20	-85.30	13.90	1.000	٧	1.0	105.0	-144.0
1175.024058	-98.63	-85.30	13.33	1.000	٧	3.0	87.0	-144.0
1194.099300	-105.38	-85.30	20.08	1.000	Н	10.0	252.0	-144.2
1199.817611	-78.67	-85.30	-6.63	1.000	Н	322.0	136.0	-144.3
1200.027160	-86.17	-85.30	0.87	1.000	Н	20.0	1.0	-144.3
1225.030233	-93.13	-85.30	7.83	1.000	٧	311.0	165.0	-144.3

© CTC advanced GmbH Page 30 of 40

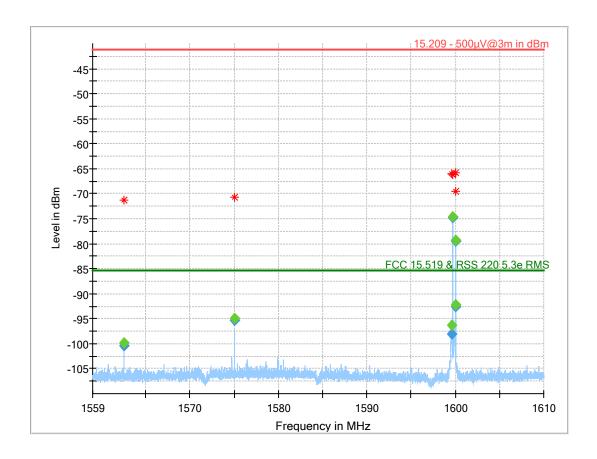
Plot 10: Upper GPS Band, UWB Module on

According to §15.250 (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209.

Final Result

	DMC	1 !!4	Manain	Dan desidable	D-I	A = !	Flavotion	C
Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1562.539275	-99.64	-85.30	14.34	1.000	Н	273.0	75.0	-141.7
1574.399777	-88.55	-85.30	3.25	1.000	Н	251.0	122.0	-141.7
1599.609180	-96.07	-85.30	10.77	1.000	Н	271.0	108.0	-141.8
1599.757353	-73.70	-85.30	-11.60	1.000	Н	261.0	111.0	-141.8
1599.851300	-92.81	-85.30	7.51	1.000	Н	264.0	111.0	-141.8
1600.042753	-82.58	-85.30	-2.72	1.000	Н	271.0	18.0	-141.8

Limit according to FCC 15.209

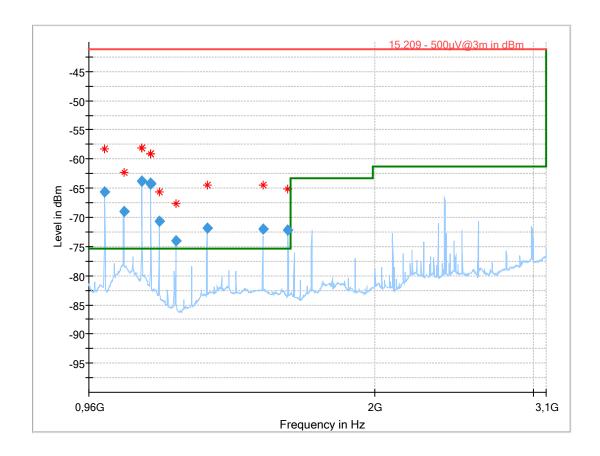

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1562.539275	-99.64	-41.23	58.41	1.000	Н	273.0	75.0	-141.7
1574.399777	-88.55	-41.23	47.32	1.000	Н	251.0	122.0	-141.7
1599.609180	-96.07	-41.23	54.84	1.000	Н	271.0	108.0	-141.8
1599.757353	-73.70	-41.23	32.47	1.000	Н	261.0	111.0	-141.8
1599.851300	-92.81	-41.23	51.58	1.000	Н	264.0	111.0	-141.8
1600.042753	-82.58	-41.23	41.35	1.000	Н	271.0	18.0	-141.8

© CTC advanced GmbH Page 31 of 40

Plot 11: Upper GPS Band, UWB Module off

According to §15.250 (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209.

Final Result


Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1562.538355	-100.39	-85.30	15.09	1.000	Н	284.0	81.0	-141.7
1575.041183	-95.28	-85.30	9.98	1.000	٧	316.0	139.0	-141.7
1599.614933	-98.12	-85.30	12.82	1.000	Н	276.0	13.0	-141.8
1599.756603	-74.75	-85.30	-10.56	1.000	Н	256.0	124.0	-141.8
1599.999973	-92.66	-85.30	7.36	1.000	H	163.0	101.0	-141.8
1600.039388	-79.54	-85.30	-5.76	1.000	H	284.0	11.0	-141.8

© CTC advanced GmbH Page 32 of 40

Plot 12: 960 MHz - 3.1 GHz, UWB Module on

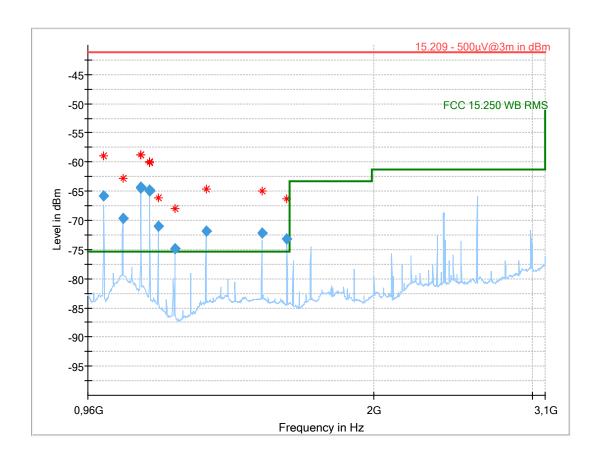
According to $\S15.250$ (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in $\S15.209$.

© CTC advanced GmbH Page 33 of 40

Final_Result

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
999.927667	-65.57	-75.30	-9.73	1000.000	Н	347.0	3.0	-144.2
1050.012000	-68.98	-75.30	-6.32	1000.000	Н	349.0	15.0	-144.6
1099.875333	-63.76	-75.30	-11.54	1000.000	H	346.0	12.0	-144.5
1099.963333	-63.75	-75.30	-11.55	1000.000	Н	346.0	9.0	-144.5
1125.063000	-64.06	-75.30	-11.24	1000.000	Н	354.0	0.0	-142.8
1125.087000	-64.34	-75.30	-10.96	1000.000	Н	346.0	8.0	-142.8
1150.017667	-70.70	-75.30	-4.60	1000.000	٧	354.0	105.0	-142.7
1199.950000	-74.09	-75.30	-1.21	1000.000	Н	17.0	0.0	-144.3
1299.754667	-71.92	-75.30	-3.38	1000.000	Н	31.0	2.0	-142.1
1499.841333	-72.09	-75.30	-3.21	1000.000	Н	285.0	71.0	-140.8
1599.874000	-72.23	-75.30	-3.07	1000.000	Н	272.0	9.0	-141.8

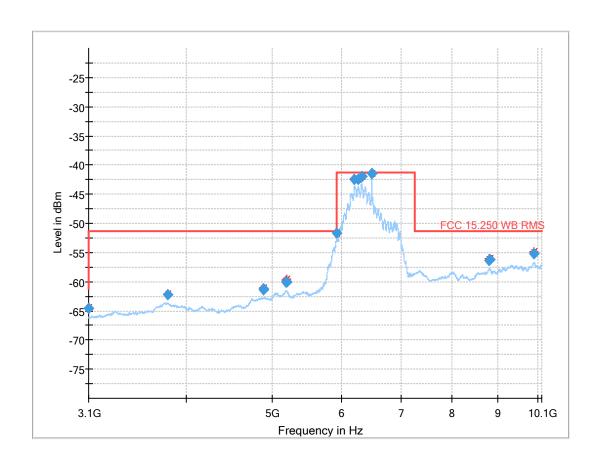
Limit according to FCC 15.209


Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
999.927667	-65.57	-41.23	24.34	1000.000	Н	347.0	3.0	-144.2
1050.012000	-68.98	-41.23	27.75	1000.000	Н	349.0	15.0	-144.6
1099.875333	-63.76	-41.23	22.53	1000.000	H	346.0	12.0	-144.5
1099.963333	-63.75	-41.23	22.52	1000.000	Н	346.0	9.0	-144.5
1125.063000	-64.06	-41.23	22.83	1000.000	Н	354.0	0.0	-142.8
1125.087000	-64.34	-41.23	23.11	1000.000	H	346.0	8.0	-142.8
1150.017667	-70.70	-41.23	29.47	1000.000	٧	354.0	105.0	-142.7
1199.950000	-74.09	-41.23	32.86	1000.000	H	17.0	0.0	-144.3
1299.754667	-71.92	-41.23	30.69	1000.000	H	31.0	2.0	-142.1
1499.841333	-72.09	-41.23	30.86	1000.000	H	285.0	71.0	-140.8
1599.874000	-72.23	-41.23	31.00	1000.000	Н	272.0	9.0	-141.8

© CTC advanced GmbH Page 34 of 40

Plot 13: 960 MHz - 3.1 GHz, UWB Module off

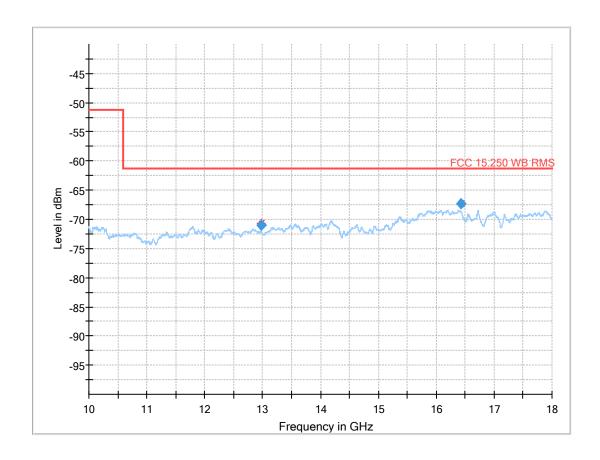
According to $\S15.250$ (d)(5), emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in $\S15.209$.


Final_Result

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
999.880333	-65.80	-75.30	-9.50	1000.000	٧	356.0	75.0	-144.2
1050.005000	-69.74	-75.30	-5.56	1000.000	٧	354.0	105.0	-144.6
1099.944333	-64.30	-75.30	-11.00	1000.000	Н	350.0	15.0	-144.5
1099.976333	-64.47	-75.30	-10.83	1000.000	Н	350.0	0.0	-144.5
1125.039000	-64.87	-75.30	-10.43	1000.000	Н	356.0	1.0	-142.8
1125.054000	-65.04	-75.30	-10.26	1000.000	Н	0.0	1.0	-142.8
1150.021667	-70.98	-75.30	-4.32	1000.000	٧	-5.0	105.0	-142.7
1199.961000	-74.87	-75.30	-0.43	1000.000	Н	16.0	0.0	-144.3
1299.917667	-71.78	-75.30	-3.52	1000.000	Н	27.0	15.0	-142.1
1499.813333	-72.25	-75.30	-3.05	1000.000	Н	286.0	63.0	-140.8
1599.817000	-73.23	-75.30	-2.07	1000.000	Н	251.0	114.0	-141.8

© CTC advanced GmbH Page 35 of 40

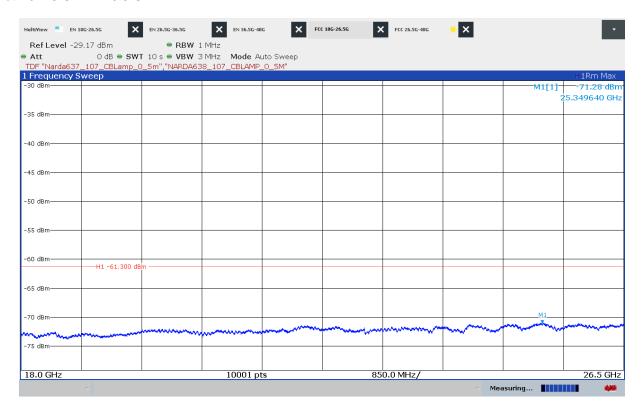
Plot 14: 3.1 GHz - 10 GHz


Final_Result

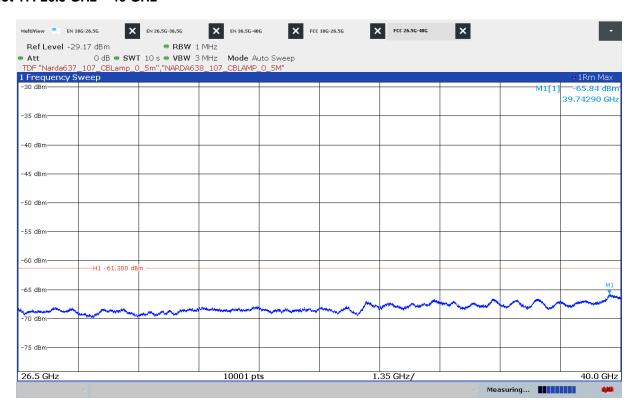
Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB)
3100.772714	-64.58	-51.30	13.28	1000.000	Н	255.0	-121.8
3812.080714	-62.26	-51.30	10.96	1000.000	Н	295.0	-119.2
4886.748000	-61.29	-51.30	9.99	1000.000	٧	335.0	-118.0
4894.765857	-61.34	-51.30	10.04	1000.000	Н	245.0	-118.0
5186.028429	-60.07	-51.30	8.77	1000.000	٧	86.0	-116.8
5196.524857	-60.00	-51.30	8.70	1000.000	Н	75.0	-116.8
5916.609143	-51.69	-51.30	0.39	1000.000	Н	299.0	-116.9
6201.687143	-42.39	-41.30	1.09	1000.000	Н	36.0	-117.2
6255.750571	-42.52	-41.30	1.22	1000.000	Н	36.0	-116.9
6318.642571	-41.94	-41.30	0.64	1000.000	Н	37.0	-116.5
6489.610000	-41.45	-41.30	0.15	1000.000	Н	35.0	-116.2
6489.627143	-41.41	-41.30	0.11	1000.000	Н	35.0	-116.2
8810.540571	-56.32	-51.30	5.02	1000.000	٧	255.0	-113.9
8817.584000	-56.27	-51.30	4.97	1000.000	Н	89.0	-114.0
9897.815857	-55.21	-51.30	3.91	1000.000	Н	225.0	-112.5
9900.152286	-55.22	-51.30	3.92	1000.000	٧	90.0	-112.5

© CTC advanced GmbH Page 36 of 40

Plot 15: 10 GHz - 18 GHz


Final_Result

	Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
Ī	12978.622500	-71.01	-61.30	9.71	1000.000	٧	335.0	136.0	-127.7
Γ	16426.732500	-67.36	-61.30	6.06	1000.000	٧	5.0	15.0	-123.1


© CTC advanced GmbH Page 37 of 40

Plot 16: 18 GHz - 26.5 GHz

Plot 17: 26.5 GHz - 40 GHz

© CTC advanced GmbH Page 38 of 40

12 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
ocw	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 39 of 40

13 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-03-26

14 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by orde/ Oigl-Ing, THISBER Egner Head of Division The certificate begether with its ensex reflects the status of the time of the date of issue. The current atotus of the scape of accorditation can be found in the distance of accordination can be found in the di	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DA&KS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DA&S. The accreditation assignated pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (feederal Law Gazette Ip. 2-263) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Into 1.28 of 9 July 2008, p. 30). DA&S is a signatory to the Nutbilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Cooperation (ICA). The signatories to these agreements recognise each other's accreditations. The ut-to-date state of membership can be retrieved from the following websites: SA: www.european-accreditation.org IAF: www.european-accreditation.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 40 of 40