PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT

FCC Part 15.407 License Assisted Access (LAA)

Applicant Name:

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 United States Date of Testing: 12/23/2015-3/5/2016 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1607131258-R3.J9C

FCC ID:	J9CMTP9900LAA
APPLICANT:	Qualcomm Technologies, Inc.
Application Type:	Certification
Model(s):	MTP9900LAA
EUT Type:	LAA Release 13 Small Cell
FCC Classification:	Unlicensed National Information Infrastructure (UNII)
FCC Rule Part(s):	Part 15.407
Test Procedure(s):	KDB 789033 D02 v01r02, KDB 662911 D01 v02r01
Test Device Serial No.:	49173051545003, 49173051545004

					С	onducted C	Output Powe	er	
		Ohannal		Chain0 Cha			ain1 Total Power		
Mode L	UNII Band	Channel Bandwidth (MHz)	Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
LAA	1 / 46a	20	5160 - 5240	0.174	22.40	0.173	22.39	0.347	25.41
	3 / 46d	20	5745 - 5825	0.252	24.01	0.246	23.91	0.493	26.93
	1 / 46a	40	5170 - 5230	0.079	18.96	0.083	19.18	0.161	22.08
	3 / 46d	40	5755 - 5815	0.243	23.85	0.238	23.76	0.480	26.82

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r02 and KDB 662911 D01 v02r01. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 0Y1607131258-R3.J9C) supersedes and replaces the previously issued test report (S/N: 0Y1607131258-R2.J9C) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 - 5445		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 1 of 145		
2016 PCTEST Engineering Laboratory, Inc. V3.3					

TABLE OF CONTENTS

FCC F	PART 15	5.407 MEASUREMENT REPORT	3
1.0	INTRO	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	AC Line Conducted Emissions	6
	3.3	Radiated Emissions	7
	3.4	Environmental Conditions	7
4.0	ANTE	NNA REQUIREMENTS	8
5.0	MEAS	SUREMENT UNCERTAINTY	9
6.0	TEST	EQUIPMENT CALIBRATION DATA	10
7.0	TEST	RESULTS	11
	7.1	Summary	11
	7.2	26dB Bandwidth Measurement (UNII Band 1)	13
	7.3	6dB Bandwidth Measurement (UNII Band 3)	16
	7.4	Output Power Measurement	19
	7.5	Maximum Power Spectral Density	21
	7.6	Conducted Band Edge Emissions	35
	7.7	Conducted Spurious Emissions	50
	7.8	Frequency Stability	
	7.9	Cabinet Radiated Spurious Emission Measurements – Above 1GHz	113
	7.10	Cabinet Radiated Spurious Emission Measurements – Below 1GHz	134
	7.11	Line-Conducted Test Data	
	7.12	Antenna Data	141
8.0	CONC	CLUSION	

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 2 01 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3 12/01/2015

MEASUREMENT REPORT FCC Part 15.407

12/01/2015

§ 2.1033 General Information

APPLICANT:	Qualcomm Technologies, Inc.
APPLICANT ADDRESS:	5775 Morehouse Drive
	San Diego, CA 92121, United States
TEST SITE:	PCTEST ENGINEERING LABORATORY, INC.
TEST SITE ADDRESS:	7185 Oakland Mills Road, Columbia, MD 21046 USA
FCC RULE PART(S):	Part 15.407
BASE MODEL:	MTP9900LAA
SKU NUMBER:	65-F5230-910
MCN NUMBER:	10-F5230-006
FCC ID:	J9CMTP9900LAA
FCC CLASSIFICATION:	Unlicensed National Information Infrastructure (UNII)
Test Device Serial No.:	49173051545003, ☐ Production ⊠ Pre-Production ☐ Engineering
DATE(S) OF TEST:	12/23/2015-3/5/2016
TEST REPORT S/N:	0Y1607131258-R3.J9C

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Demo 2 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 3 of 145	
© 2016 PCTEST Engineering Labo	© 2016 PCTEST Engineering Laboratory, Inc.			

Notation the second stress of the second stress of

Certificate of Accreditation to ISO/IEC 17025:2005

PLANATORD 1304 PCTEST Reginering Laboratory, Inc.

a by New York in Landace American Property Statistics and Physics Rev Med Proceeding In Lands of Singapore (SULTAN), 785 225

(i) _____

ILICTROMAGNETIC COMPATIBILITY AND THE ICONDIE NOATHING

Ki Març2Ne

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

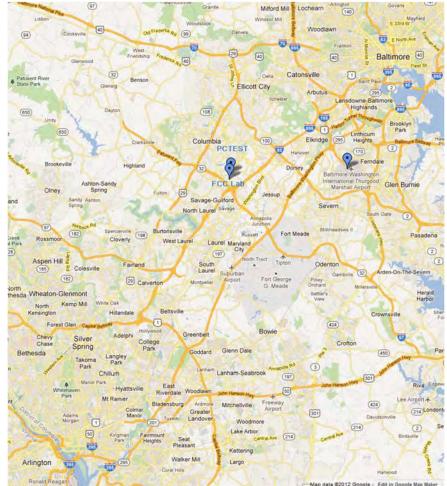


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 4 of 145	
© 2016 PCTEST Engineering Labo	2 2016 PCTEST Engineering Laboratory, Inc.			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA**. The test hardware SKU identification number is 65-F5230-910. The test data contained in this report pertains only to the emissions due to the EUT's LAA transmitter.

2.2 Device Capabilities

This device contains the following capabilities:

LTE Band 2 (5/10/15/20MHz BW), LTE Band 4 (5/10/15/20MHz BW), LAA (5GHz - UNII-1, UNII-3 (20/40MHz BW)), 802.11a (20MHz BW)

Both LAA and LTE portion of the device are of 2x2 MIMO.

2.3 Test Configuration

The Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA was tested per the guidance of KDB 789033 D02 v01r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

During LAA testing, one LTE carrier operates in either Band 2 (1930 - 1990MHz) or Band 4 (2110 - 2155MHz) while the other LTE carrier operates in the UNII 1 Band (5150 - 5250MHz) or the UNII 3 Band (5725 - 5850MHz). MIMO operation is considered while two LTE carriers are active (Chain0 and Chain1) in the same band on the same channel.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege E of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 5 of 145	
© 2016 PCTEST Engineering Labo	2016 PCTEST Engineering Laboratory, Inc.			

DESCRIPTION OF TESTS 3.0

3.1 **Evaluation Procedure**

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r02 were used in the measurement of Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR guasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.11. Automated test software was used to perform the AC line conducted emissions testing.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 6 of 145		
© 2016 PCTEST Engineering Labo	© 2016 PCTEST Engineering Laboratory Inc				

016 PCTEST Engin eering L

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements above 1GHz absorbers are arranged on the floor between the sature is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 7 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

• The antennas of the LAA Release 13 Small Cell will use a unique coupling and will have a maximum gain of 6dBi.

Conclusion:

The Qualcomm LAA Release 13 Small Cell FCC ID: J9CMTP9900LAA unit complies with the requirement of §15.203.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 8 of 145	
© 2016 PCTEST Engineering Labo	2016 PCTEST Engineering Laboratory, Inc.			

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of CISPR 16-4-2. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)		
Conducted Bench Top Measurements	1.13		
Line Conducted Disturbance	3.09		
Radiated Disturbance (<1GHz)	4.98		
Radiated Disturbance (>1GHz)	5.07		
Radiated Disturbance (>18GHz)	5.09		

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 9 of 145			
© 2016 PCTEST Engineering Labo	© 2016 PCTEST Engineering Laboratory, Inc.					

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	4/28/2015	Annual	4/28/2016	RE1
-	WL40-1	Conducted Cable Set (40GHz)	4/20/2015	Annual	4/20/2016	WL40-1
Agilent	8447D	Broadband Amplifier	6/12/2015	Annual	6/12/2016	1937A03348
Agilent	N9038A	MXE EMI Receiver	3/24/2015	Annual	3/24/2016	MY51210133
Agilent	N9030A	PXA Signal Analyzer (44GHz)	3/24/2015	Annual	3/24/2016	MY52350166
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu	MA2411B	Pulse Power Sensor	10/14/2015	Biennial	10/14/2017	846215
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	7/30/2015	Biennial	7/30/2017	121034
Emco	3115	Horn Antenna (1-18GHz)	3/30/2014	Biennial	3/30/2016	9704-5182
Espec	ESX-2CA	Environmental Chamber	3/17/2015	Annual	3/17/2016	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/8/2014	Biennial	4/8/2016	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	135427
ETS Lindgren	3160-10	26.5-40 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	130993
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	11/11/2014	Biennial	11/11/2016	114451
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	4/20/2015	Annual	4/20/2016	251425001
K & L	11SH10-6000/T18000	High Pass Filter	7/18/2015	Annual	7/18/2016	11SH10-6000/T18000-1
K & L	11SH10-3075/U18000	High Pass Filter	7/18/2015	Annual	7/18/2016	11SH10-3075/U18000-2
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	4/28/2015	Annual	4/28/2016	NMLC-1
Rhode & Schwarz	TS-PR18	Pre-Amplifier	3/5/2015	Annual	3/5/2016	101622
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/5/2015	Annual	3/5/2016	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/3/2015	Annual	3/3/2016	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	3/3/2015	Annual	3/3/2016	100037
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	3/12/2015	Annual	3/12/2016	100342
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	6/2/2015	Annual	6/2/2016	103200
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/18/2014	Biennial	3/18/2016	N/A
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	7/30/2015	Biennial	7/30/2017	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/28/2014	Biennial	3/28/2016	A051107
Sunol Sciences	DRH-118	Horn Antenna	7/1/2015	Biennial	7/1/2017	A060215
VWR	62344-734	Thermometer with Clock	2/20/2014	Biennial	3/20/2016	140140336

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

Items whose calibration date lies within the test date range (e.g. TS-PR26 and TS-PR40) were not used to make calibrated measurements after their calibration due date.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 10 of 145			
© 2016 PCTEST Engineering Labo	© 2016 PCTEST Engineering Laboratory, Inc.					

7.0 TEST RESULTS

7.1 Summary

Company Name: FCC ID: Method/System:

Qualcomm Technologies, Inc. J9CMTP9900LAA Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MO	DDE (TX)				
15.407(a)	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	6dB Bandwidth	>500kHz (5725-5850MHz)		PASS	Section 7.3
15.407 (a)(1)	Maximum Conducted Output Power	< 1W (30dBm) (5150-5250MHz, 5725-5850MHz)		PASS	Section 7.4
15.407(a)(1), 15.407(a)(5)	Maximum Power Spectral Density	< 11 dBm/MHz (5150-5250MHz) < 30 dBm/500kHz (5725-5850MHz)	CONDUCTED	PASS	Section 7.5
15.407(g)	Frequency Stability	N/A		PASS	Section 7.8
15.407(b)(1), 15.407(b)(4)	Undesirable Emissions	 -27 dBm/MHz EIRP (outside 5150-5350MHz, 5470- 5725MHz, 5715-5860MHz) -17 dBm/MHz EIRP (within 5715- 5725MHz and 5850-5860MHz) 		PASS	Section 7.9
15.209, 15.407(b)(1), 15.407(b)(6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	CABINET RADIATED	PASS	Section 7.9, 7.10
15.207, 15.407(b)(6)	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits	LINE CONDUCTED	PASS	Section 7.11

Table 7-1. Summary of Test Results

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 11 of 145		
© 2016 PCTEST Engineering Laboratory, Inc.					

Notes:

- 1) This device was evaluated for compliance using conducted measurements along with cabinet radiated emission measurements, per KDB 789033.
- 2) All channels, modes, modulations, and channel bandwidths were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions. The test channels are shown below:

	3GPP R13 Band 46 Freq. (MHz)	3GPP R13 Band 46 Ch #	3GPP R13 Band 46 LAA Signal BW			
		Sub-band 46a				
	5160	46890	20MHz			
	5170	46890 47090	40MHz			
	5200	47290	20MHz			
UNII-1	5210	47290 47490	40MHz			
	5230	47490 47690	40MHz			
	5240	47690	20MHz			
		Sub-band 46d				
	5745	52740	20MHz			
	5755	52740 52940	40MHz			
	5785	53140	20MHz			
UNII-3	5795	53140 53340	40MHz			
	5815	53340 53540	40MHz			
	5825	53540	20MHz			

Table 7-2. LAA Frequency / Channel Operations

- 3) The 3GPP Band 46 supports device operation only in UNII-1 and UNII-3 frequencies.
- 4) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest. Also included in the correction table were offsets to account for array gain which is comprised of the maximum antenna gain of 6dBi and an additional 3dB due to two antennas transmitting simultaneously.
- 5) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 6) For 40MHz operation, two 20MHz 3GPP channels are used to generate the 40MHz channel.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 af 445
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 12 of 145
© 2016 PCTEST Engineering Labo	pratory. Inc.	•	V 3.3

7.2 26dB Bandwidth Measurement (UNII Band 1) §15.407 (a)

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

KDB 789033 D02 v01r02 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

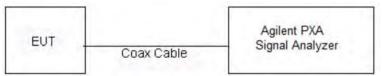


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 13 of 145		
© 2016 PCTEST Engineering Laboratory, Inc. V					

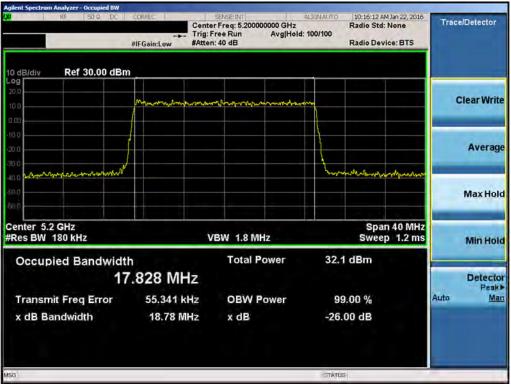
26 dB Bandwidth Measurements (Cont'd) §15.407 (a)

Chain0

	Frequency [MHz]	3GPP R13 Channel Number(s)	Nominal BW [MHz]	Measured 26dB Bandwidth [MHz]				
	5160	46890	20	-				
UNII	5200	47290	20	18.71				
U Bai	5240	47690	20	-				

Table 7-3. Conducted 26dB Bandwidth Measurements (Chain0)

Plot 7-1. 26dB Bandwidth Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47290)


FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 14 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 14 of 145		
© 2016 PCTEST Engineering Laboratory, Inc.					

Chain1

	Frequency [MHz]	3GPP R13 Channel Number(s)	Nominal BW [MHz]	Measured 26dB Bandwidth [MHz]
 1	5160	46890	20	-
UNII Band	5200	47290	20	18.78
- œ	5240	47690	20	-

Table 7-4. Conducted 26dB Ba	indwidth Measurements (Chain1)
------------------------------	--------------------------------

Plot 7-2. 26dB Bandwidth Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47290)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 15 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

7.3 6dB Bandwidth Measurement (UNII Band 3) §15.407 (e)

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

KDB 789033 D02 v01r02 - Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

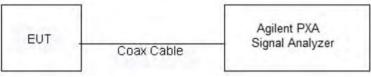


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 16 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 16 of 145	
© 2016 PCTEST Engineering Laboratory, Inc.				

6 dB Bandwidth Measurements

Chain0

	Frequency [MHz]	3GPP R13 Channel Number(s)	Nominal BW [MHz]	Measured 6dB Bandwidth [MHz]
 3	5745	52740	20	-
UNII and	5785	53140	20	18.00
U Bai	5825	53540	20	-

Table 7-5. Conducted 6dB Bandwidth Measurements (Chain0)

Plot 7-3. 6dB Bandwidth Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 53140)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 17 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 17 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.	•	V 3.3

Chain1

	Frequency [MHz]	3GPP R13 Channel Number(s)	Nominal BW [MHz]	Measured 6dB Bandwidth [MHz]
3	5745	52740	20	-
UNII Band	5785	53140	20	17.96
ä	5825	53540	20	-

Plot 7-4. 6dB Bandwidth Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 53140)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 19 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 18 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

7.4 Output Power Measurement §15.407 (a.1)

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of a broadband spectrum analyzer. Measurement is made using the analyzer while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies.

For MIMO measurements, the conducted average (RMS) output powers are added linearly via the "Measure and Sum" technique in KDB 662911 D01 v02r01. All modes of operation were investigated and the worst case configuration results are reported in this section.

In the 5.15 – 5.25GHz and 5.725 – 5.850GHz bands, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

KDB 789033 D02 v01r02 – Section E)2)b) Method SA-1 KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

- 1. The signal analyzer's automatic "Channel Power" function was used to perform the conducted output power measurements. The integration bandwidth is set to at least the emission bandwidth.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 5. Sweep time = auto
- 6. Detector = power averaging (RMS)
- 7. Trigger was set to free run for all modes
- 8. Trace was averaged over 100 sweeps

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

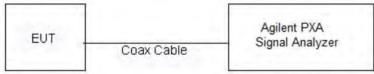


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

The total directional gain is calculated from the maximum 6dBi antenna gain and the 3dB from N_{ant} = 2 (two antennas transmitting simultaneously), per KDB 662911. Since the directional gain is above 6dBi, the output power limit is reduced by 3dB to assess compliance.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 19 of 145	
© 2016 PCTEST Engineering Laboratory. Inc.				

Output Power Measurement (Cont'd)

UNII Band	BW	Channel Frequency (MHz)	3GPP R13 Channel Number(s)	Directional Gain (dBi)	Chain0 Avg. Conducted Power (dBm)	Chain1 Avg. Conducted Power (dBm)	Total Conducted Power (dBm)	Limit (dBm)	Margin (dB)
		5160	46890	9.0	15.55	16.74	19.20	27.00	-7.80
UNII-1		5200	47290	9.0	22.40	22.39	25.41	27.00	-1.59
	20 MHz	5240	47690	9.0	22.31	22.08	25.21	27.00	-1.79
		5745	52740	9.0	23.68	23.81	26.76	27.00	-0.24
UNII-3		5785	53140	9.0	24.01	23.82	26.93	27.00	-0.07
		5825	53540	9.0	23.87	23.91	26.90	27.00	-0.10
		5170	46890 47090	9.0	17.21	16.36	19.82	27.00	-7.18
UNII-1		5210	47290 47490	9.0	18.96	18.43	21.71	27.00	-5.29
	40 141-	5230	47490 47690	9.0	18.95	19.18	22.08	27.00	-4.92
	40 MHz	5755	52740 52940	9.0	23.74	23.50	26.63	27.00	-0.37
UNII-3		5795	53140 53340	9.0	23.85	23.76	26.82	27.00	-0.18
		5815	53340 53540	9.0	23.04	22.81	25.94	27.00	-1.06

Chain0 + Chain1 (Total Power) – Conducted Power

Table 7-7. Total Conducted Powers (UNII Bands 1 and 3)

Note:

Per KDB 662911 v02r01 Section E)2), the power spectral density at Chain0 and Chain1 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Directional Gain = G_{ant} + 10log₁₀(N_{ant}) = 9dBi, where G_{ant} = 6dBi and N_{ant} = 2

Sample Total Power Calculation:

At 5160MHz the average conducted power spectral density was measured to be 15.55 dBm for Chain0 and 16.74 dBm for Chain1.

Antenna 1 + Antenna 2 = Total Power

(15.55 dBm + 16.74 dBm) = (35.9 mW + 47.2 mW) = 83.11 mW = 19.2 dBm

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 20 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

7.5 Maximum Power Spectral Density §15.407(a.1)(a.3)

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r02, and at the appropriate frequencies. Method SA-1, as defined in KDB 789033 D02 v01r02, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, the maximum permissible power spectral density is 17dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

KDB 789033 D02 v01r02 – Section F KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

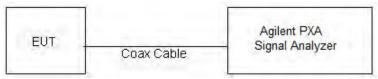


Figure 7-4. Test Instrument & Measurement Setup

Test Notes

The total directional gain is calculated from the maximum 6dBi antenna gain and the 3dB from N_{ant} = 2 (two antennas transmitting simultaneously), per KDB 662911. Since the directional gain is above 6dBi, the power density limit is reduced by 3dB to assess compliance.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 21 of 145		
© 2016 PCTEST Engineering Laboratory. Inc.					

		Nominal BW [MHz]	Frequency [MHz]	3GPP R13 Channel Number(s)	Directional Gain (dBi)	Chain0 Power Density [dBm]	Chain1 Power Density [dBm]	Total Power	Max Permissible Power Density [dBm/MHz]	Margin [dB]
			5160	46890	9.0	4.27	4.83	7.57	14.0	-6.43
		20	5200	47290	9.0	10.78	10.60	13.70	14.0	-0.30
	Ţ		5240	47690	9.0	10.71	10.64	13.69	14.0	-0.31
	UNII Band		5170	46890 47090	9.0	2.60	2.52	5.57	14.0 14.0 14.0 14.0	-8.43
		40	5210	47290 47490	9.0	5.18	4.40	7.82	14.0	-6.18
			5230	47490 47690	9.0	4.46	5.28	7.90	14.0	-6.10
			5745	52740	9.0	9.93	10.79	13.39	27.0	-13.61
		20	5785	53140	9.0	10.16	10.82	13.51	27.0	-13.49
	33		5825	53540	9.0	10.12	10.53	13.34	27.0	-13.66
	Band		5755	52740 52940	9.0	6.96	6.32	9.66	27.0	-17.34
	IIN	40	5795	53140 53340	9.0	7.64	7.71	10.69	27.0	-16.31
			5815	53340 53540	9.0	6.11	6.31	9.22	27.0	-17.78

Power Spectral Density Measurements (Cont'd)

Table 7-8. Total Conducted Power Spectral Density Measurements (UNII Bands 1 and 3)

Note:

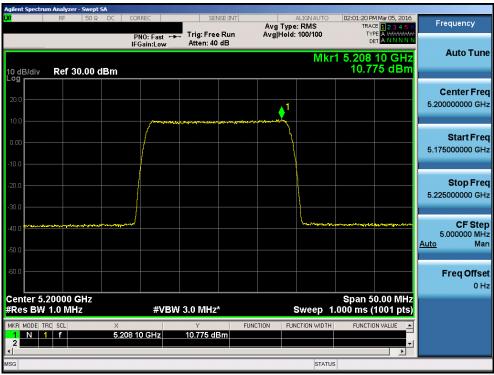
Per KDB 662911 v02r01 Section E)2), the power spectral density at Chain0 and Chain1 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample Total Power Calculation:

At 5160MHz the average conducted power spectral density was measured to be 4.27 dBm for Chain0 and 4.83 dBm for Chain1.

Antenna 1 + Antenna 2 = Total Power

(4.27 dBm + 4.83 dBm) = (2.67 mW + 3.04 mW) = 5.71 mW = 7.57 dBm


FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 22 of 145			
© 2016 PCTEST Engineering Laboratory, Inc.						

Chain0

Plot 7-5. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 46890)

Plot 7-6. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47290)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 25 01 145		

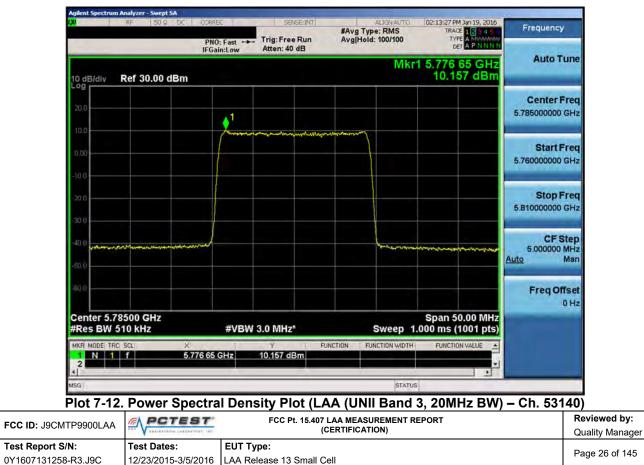
g <mark>ilent Spectrum Analyzer - Swept SA</mark> RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	02:05:37 PM Mar 05, 2016	Frequency
	PNO: Fast 🔸	Trig: Free Run	Avg Type: RMS Avg Hold: 100/100	TRACE 123456 TYPE A WWWWW DET A N N N N N	requercy
0 dB/div Ref 30.00 dBm	IFGain:Low	Atten: 40 dB	Mkr	1 5.231 60 GHz 10.708 dBm	Auto Tune
20.0	↓ 1				Center Freq 5.240000000 GHz
0.00					Start Fred 5.215000000 GHz
20.0					Stop Fred 5.265000000 GH2
40.0	New			~~************************************	CF Step 5.000000 MHz <u>Auto</u> Mar
60.0					Freq Offse 0 Hz
Center 5.24000 GHz ¢Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	
MKR MODE TRC SCL X	231 60 GHz	Y FUI 10.708 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
SG			STATUS		

Plot 7-7. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47690)

Plot 7-8. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 24 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 24 of 145			
© 2016 PCTEST Engineering Laboratory, Inc.						

Plot 7-9. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47290, 47490)


Plot 7-10. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47290, 47490)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dego 25 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 25 of 145			
© 2016 PCTEST Engineering Laboratory, Inc.						

	PNO: Fast ++	Trig: Free Run Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 23450 TYPE A MUMMANN DET A P N N N N	Frequency
0 dB/div Ref 30.00 dBm			Mkr	1 5.753 40 GHz 9.934 dBm	Auto Tune
20.0			1		Center Fred 5.745000000 GH
0.00					Start Free 5.720000000 GH
20.0					Stop Free 5.770000000 GH
40 0 				Madamana ang ang ang ang ang ang ang ang ang	CF Ste 5.000000 MH Auto Ma
60.0					Freq Offse 0 H
Center 5.74500 GHz Res BW 510 kHz	#VBW	3.0 MHz*	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	
MKR MODE TRC SCL X 1 N 1 F 5.7 2	53.40 GHz	Y FL 9.934 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-11. Power Spectral Density Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 52740)

PNO: Fast	Trig: Free Run Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	02:15:26 PM Jan 19, 2016 TRACE 1 2 3 4 5 6 TYPE A NUMBER DET A P N N N N	Frequency
		Mkr1	5.816 45 GHz 10.124 dBm	Auto Tune
↓ ¹				Center Fred 5.825000000 GH
	and a second and a s			Start Free 5.800000000 GH
				Stop Free 5.850000000 GH
		Lamore	n den syn fran fran fran fran fran fran fran fra	CF Ste 5.000000 MH <u>Auto</u> Ma
				Freq Offse 0 H
#VBV	V 3.0 MHz*	Sweep 1.	Span 50.00 MHz 000 ms (1001 pts)	
816 45 GHz	Y 10.124 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	N - L
	IFGain:Low	#VBW 3.0 MHz*	PNO: Fast Trig: Free Run Arg Heid: 100/100 MKr1 MKr	PNO: Fast Trig: Free Run Atten: 40 dB AvgHold: 100/100 Type DET AvgHold: 100/100 Mkr1 5.816 45 GHz 10.124 dBm 1

Plot 7-13. Power Spectral Density Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53540)

Plot 7-14. Power Spectral Density Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 52740, 52940)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 27 01 145		
© 2016 DOTEST Engineering Laboratory Inc.					

Plot 7-15. Power Spectral Density Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53140, 53340)

Plot 7-16. Power Spectral Density Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N: Test Dates:		EUT Type:	Dage 29 of 145			
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 28 of 145			
© 2016 DCTEST Engineering Laboratory Inc.						

AF 50.9 DC	PNO: Fast	SENSE:INT Trig: Free Run Atten: 40 dB	ALIGNAUTO Avg Type: RMS Avg Hold: 100/100	10:12:15 AMJan 22, 2016 TRACE 2 3 4 5 0 TYPE A WARANAN DET A P N N N N	Frequency
10 dB/div Ref 30.00 dBm			Mkr	1 5.168 15 GHz 4.827 dBm	Auto Tune
20.0			.1		Center Free 5.160000000 GH;
0.00					Start Free 5.135000000 GH:
20.0					Stop Free 5.185000000 GH
40.0					CF Step 5.000000 MH Auto Ma
80,0					Freq Offse 0 H
Center 5.16000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	
MKR MODE TRC SCL X	168 15 GHz	Y FU 4.827 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-17. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 46890)

Agilent Spectru	m Analyzer - Swept SA RF 50 Ω DC	CORREC				
LAI	RF 50 M DC		SENSE:INT	ALIGNAUTO Avg Type: RMS	02:10:36 PM Mar 05, 2016 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast 🔸	Trig: Free Run Atten: 40 dB	Avg Hold: 100/100	TYPE A WWWWW DET A N N N N N	
10 dB/div Log	Ref 30.00 dBm			Mkr	1 5.208 10 GHz 10.604 dBm	Auto Tune
20.0						Center Freq 5.20000000 GHz
10.0		(Marthanelia	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0.00						Start Freq
-10.0						5.175000000 GHz
						Stop Freq
-20.0						5.225000000 GHz
-30.0						05.04.0
-40.0	hand and a start a start a start a star					CF Step 5.000000 MHz Auto Man
-50.0						Auto Man
-60.0						Freq Offset 0 Hz
Center 5.: #Res BW	20000 GHz 1.0 MHz	#VBW	3.0 MHz*	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	
MKR MODE TF		.208 10 GHz	Y Fut 10.604 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
A MSG				STATUS		
ou				onnot		

Plot 7-18. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 47290)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 29 01 145
© 2016 DCTEST Engineering Labo	rotoni Ino	·	1/22

Agilent Spectrum An						
	RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO Avg Type: RMS	02:12:17 PM Mar 05, 2016 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	 Trig: Free Run Atten: 40 dB 	Avg Hold: 100/100	TYPE A WWWWW DET A N N N N N	
				Mkr	1 5.248 20 GHz	Auto Tune
10 dB/div R	ef 30.00 dBm				10.635 dBm	
Log						Center Freq
20.0				. 1		5.240000000 GHz
10.0		al land rates		`		
						Start Freq
0.00						5.215000000 GHz
-10.0						
						Stop Freq
-20.0						5.265000000 GHz
-30.0						
10 0 million marine		m				CF Step
-40.0						5.000000 MHz
-50.0						<u>Auto</u> Man
-60.0						Enco Official
-00.0						Freq Offset 0 Hz
Center 5.240	000 GHz				Span 50.00 MHz	0112
#Res BW 1.0		#VBW	/ 3.0 MHz*	Sweep 1	.000 ms (1001 pts)	
MKR MODE TRC S				INCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 1	5.2	248 20 GHz	10.635 dBm			
1						
MSG				STATUS		

Plot 7-19. Power Spectral Density Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47690)

Plot 7-20. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 30 of 145
© 2016 DCTEST Engineering Labo	ratory Inc	•	1/22

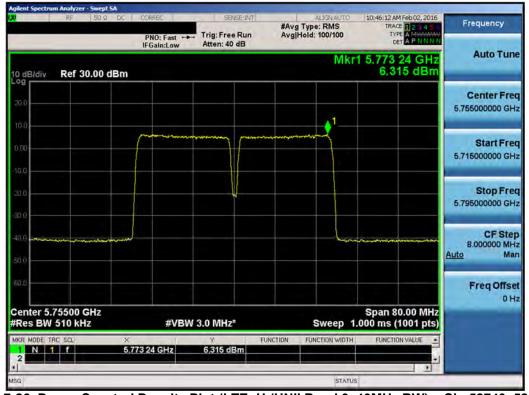
Plot 7-21. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47290, 47490)

Plot 7-22. Power Spectral Density Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47490, 47690)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 21 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 31 of 145
© 2016 DCTEST Engineering Labo	rotoni Ino	·	1/22

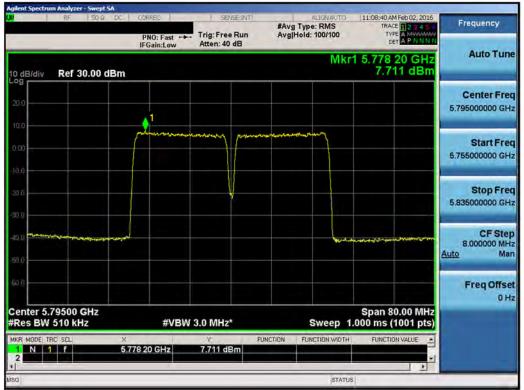
	PNO: Fast +++	Trig: Free Run Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 12345 TYPE A NUMBER DET A P N N N N	Frequency
0 dB/div Ref 30.00 dBm			Mk	r1 5.753 45 GHz 10.788 dBm	Auto Tune
20.0					Center Free 5.745000000 GH
0.00		**************************************			Start Free 5.720000000 GH
20.0					Stop Fre 5.770000000 GH
40 B	~			and the and the second	CF Ste 5.000000 MH Auto Ma
60.0					Freq Offse 0 H
Center 5.74500 GHz #Res BW 510 kHz	#VBW	3.0 MHz*	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	-
MKR MODE TRC SCL ×	53 45 GHz	Y FL 10.788 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-23. Power Spectral Density Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 52740)


RE SOR DC	PNO: Fast ++ Trig: Free Ru IFGain: low Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	11:03:56 AM Jan 22, 2016 TRACE 1 2 3 4 5 6 TYPE A MUSAWAY DET A P N N N N	Frequency
0 dB/div Ref 30.00 dBm	. Cumesw	Mkr	1 5.776 65 GHz 10.816 dBm	Auto Tune
200	• ¹			Center Freq 5.78500000 GHz
0.00				Start Free 5.760000000 GH:
30.0				Stop Freq 5.81000000 GHz
40.0	~	Lunne	A	CF Step 5.000000 MHz Juto Mar
60 Q				Freq Offse 0 H:
Center 5.78500 GHz #Res BW 510 kHz	#VBW 3.0 MHz*		Span 50.00 MHz .000 ms (1001 pts)	
2	776 65 GHz 10.816 dBm		FUNCTION VALUE	
G		STATU		

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 52 01 145
O 0040 DOTEOT En sin serie a Laka	materia la s		1/00

Peak Search	11:21:43 AMJan 22, 2016 TRACE 1 2 3 4 9 1 TYPE A MUMUMU DET A P N N N N	g Type: RMS Hold: 100/100	SENSE:INT	East T		arker 1
NextPea	5.816 55 GHz 10.526 dBm	Mkr1			Ref 30.00 dBm	0 dB/div
Next Pk Rig				<u>1</u>		20.0
Next Pk Le		γ	ana na shi na			10.0 0.00
Marker Del						10.0 20.0 20.0
Mkr→C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	homene			en marine and marine for	wie.
Mkr→RefL						50 (I)
	Span 50.00 MHz 000 ms (1001 pts)	Sweep 1.0	AH7*	#VBW 3.	2500 GHz	enter 5.8 Res BW
Mo 1 of	FUNCTION VALUE	FUNCTION WIDTH	FUNC 26 dBm	1	SOL X	IKR MODE TR
		STATUS		_		G


Plot 7-25. Power Spectral Density Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53540)

Plot 7-26. Power Spectral Density Plot (LTE -U (UNII Band 3, 40MHz BW) - Ch. 52740, 52940)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 53 01 145
2 0040 DOTEOT Ex site s site a list	nations have		1/00

Plot 7-27. Power Spectral Density Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53140, 53340)

Plot 7-28. Power Spectral Density Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 34 of 145
@ 2016 DOTECT Engineering Labo	rotom las		1/22

7.6 Conducted Band Edge Emissions §15.407(b.1)(b.6), §15.205, §15.209

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. The EUT is set to transmit one LTE carrier in the respective 5GHz unlicensed band and another carrier in a licensed band. The band edges were measured in a conducted test setup with the appropriate correction factors to assess compliance with the radiated limits. Considerations for MIMO operation and antenna gain are included in the radiated limit as shown in the Notes section below.

When a band edge measurement is made in a restricted band, the average limit is -50.2dBm and the peak limit is -30.2dBm. For non-restricted band measurements, the peak limit is -36dBm. See the "Notes" section for a calculation showing how the limits were derived.

Test Procedure Used

KDB 789033 – Section G)6)c) – Method AD (Average measurements) KDB 789033 – Section G)5) – Peak measurements KDB 662911 – Section E)3)

Test Settings (Average)

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Detector = Average (RMS)
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace averaging
- 8. Sweep time = auto couple
- 9. Trace was averaged over 100 sweeps

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 25 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 35 of 145
2 2016 PCTEST Engineering Laboratory, Inc.			

Conducted Band Edge Emissions (Cont'd)

Test Settings (Peak)

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. Trace was averaged over 100 sweeps

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

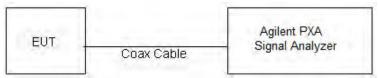


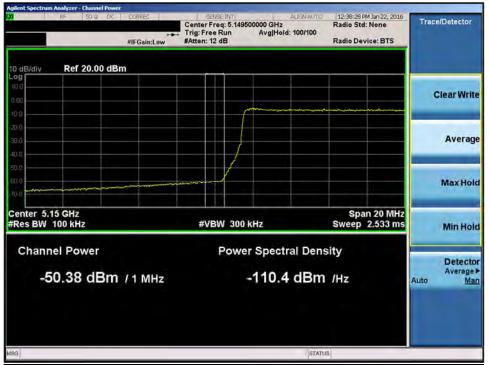
Figure 7-5. Test Instrument & Measurement Setup

Test Notes

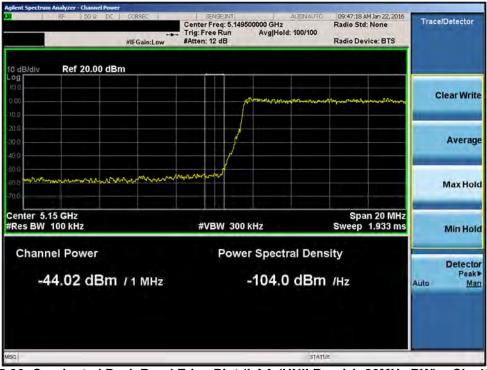
 Per 15.209 and 15.35(b), the average and peak radiated limits in a restricted band are 54dBuV/m and 74dBuV/m, respectively. The non-restricted band peak limit is -27dBm. Combined with the maximum known antenna gain of 6dBi and a "MIMO gain" of 3dB (used for two antennas operating simultaneously) with the conversion factor from a field strength at 3 meters to a conducted power, the revised limits are as follows:

Average (Restricted): 54dBuV/m – 95.2dB – 6dBi – 3dB= **-50.2dBm** Peak (Restricted): 74dBuV/m – 95.2dB – 6dBi – 3dB= **-30.2dBm**

Peak (Non-Restr.): -27dBm - 6dBi - 3dB = -36dBm


 Some band edge measurements were evaluated using the Channel Integration method, as specified in Section G)3)d)ii) of KDB 789033.

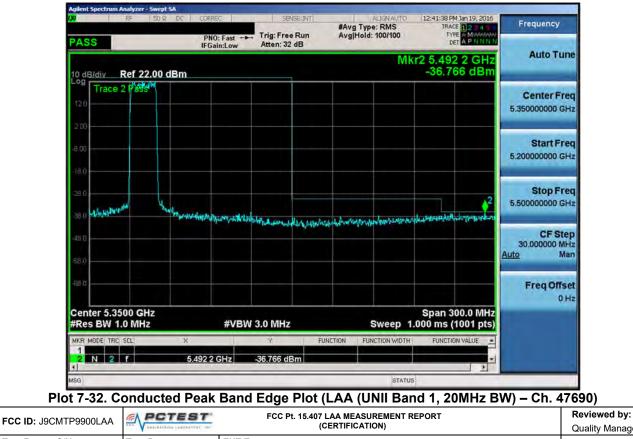
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 36 of 145	
© 2016 PCTEST Engineering Laboratory. Inc.				



Conducted Band Edge Emissions (Cont'd)

Chain0

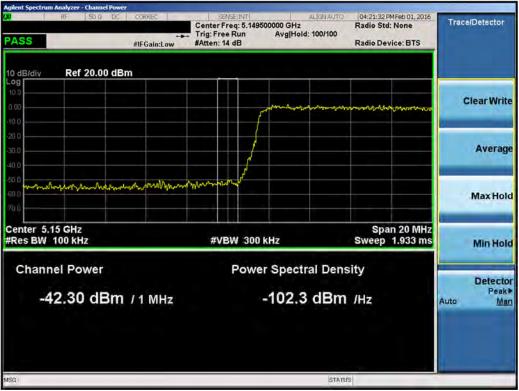
Plot 7-29. Conducted Average Band Edge Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 46890)


Plot 7-30. Conducted Peak Band Edge Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 46890)

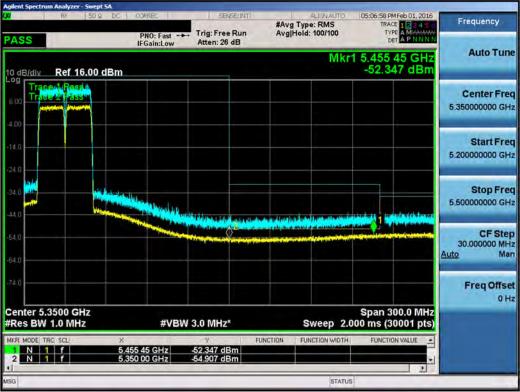
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 27 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 37 of 145
@ 2016 DOTECT Engineering Labo	reten: Inc		1/22

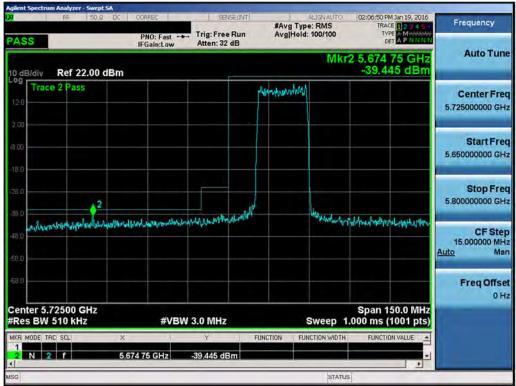
PNO: Fast	SENSE:INT Trig: Free Run Atten: 28 dB	#Avg Type: RMS Avg Hold: 100/100	12:39:32 PM Jan 19, 2016 TRACE 123455 TYPE A MUMANN DET A P N N N N	Frequency
		Mk	r1 5.451 6 GHz -51.028 dBm	Auto Tune
				Center Free 5.350000000 GH
				Start Fre 5.200000000 GH
				Stop Fre 5.500000000 GH
**************************************	and many second and and and and and and and and and a	an a	<u>↓</u> 1	CF Ste 30.000000 MH Auto Ma
				Freq Offse 0 H
#VBW	3.0 MHz*	Sweep 1	Span 300.0 MHz .000 ms (1001 pts)	
451 6 GHz	Y FL -51.028 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	
	PNO: Fast	PNO: Fast → Trig: Free Run Atten: 28 dB	PNO: Fast Trig: Free Run #Avg Type: RMS Atten: 28 dB Mk IFGain:Low Mk Image: Strain Strai	PNO: Fast From Trig: Free Run Atten: 28 dB Mkr1 5.451 6 GHz -51.028 dBm -51.028 dBm -51.0

Plot 7-31. Conducted Average Band Edge Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47690)


		The second block and a state of the	(CERTIFICATION)	Quality Manager		
	Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 145		
	0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 56 01 145		
© 2016 PCTEST Engineering Laboratory, Inc.						

ngineering Laboratory, Inc.


Plot 7-33. Conducted Average Band Edge Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)

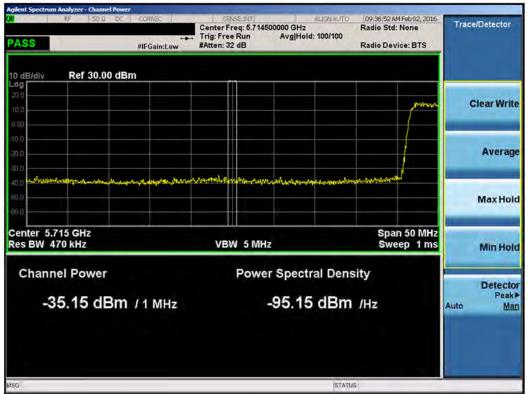

Plot 7-34. Conducted Peak Band Edge Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 39 of 145	
2016 PCTEST Engineering Laboratory, Inc.				

Plot 7-35. Cond. Average-Peak Band Edge Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47490, 47690)

Plot 7-36. Conducted Peak Band Edge Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 52740)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 40 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 40 of 145
© 2016 DOTEST Engineering Labo	notoni Inc	•	1/22


ASS	PNO: Fast	. Trig: Free Run Atten: 32 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 100/100	02:23:42 PM Jan 19, 2016 TRACE 2 3 4 5 6 TYPE & MWAAAAAA DET A P N N N N	Frequency
0 dB/div Ref 22.00 dBm			Mkr	2 5.884 95 GHz -36.799 dBm	Auto Tune
**************************************	hashnamighted				Center Fre 5.850000000 GH
8.00					Start Fre 5.775000000 GH
28 G 38 B RARAMANING MARANA		Malman palitices to war	2 เมษาโรมพระศรษณภาพในประจาน	al humonital - Materi	Stop Fre 5.925000000 GH
4B () 56 ()			an of the second s	a an in on on the land	CF Ste 15.000000 MH Auto Ma
58 0					Freq Offse 0 H
Center 5.85000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Span 150.0 MHz .000 ms (1001 pts)	(.
MKR MODE TRC SCL X 1 2 N 2 I 5.8	84 95 GHz	Y 1	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-37. Conducted Peak Band Edge Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 53540)

PASS		ORREC PNO: Fast ↔ FGain:Low	Trincen		#Avg Ty	ALIGNAUTO	09:35:36 AM Feb 02, 2016 TRACE 1 3 4 5 6 TYPE MMUMUMA DET A P N N N N	Frequency
	.00 dBm					Mk	r2 5.716 38 GHz -31.58 dBm	Auto Tune
Trace 2 Pass		public	alahayahaan	alution alghe	-showing f	nanutarahav	rellinion printeduly love	Center Fred 5.745000000 GHz
2,00					V			Start Freq 5.715000000 GHz
-16.0 -28.0 - 2	- Hannallymen	ANDA						Stop Freq 5.775000000 GHz
48.0								CF Step 6.000000 MHz Auto Man
.68 Q								Freq Offset 0 Hz
Start 5.71500 GH: #Res BW 1.0 MHz		#VBV	V 3.0 MHz	<u>[</u>		Sweep	Stop 5.77500 GHz 1.000 ms (1001 pts)	
MKR MODE TRC SCL 1 2 N 2 F	× 5.716	38 GHz	Y -31.58 di		NCTION FL	UNCTION WIDTH	FUNCTION VALUE	
MSG						STATL	s 3, 40MHz BW	

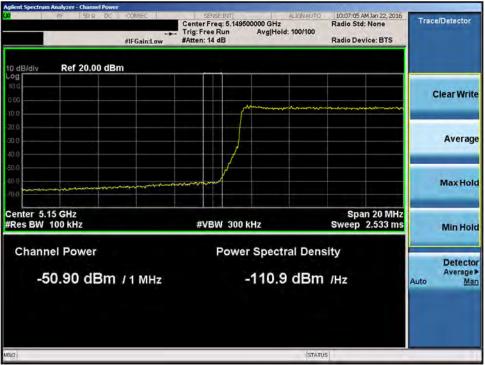
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 41 of 145	
O DOAD DOTEOT En alia a alia a la de	materia la s		1/00	

Plot 7-39. Conducted Peak Band Edge Plot #2 (LAA (UNII Band 3, 40MHz BW) – Ch. 52740, 52940)

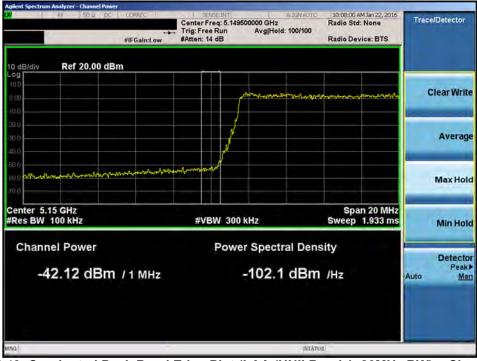
PASS	RE 50 Q	P	NO: Fast	1		#Avg Type Avg Hold:		10:28:46 AM Fe TRACE 1 TYPE DET A		Frequency
10 dB/div	Ref 22.00 d		Gain:Low	Attent o	2 40		Mkr2	5.859 050 -31.208		Auto Tune
12.0	e 2 Pass	Allon	uning the first	harmon	hyurh/rite	whether				Center Free 5.817500000 GH
-8.00				Y						Start Fre 5.775000000 GH
20.0	har som ashe water and	plu					when when a	الإعرارية المساليلين	HANNAN	Stop Fre 5.86000000 GH
-48.0 -58.0										CF Ste 8.500000 MH <u>Auto</u> Ma
-63 0										Freq Offse 0 H
Start 5.77 #Res BW			#VBW	3.0 MHz	2	5		Stop 5.8600 000 ms (10		
MKR MODE TR	192	× 5.859 05	0 GHz	Y -31.208 d		INCTION FUN	ETION WIDTH	FUNCTION V	ALUE	

Plot 7-40. Conducted Peak Band Edge Plot #1 (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Degra 42 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 42 of 145	
© 2016 DCTEST Engineering Labo	ratory Inc	•	1/22	


Plot 7-41. Conducted Peak Band Edge Plot #2 (LAA (UNII Band 3, 40MHz BW) – Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 145	
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 43 of 145	
© 2016 PCTEST Engineering Laboratory, Inc.				



Conducted Band Edge Emissions (Cont'd)

Chain1

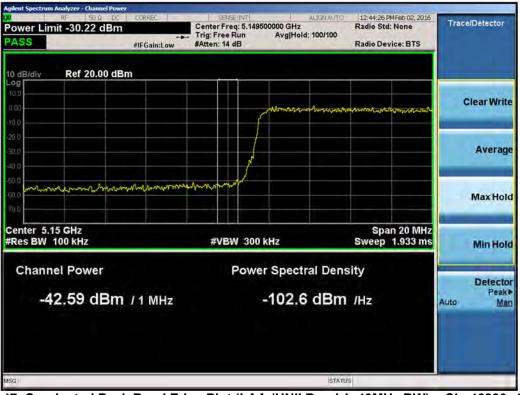
Plot 7-42. Conducted Average Band Edge Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 46890)

Plot 7-43. Conducted Peak Band Edge Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 46890)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dego 44 of 145		
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 44 of 145		
© 2016 PCTEST Engineering Laboratory Inc.					

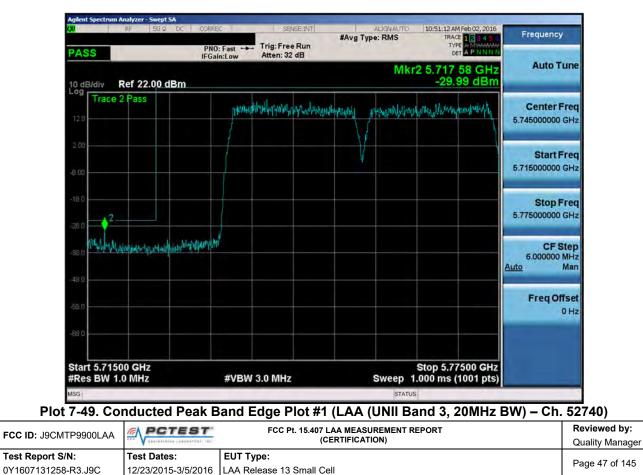
RF 50 Q DC	PNO: Fast ↔	Trig: Free Run #Atten: 28 dB	ALIGNAUTO Avg Type: RMS Avg Hold: 100/100	10;23:46 AMJan 22, 2016 TRACE 2 3 4 5 C TYPE A WARANA DET A P N N N N	Frequency
0 dB/div Ref 18.00 dBm			Mk	r1 5.459 1 GHz -50.858 dBm	Auto Tune
Trace 1 Pass					Center Free 5.350000000 GH
12.0					Start Free 5.200000000 GH
32.0					Stop Fre 5.500000000 GH
52 0	mennent	- A		1	CF Ste 30.000000 MH Auto Ma
72.0					Freq Offse 0 H
Center 5.3500 GHz Res BW 1.0 MHz	#VBV	√ 3.0 MHz*	Sweep 1	Span 300.0 MHz .000 ms (1001 pts)	
MKR MODE TRC SCL X	5.459 1 GHz	Y R -50.858 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-44. Conducted Average Band Edge Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47690)

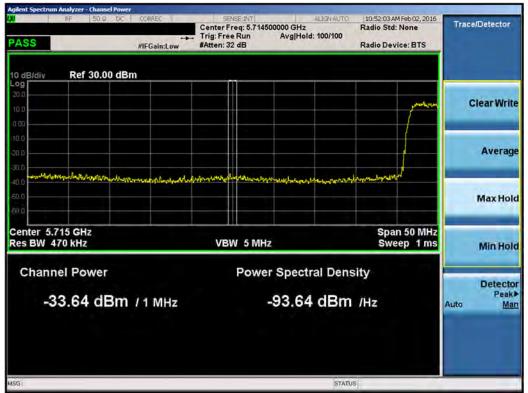

Plot 7-45. Conducted Peak Band Edge Plot (LAA (UNII Band 1, 20MHz BW) - Ch. 47690)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 45 of 145
© 2016 PCTEST Engineering Labo	ratory. Inc.		V 3.3

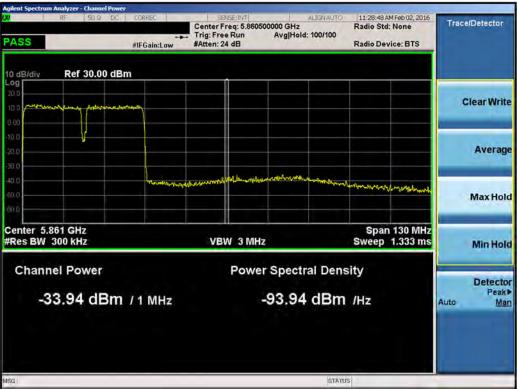
Plot 7-46. Conducted Average Band Edge Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)


Plot 7-47. Conducted Peak Band Edge Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 46 of 145
© 2016 PCTEST Engineering Labo	ratory Inc	-	V 3 3



Plot 7-48. Cond. Average-Peak Band Edge Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47490, 47690)


Plot 7-50. Conducted Peak Band Edge Plot #2 (LAA (UNII Band 3, 20MHz BW) – Ch. 53540)

PASS	SD Q DC CORREC PNO: F IFGain:	ast + Trig: Free Run Low #Atten: 32 dB	ALIGNAUTO #Avg Type: RMS	11:24:03 AM Feb 02, 2016 TRACE 1 2 3 4 5 6 TYPE & MORANNA DET A P N N N N	Frequency
10 dB/div Ref 20.	00 dBm		Mkr2	5.858 690 GHz -32.04 dBm	Auto Tune
Trace 2 Pass	prenoperen	heitrathatical procession	nytherastly. Merry		Center Fre 5.817500000 GH
-10.0		Ŷ			Start Fre 5.775000000 GH
-30.0 //inhouse//porturi/info	Westgerand		nesotable	When by more with	Stop Fre 5.860000000 GH
50 Q					CF Ste 8.500000 MH Auto Ma
-70.0					Freq Offse 0 H
Start 5.77500 GHz #Res BW 1.0 MHz	×	#VBW 3.0 MHz		Stop 5.86000 GHz 000 ms (1001 pts)	
1 2 N 2 F	5.858 690 GH		Tenensi Penensi Werti	*	

Plot 7-51. Conducted Peak Band Edge Plot #1 (LAA (UNII Band 3, 40MHz BW) – Ch. 52740, 52940)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 46 01 145
© 2016 DCTEST Engineering Labo	rotory Inc	·	1/22

Plot 7-52. Conducted Peak Band Edge Plot #2 (LAA (UNII Band 3, 40MHz BW) – Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 49 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

7.7 Conducted Spurious Emissions §15.407(b.1)(b.6), §15.205, §15.209

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. The EUT is set to transmit one LTE carrier in the respective 5GHz unlicensed band and another carrier in a licensed band. The spurious emissions were measured in a conducted test setup with the appropriate correction factors to assess compliance with the radiated limits. Considerations for MIMO operation and antenna gain are included in the radiated limit as shown in the Notes section below.

When a band edge measurement is made in a restricted band, the average limit is -50.2dBm and the peak limit is -30.2dBm. For non-restricted band measurements, the peak limit is -36dBm. See the "Notes" section for a calculation showing how the limits were derived.

Test Procedure Used

KDB 789033 – Section G)6)c) – Method AD (Average measurements) KDB 789033 – Section G)5) – Peak measurements KDB 662911 – Section E)3)

Test Settings (Average)

- 1. Start frequency was set to 30MHz and stop frequency was set to 40GHz (separated into several plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Average (RMS)
- 5. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 6. Trace mode = trace averaging
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege E0 of 14E
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 50 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

Conducted Spurious Emissions (Cont'd)

Test Settings (Peak)

- 1. Start frequency was set to 30MHz and stop frequency was set to 40GHz (separated into several plots per channel)
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Number of sweep points \geq 2 x Span/RBW
- 6. Trace mode = max hold
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

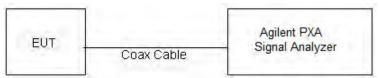


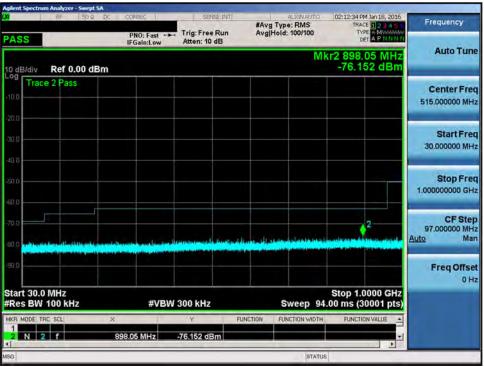
Figure 7-6. Test Instrument & Measurement Setup

<u>Test Notes</u>

 Per 15.209 and 15.35(b), the average and peak radiated limits in a restricted band are 54dBuV/m and 74dBuV/m, respectively. The non-restricted band peak limit is -27dBm. Combined with the maximum known antenna gain of 6dBi and a "MIMO gain" of 3dB (used for two antennas operating simultaneously) with the conversion factor from a field strength at 3 meters to a conducted power, the revised limits are as follows:

Average (Restricted): 54dBuV/m – 95.2dB – 6dBi – 3dB= **-50.2dBm** Peak (Restricted): 74dBuV/m – 95.2dB – 6dBi – 3dB= **-30.2dBm**

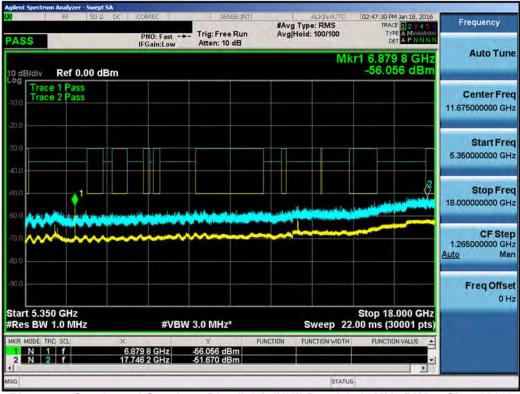
Peak (Non-Restr.): -27dBm – 6dBi – 3dB = -36dBm

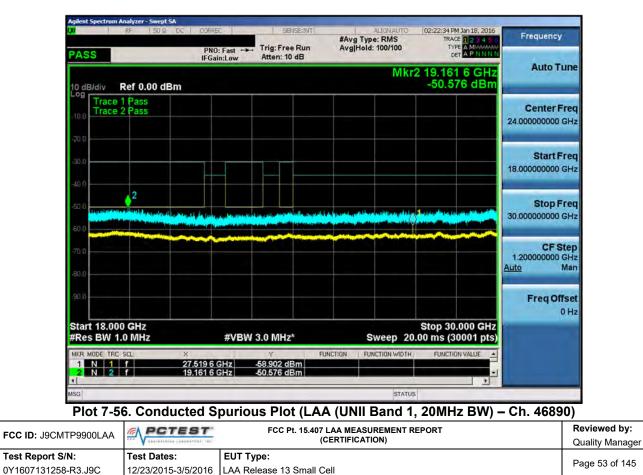

- 2. Below 1GHz, the limit was further adjusted by subtracting 4.7dB to account for ground plane contributions observed on a test site, per KDB 789033.
- 3. In the plots on the following pages, the yellow trace is the average measurement and the blue trace is the peak measurement.

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E1 of 14E
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 51 of 145
© 2016 PCTEST Engineering Labo	ratory, Inc.		V 3.3

Conducted Band Edge Emissions (Cont'd)

Chain0



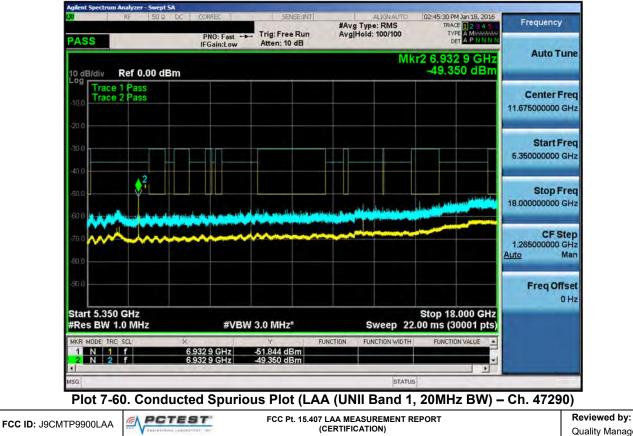


FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 52 of 145
			1/00



Plot 7-55. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 46890)

Plot 7-57. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 46890)


 0Y1607131258-R3.J9C
 12/23/2015-3/5/

 © 2016 PCTEST Engineering Laboratory, Inc.

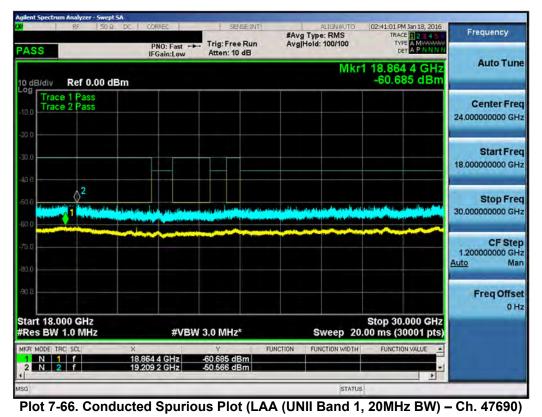
Plot 7-59. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 47290)

FCC ID: JSCMITF SSOOLAA	···· V restriction restriction inv	(CERTIFICATION)	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 55 01 145
© 2016 DCTEST Engineering Labo	raton/ Inc		1/33

RF 50 Q	PNO: Fast ++ IFGain:Low	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	02:27:55 PM Jan 18, 2016 TRACE 2 3 4 5 6 TYPE A MINANUM DET A P N N N N	Frequency
0 dB/div Ref 0.00 dBr	n		Mkr2	19.039 6 GHz -50.624 dBm	Auto Tune
100 Trace 1 Pass Trace 2 Pass					Center Free 24.000000000 GH
80.0 					Start Fre 18.000000000 GH
50.0			(1) y (1) a como y (1) (1) a como y (1) Transferencia (1) a como y (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		Stop Fre 30.000000000 GH
50.0					CF Ste 1.200000000 GF <u>Auto</u> Ma
90.0					Freq Offse 0 H
Start 18.000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 20.	Stop 30.000 GHz 00 ms (30001 pts)	
NKR MODE TRC SCL	X 18.810 8 GHz 19.039 6 GHz	Y Fl -60,445 dBm -50,624 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
5G			STATUS		

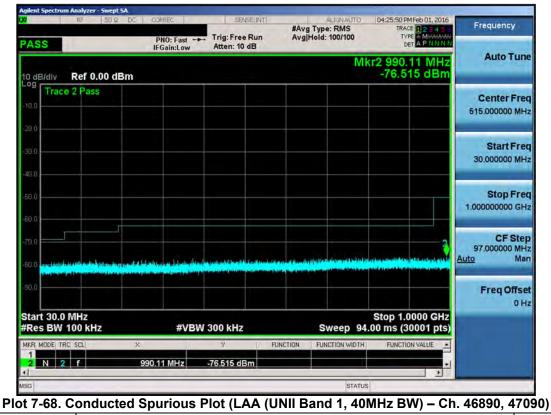
Plot 7-61. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 47290)

ASS	PNO: Fast	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	02:38:12 PM Jan 18, 20 TRACE 1 2 3 4 TYPE A MUTH DET A P N N	Frequency
o dB/div Ref 0.00 dBm			М	kr2 829.02 Mi -75.855 dB	1z Auto Tune m
- ^{og} Trace 2 Pass					Center Fred 515.000000 MH
30.0					Start Free 30.000000 MH:
50.0 60.0					Stop Free 1.000000000 GH:
70.0		a de la constante de la filita des comos		2	CF Step 97.000000 MH: Auto Mar
0.0					Freq Offset 0 Hz
Start 30.0 MHz #Res BW 100 kHz		300 kHz		Stop 1.0000 Gl .00 ms (30001 p	Hz ts)
MKR MODE TRC SCL	× 829.02 MHz	Y FL -75.855 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	•
SG			STATU	s	

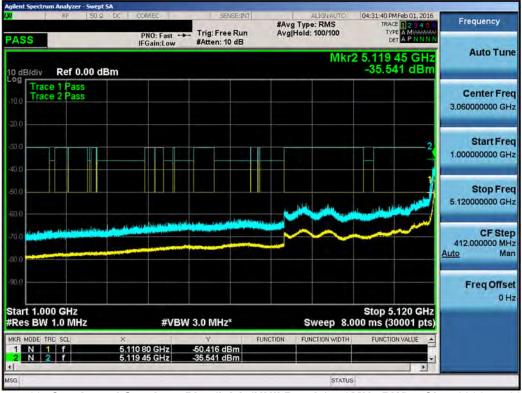


FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 57 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 57 of 145
O OOAC DOTEOT Ex site a still all all			1/00

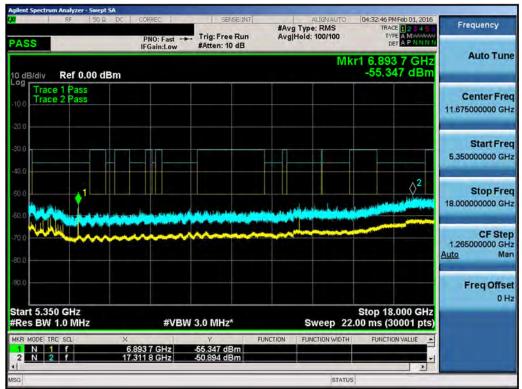
Plot 7-65. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 47690)



FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 58 of 145
© 2016 PCTEST Engineering Labo	ratory. Inc.		V 3.3



Plot 7-67. Conducted Spurious Plot (LAA (UNII Band 1, 20MHz BW) – Ch. 47690)



FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 59 01 145
O 0040 DOTEOT En sin s suin a Laka	materia la s		1/00

Plot 7-69. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)

Plot 7-70. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT Reviewe (CERTIFICATION) Quality M	
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 60 01 145
© 2016 DCTEST Engineering Labo	rotoni Ino		1/22

PASS	PNO: Fast ++	Trig: Free Run #Atten: 10 dB	#Avg Type: RMS Avg[Hold: 100/100	04:34:04 PMFeb 01, 2016 TRACE 2 3 4 5 6 TYPE A MYNNAM DET A P N N N N	Frequency
10 dB/div Ref 0.00 dBm			Mkr	2 19.220 0 GHz -50.086 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Free 24.000000000 GH
					Start Free 18.00000000 GH
50.0			alter og and bill sorte sledter av de Belonge		Stop Free 30.000000000 GH
70.0					CF Ste
-80.0					
					Auto Mar Freq Offse
-80.0	#VBV	V 3.0 MHz*	Sweep 20	Stop 30.000 GHz 00 ms (30001 pts)	

Plot 7-71. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 46890, 47090)

Plot 7-72. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 46890, 47090)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 61 01 145
O 0040 DOTEOT En sin serie a Laka	materia la s		1/00

ASS	PNO: Fast	Trig: Free Run Atten: 10 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 100/100	04:44:46 PMFeb 01, 2016 TRACE 1 2 3 4 5 0 TYPE & MYRAAAAA DET A P N N N N	Frequency
0 dB/div Ref 0.00 dBn	n		M	kr2 904.84 MHz -75.503 dBm	Auto Tune
10 0 Trace 2 Pass					Center Fred 515.000000 MH:
30.0					Start Free 30.000000 MH
50.0					Stop Free 1.000000000 GH:
70 0	und dama bard, use sided		and in such a second of second	2	CF Step 97.000000 MH <u>Auto</u> Mar
50,0					Freq Offse 0 H
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 94	Stop 1.0000 GHz .00 ms (30001 pts)	
MKR MODE TAC SCL	× 904.84 MHz	₽ ₽	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
SG			STATU		

Plot 7-73. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47290, 47490)

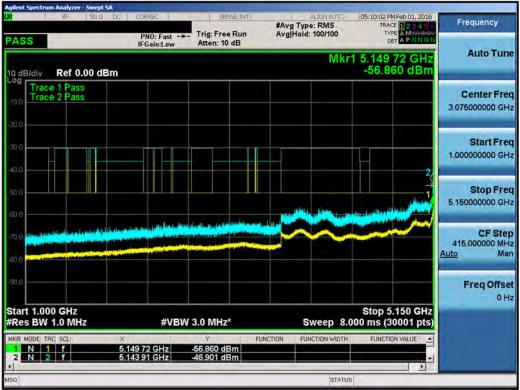

Plot 7-74. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47290, 47490)

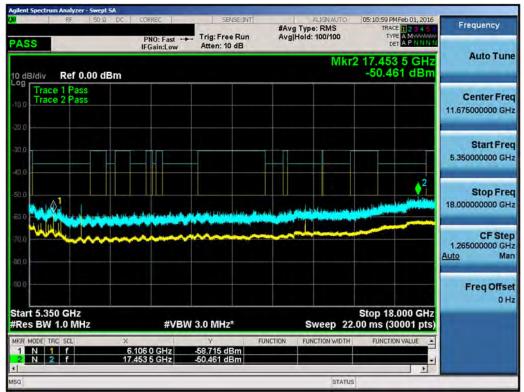
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Domo 62 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 62 of 145
© 2016 DOTEST Engineering Labo	materia la s		1/22


Plot 7-75. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47290, 47490)


Plot 7-76. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47290, 47490)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 63 of 145
© 2016 DOTEST Engineering Labo	materia la s		1/22


Plot 7-77. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47290, 47490)


Plot 7-78. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47490, 47690)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 64 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 64 of 145
© 2016 DOTEST Engineering Labo	materia la s		1/22

Plot 7-79. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47490, 47690)

Plot 7-80. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) - Ch. 47490, 47690)

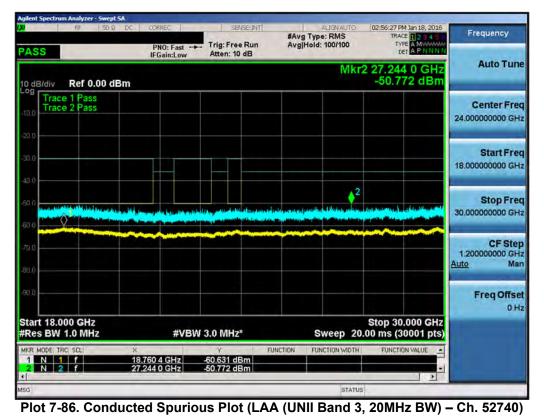
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 65 01 145
© 2016 DCTEST Engineering Labo	rotoni Ino		1/22

RF 50 Q DC	PNO: Fast	- Trig: Free Run Atten: 10 dB	ALIGNAUTO #Avg Type: RMS Avg[Hold: 100/100	05:12:35 PMFeb 01, 2016 TRACE 2 3 4 5 6 TYPE A MMMMM DET A P N N N N	Frequency
0 dB/div Ref 0.00 dBm			Mkr1	29.799 2 GHz -60.829 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Fre 24.000000000 GH
58.0 					Start Fre 18.000000000 GH
			oloria - Anna a Carlonico analda analistan da Mangazi da nasara		Stop Fre 30.000000000 GH
20.0					CF Ste 1.200000000 GF <u>Auto</u> Ma
90.0					Freq Offse
Start 18.000 GHz #Res BW 1.0 MHz	#VBW	/ 3.0 MHz*	Sweep 20.	Stop 30.000 GHz 00 ms (30001 pts)	6
	9.799 2 GHz 9.926 8 GHz	Y F -60.829 dBm -50.096 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	21

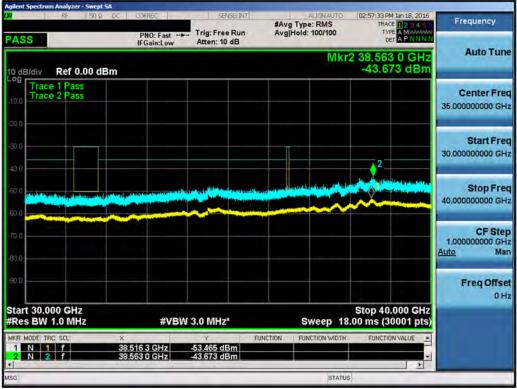
Plot 7-81. Conducted Spurious Plot (LAA (UNII Band 1, 40MHz BW) – Ch. 47490, 47690)

FCC ID: J9CMTP9900LAA		CERTIFICATION)	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 00 01 145
© 2016 DOTEST Engineering Labo	roton/ Inc		1/22

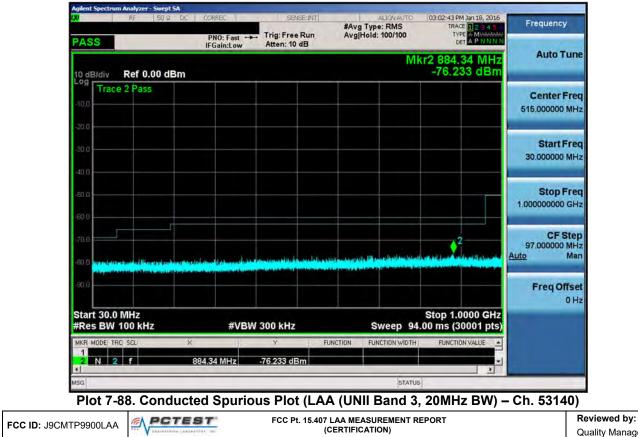
ASS	PNO: Fast	- Trig: Free Run Atten: 10 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 100/100	02:54:10 PM Jan 18, 2016 TRACE 2 2 4 5 0 TYPE & MYNAMM DET A P NNNN	Frequency
0 dB/div Ref 0.00 dBm			M	kr2 982.67 MHz -76.198 dBm	Auto Tune
Trace 2 Pass					Center Free 515.000000 MH
30.0					Start Fre 30.000000 MH
50.0					Stop Fre 1.000000000 GH
	- Stat Wagen are a state ited	ster Alexandra Distance entering	and also a second dama di seconda da da	2 Not an instantion of the set	CF Ste 97.000000 MH Auto Ma
90.0					Freq Offse 0 H
Start 30.0 MHz #Res BW 100 kHz	#VBW	/ 300 kHz	Sweep 94	Stop 1.0000 GHz .00 ms (30001 pts)	
MKR MODE TRC SCL X	982.67 MHz	Y ह -76.198 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	


Plot 7-84. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 52740)

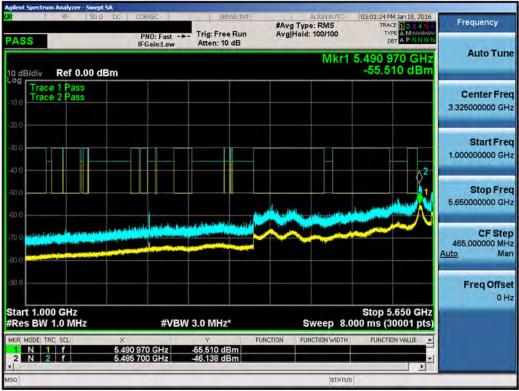
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 67 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 67 of 145
© 2016 DCTEST Engineering Labo	ratory Inc		1/22


PNO: Fast	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	03:20:32 PM Jan 18, 2016 TRACE 2 2 3 4 5 6 TYPE A MUMANN DET A P NNNN	Frequency
		Mkr	1 17.236 0 GHz -57.771 dBm	Auto Tune
				Center Fre 11.930000000 GH
				Start Fre 5.860000000 GH
	(de court di ci conte e de tedeció			Stop Fre 18.000000000 GH
				CF Ste 1.214000000 GH Auto Ma
				Freq Offse
#VBW	3.0 MHz*	Sweep 22	Stop 18.000 GHz 2.00 ms (30001 pts)	
7.236 0 GHz	Y FU -57.771 dBm -47.834 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	
	PNO: Fast	PNO: Fast Trig: Free Run Atten: 10 dB	PNO: Fast +++ Trig: Free Run Atten: 10 dB ////////////////////////////////////	PNO: Fast +++ Trig: Free Run Atten: 10 dB #Vg Held: 100/100 Tree Parket Mkr1 17.236 0 GHz -57.771 dBm ////////////////////////////////////

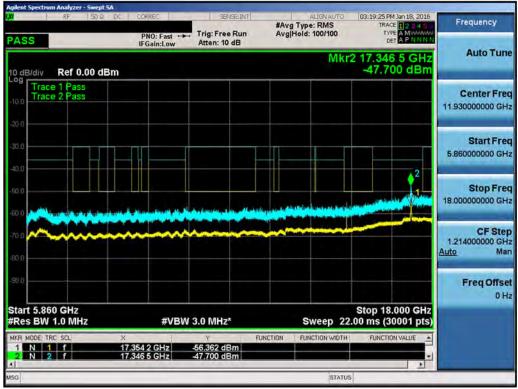
Plot 7-85. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 52740)



FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 69 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 68 of 145

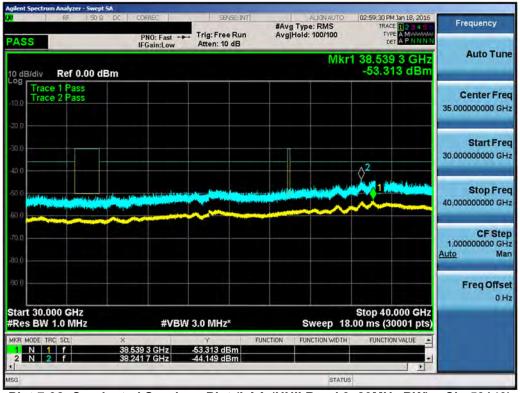


Plot 7-87. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 52740)



FCC ID: 39CMITF 9900EAA	···· V restantine testantist in	(CERTIFICATION)	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Fage 09 01 145
© 2016 PCTEST Engineering Labo	ratory Inc		1/33

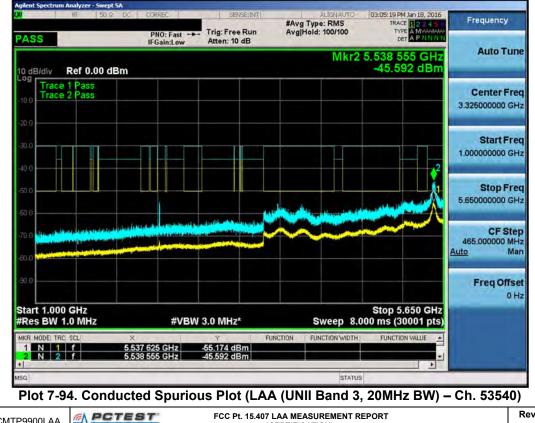
Plot 7-89. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53140)


Plot 7-90. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 53140)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 70 of 145
© 2016 DCTEST Engineering Labo	ratory Inc		1/22

RF 50 2 DC	PNO: Fast	SBNSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	03:00:26 PM Jan 18, 2016 TRACE 2 3 4 5 0 TYPE A MY	Frequency
10 dB/div Ref 0.00 dBm			Mkr	2 18.737 6 GHz -50.066 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Free 24.000000000 GH
30.0					Start Free 18.000000000 GH
50 0 (ATAL 2010) A 10 (A 10) (dia mandalahan sa kada basi da basi da basi		nale yan kana data shi she sahisi na akina a Mana yan naya ya shi sa sa sa sa sa sa sa sa sa		Stop Free 30.00000000 GH
-70.0				<u>للغن مثلما</u>	CF Ste 1.200000000 GH <u>Auto</u> Ma
eo 8					Freq Offse 0 H
Start 18.000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 20	Stop 30.000 GHz .00 ms (30001 pts)	1
	.787 6 GHz .737 6 GHz	Y FU -60.641 dBm -50.066 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-91. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53140)


Plot 7-92. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) - Ch. 53140)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 71 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 71 of 145
© 2016 DCTEST Engineering Labo	ratory Inc	· · · · · · · · · · · · · · · · · · ·	1/22

RF 50.0 DC	PNO: Fast	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	03:04:23 PM Jan 19, 2016 TRACE 2 3 4 5 6 TYPE & MYNNAM DET A P N N N N	Frequency
0 dB/div Ref 0.00 dBm			M	r2 940.05 MHz -76.067 dBm	Auto Tune
Trace 2 Pass					Center Fre 515.000000 MH
30.0 					Start Fre 30.000000 MH
50 û					Stop Fre 1.000000000 GF
	المعالمة مرجم المراجع	e a chéal baileanna dhe nhithire.	ten ten anne son son i da al tituat de la com	2	CF Ste 97.000000 MH Auto Ma
90.0					Freq Offso 0 H
Start 30.0 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep 94	Stop 1.0000 GHz .00 ms (30001 pts)	
MKR MODE TRC SCL X		₩ FU -76.067 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

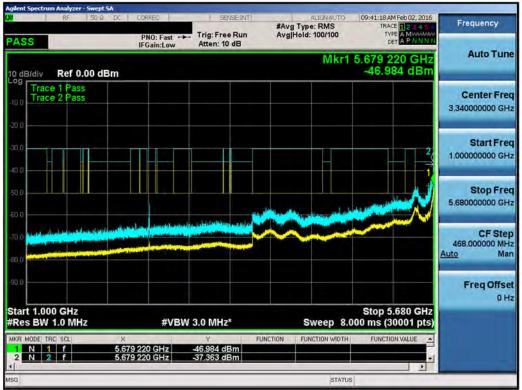
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 72 of 145
	reten: Inc	•	1/22

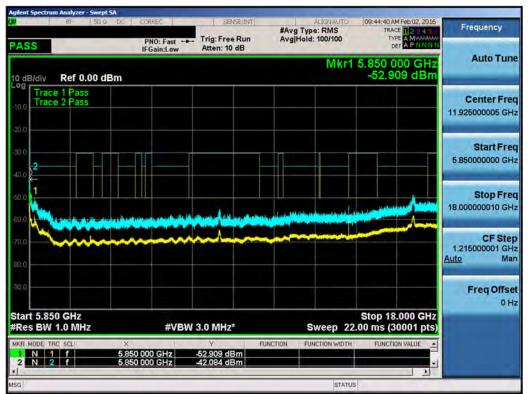
RF 50 Ω D	PNO: Fast	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	03:18:05 PM Jan 18, 2016 TRACE 2 3 4 5 5 TYPE A MWWWW DET A P NN NN	Frequency
10 dB/div Ref 0.00 dBm			Mkr	1 17.477 2 GHz -55.861 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Free 11.930000000 GH
30 0					Start Fre 5.860000000 GH
500		A det side . In a factification			Stop Fre 18.00000000 GH
FD 0					CF Ste 1.214000000 GH Auto Ma
90.0					Freq Offse
Start 5.860 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 22	Stop 18.000 GHz .00 ms (30001 pts)	1 -
	× 17.477 2 GHz 17.465 4 GHz	Y FU -55.861 dBm -45.902 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-95. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53540)

	The seathing and seather they the	(CERTIFICATION)
Test Report S/N:	Test Dates:	EUT Type:
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell
	netems lass	

Page 73 of 145


Plot 7-97. Conducted Spurious Plot (LAA (UNII Band 3, 20MHz BW) – Ch. 53540)


Plot 7-98. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 52740, 52940)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 74 of 145
© 2016 DOTECT Engineering Labo	notom la o		1/22

Plot 7-99. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 52740, 52940)

Plot 7-100. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 52740, 52940)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 75 01 145
© 2016 DCTEST Engineering Labo	roton/ Inc	·	1/22

RF 50 Q DC	PNO: Fast	SENSE INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg[Hold: 100/100	09:46:13 AM Feb 02, 2016 TRACE 2 3 4 5 5 TYPE A MWAAWAA DET A P NN NN	Frequency
0 dB/div Ref 0.00 dBm			Mkr	2 19.294 8 GHz -50.841 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Free 24.000000000 GH
00					Start Free 18.000000000 GH
	Western Lauren fran die		dia altera da tendeser antendes da s		Stop Free 30.000000000 GH
0.0				اندر بخیر الک کی	CF Ste 1.200000000 GH <u>Auto</u> Ma
0.0					Freq Offse 0 H
start 18.000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep 20	Stop 30.000 GHz .00 ms (30001 pts)	
	9.784 4 GHz	Y FU -60.434 dBm -50.841 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-101. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 52740, 52940)

Plot 7-102. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 52740, 52940)

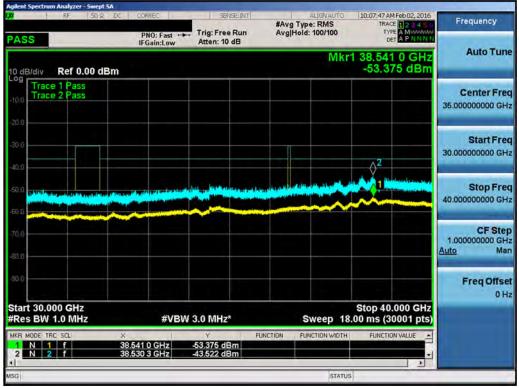
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 76 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 76 of 145
© 2016 DCTEST Engineering Labo	rotoni Ino	·	1/22

RF 50 Q DC	PNO: Fast	SENSE:INT Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	09:55:07 AM Feb 02, 2016 TRACE 1 2 3 4 5 6 TYPE & MYSHAM DET A P N N N N	Frequency
0 dB/div Ref 0.00 dBm			MI	kr2 874.39 MHz -76.238 dBm	Auto Tune
Trace 2 Pass					Center Fred 515.000000 MH:
0.0					Start Free 30.000000 MH
50 0					Stop Free 1.000000000 GH
0.0	1994 Institute of states and state	California a substantia da	an sanata sin baha baana baasa	2	CF Step 97.000000 MH Auto Mar
0.0					Freq Offse 0 H
tart 30.0 MHz Res BW 100 kHz KR MODE TRC SCL >> 1 2 N 2 f		300 kHz Y FU -76.238 dBm	Sweep 94	Stop 1.0000 GHz .00 ms (30001 pts) FUNCTION VALUE	
a			STATUS	<u> </u>	

Plot 7-103. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 53140, 53340)

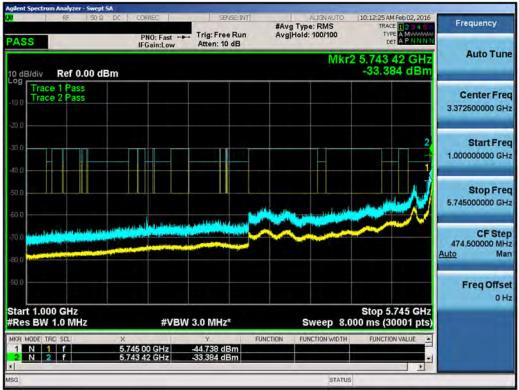

Plot 7-104. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53140, 53340)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 77 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 77 of 145
© 2016 PCTEST Engineering Labo	raton/ Inc		1/33


Plot 7-105. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 53140, 53340)

Plot 7-106. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53140, 53340)

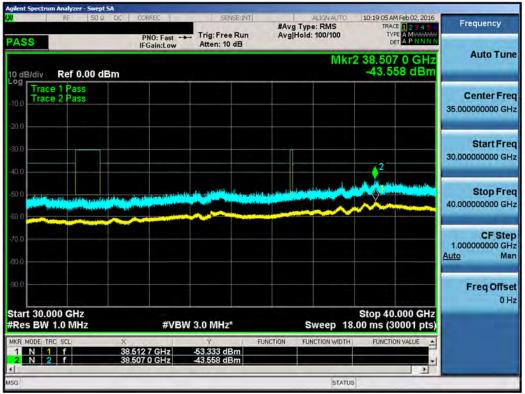
FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 79 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 78 of 145
© 2016 PCTEST Engineering Labo	raton/ Inc		1/33


Plot 7-107. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 53140, 53340)

Plot 7-108. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 79 01 145
© 2016 DCTEST Engineering Labo	ratory Inc		1/22

Plot 7-109. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) – Ch. 53340, 53540)


Plot 7-110. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 80 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 60 01 145
© 2016 DCTEST Engineering Labo	rotoni Ino		1/22

RF 50 2 DC	PNO: Fast	Trig: Free Run Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	10:18:08 AM Feb 02, 2016 TRACE 2 3 4 5 0 TYPE A MYANNA DET A P N N N N	Frequency
10 dB/div Ref 0.00 dBm			Mkr	1 29.804 4 GHz -60.538 dBm	Auto Tune
Trace 1 Pass Trace 2 Pass					Center Free 24.000000000 GH
30,0					Start Free 18.00000000 GH
					Stop Fre 30.000000000 GH
20.0					CF St e 1.20000000 GH <u>Auto</u> Ma
50.8					Freq Offse 0 H
Start 18.000 GHz #Res BW 1.0 MHz	#VBW	/ 3.0 MHz*	Sweep 20	Stop 30.000 GHz .00 ms (30001 pts)	
	.804 4 GHz .750 0 GHz	Y FL -60.538 dBm -50.677 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	

Plot 7-111. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

Plot 7-112. Conducted Spurious Plot (LAA (UNII Band 3, 40MHz BW) - Ch. 53340, 53540)

FCC ID: J9CMTP9900LAA		FCC Pt. 15.407 LAA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 91 of 145
0Y1607131258-R3.J9C	12/23/2015-3/5/2016	LAA Release 13 Small Cell	Page 81 of 145
© 0040 DOTEOT Ex site s stin a Lake	materia la s		1/00