FCC Part 15.247 Test Report
for
Western Multiplex Corporation
on the
Tsunami
Model: 27705
FCC ID: HZB-S58-25

Test Report #: J99022866c Date of Report: October 12, 1999

Job #: J99022866 Date of Test: September 7-13, 1999

Total No. of Pages Contained in this Report: 20 + data pages

David Chemomordia David Chemomordia, Ph.D., EMC Site Manager

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Government.

Government.

FCC Part 15 DSSS Cert, Rev 9/99

Date of Test: September 7-13, 1999

Table of Contents

1.0	Sumn	nary of Tests	2
2.0	Gener	ral Description	3
_,,	2.1	Product Description	
	2.2	Related Submittal(s) Grants	
	2.3	Test Methodology	
	2.4	Test Facility.	
3.0	System	m Test Configuration	5
	3.1	Support Equipment and description	5
	3.2	Block Diagram of Test Setup	
	3.3	Justification	
	3.4	Software Exercise Program	
	3.5	Mode of Operation During Test	
	3.6	Modifications Required for Compliance	
	3.7	Additions, deviations and exclusions from standards	
4.0	Meas	urement Results	7
	4.1	Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b):	7
	4.2	Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a)(2):	8
	4.3	Maximum Power Density Reading, FCC Rule 15.247(d):	9
	4.4	Out of Band Conducted Emissions, FCC Rule 15.247(c):	10
	4.5	Out of Band Radiated Emissions (for emissions in 4. above that are less than 26 dB be carrier), FCC Rule 15.247(c):	low
	4.6	Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b), (c):	
	4.7	Configuration Photographs – Radiated Emissions	
	4.8	AC Line Conducted Emission, FCC Rule 15.207:	
	4.9	Configuration Photographs – AC Line Conducted Emissions	15
	4.10	Radiated Emissions from Digital Section of Transceiver (Transmitter), FCC Ref: 15.1	
	4.11	Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), FCC Ref:	
		15.109, 15.111	17
	4.12	Processing Gain Measurements, FCC Rule 15.247(e)	
	4.13	Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)	
5.0	Docui	ment History	20
		•	

Date of Test: September 7-13, 1999

1.0 **Summary of Tests**

MODEL: 27705 **FCC ID: HZB-S58-25**

TEST	REFERENCE	RESULTS
Max. Output power	15.247(b)	Pass
6 dB Bandwidth	15.247(a)(2)	Pass
Max. Power Density	15.247(d)	Pass
Out of Band Antenna Conducted Emission	15.247(c)	Pass
Out of Band Radiated Emission	15.247(c)	Not Applicable
Radiated Emission in Restricted Bands	15.35(b)(c)	Pass
AC Conducted Emission	15.207	Pass
Radiated Emission from Digital Part	15,109	Pass
Radiated Emission from Receiver L.O.	15,109	Not Applicable
Processing Gain Measurements	15.247(e)	Provided by applicant
Antenna Requirement	15.203	Pass

Test Engineer:

Xi-Ming Yang Date: 10-20-99

Test Engineer

EMC Site Manager David Chernomordik Date: 10/20/99

David Chernomordik, Ph.D.

EMC Site Manager

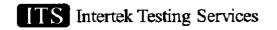
Page 2 of 20

Date of Test: September 7-13, 1999

2.0 General Description

2.1 Product Description

The Tsunami is a 5.8 GHz spread spectrum 10BaseT wireless ethernet bridge. It provides point-to-point data link and wayside T1/E1 channels.


A pre-production version of the sample was received on September 7, 1999 in good condition.

Overview of Tsunami

Applicant	Western Multiplex Corporation
Trade Name & Model No.	Western Multiplex Corporation / 27705
FCC Identifier	HZB-S58-25
Use of Product	Point to point data link and wayside T1/E1 channels.
Manufacturer & Model of	Western Multiplex Corporation
Spread Spectrum Module	
Type of Transmission	Direct Sequence Spread Spectrum
Rated RF Output (mW)	420
Frequency Range (MHz)	5750-5825
Number of Channel(s)	2
Antenna(s) & Gain, dBi	29
Processing Gain Measurements	[X] Provided to ITS for submission with the application
_	[] Will be provided directly to the FCC reviewing engineer by the client or
	manufacturer of the spread spectrum module
Antenna Requirement	[] The EUT uses a permanently connected antenna.
,	[] The antenna is affixed to the EUT using a unique connector which
	allows for replacement of a broken antenna, but DOES NOT use a standard
	antenna jack or electrical connector.
	[X] The EUT requires professional installation (attach supporting
	documentation if using this option).
Manufacturer name & address	Western Multiplex Corporation
	1196 Borregas Ave.
	Sunnyvale CA 94089

2.2 Related Submittal(s) Grants

Not applicable

Date of Test: September 7-13, 1999

2.3 Test Methodology

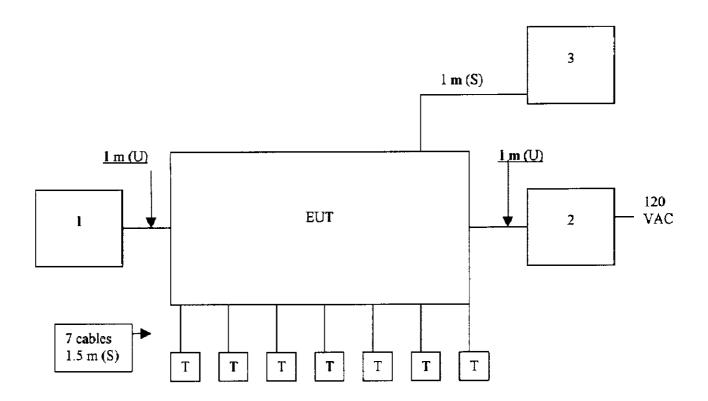
Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 1. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

Western Multiplex Corporation, Model No. 27705

Date of Test: September 7-13, 1999


FCC ID: HZB-S58-25

3.0 System Test Configuration

3.1 Support Equipment and description

Item !	l Description	Madel No.	Serial No.
1	Meridian telephone	M7100	960717
2	Extech power supply	EP-3003	D30030012
3	Comsat antennas	P-57C2414-1	129415

3.2 Block Diagram of Test Setup

### PROCESSOR PR	&c3&c3&c3&c3&c3&c3&c3&c3&c3&c3&c3&c3&c3&	
	S = Shielded	F = With Ferrite
5 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)		
** = No ferrites on	reanie i = instreide	
SANANANA CARAMATAN AND AND AND AND AND AND AND AND AND A		

File: 9022866C.DOC Version 1.0 Page 5 of 20

Date of Test: September 7-13, 1999

3.3 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.4 Software Exercise Program

No special software was used during the tests.

3.5 Mode of Operation During Test

The EUT was tested in transmit and receive modes.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by Western Multiplex Corporation prior to compliance testing):

No modifications were installed by Intertek Testing Services.

3.7 Additions, deviations and exclusions from standards

No additions, exclusions, or deviations were made to the standard.

1365 Adams Ct. Menlo Park, CA 94025

Western Multiplex Corporation, Model No. 27705 FCC ID: HZB-S58-25

Date of Test: September 7-13, 1999

4.0 Measurement Results

4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b):

Requirements:

The maximum peak output power shall not exceed 1 Watt. Systems operating in the 5725-5850 MHz band, used exclusively for fixed, point-to-point operations, may employ transmitting antenna with directional gain greater than 6 dB without any corresponding reduction in transmitting peak output power.

- [X] The antenna port of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- [] The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for maximum RES BW and power was read directly in dBm. External attenuation and cable loss were compensated for using the OFFSET function of the analyzer.

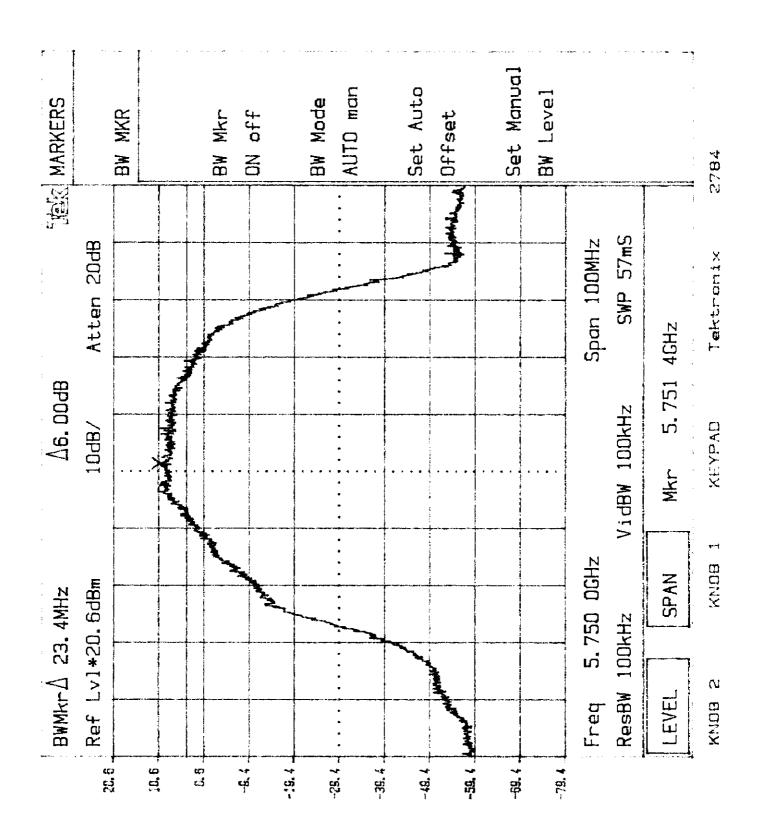
	Max. antenna g	ain =29 dB
Frequency (M.	Hz) Output in	dBm Output in mWatt
5750	26.2	417
5825	25.8	380

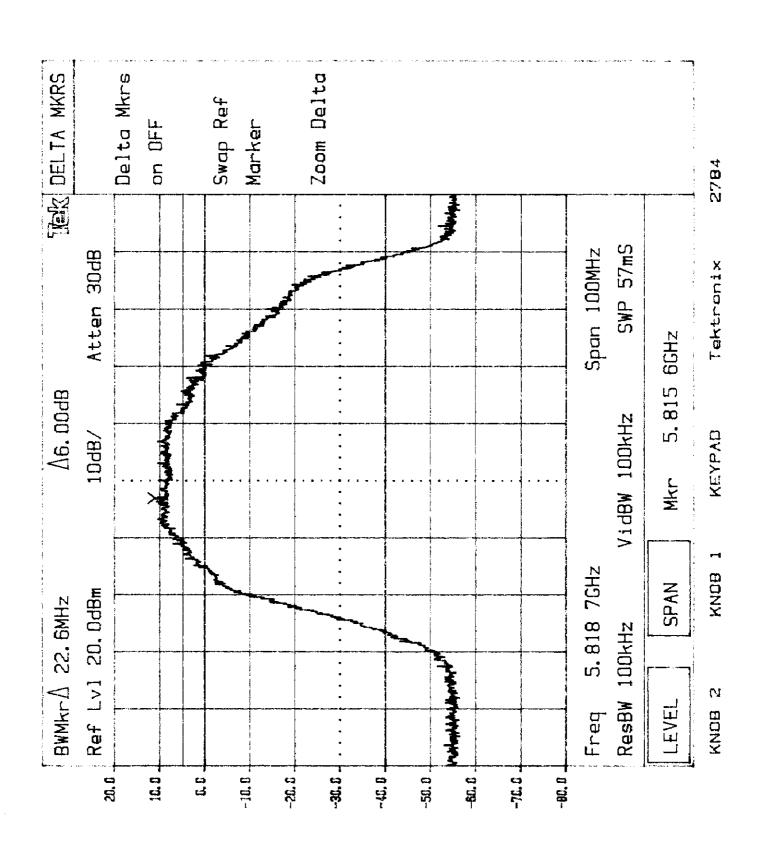
Cable loss: 0 dB External Attenuation: 0 dB

Cable loss, external attenuation: [X] included in OFFSET function

[]added to SA raw reading

Date of Test: September 7-13, 1999


4.2 Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a)(2):


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.

Frequency (MHz)	Min. 6 dB Bandwidth (kHz)
5825	22600

Refer to the following plots for 6 dB bandwidth sharp:

Plot 2a: Low Channel 6 dB RF Bandwidth Plot 2b: High Channel 6 dB RF Bandwidth

Date of Test: September 7-13, 1999

4.3 Maximum Power Density Reading, FCC Rule 15.247(d):

The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output passband. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. The specification calls for a 1 second interval at each 3 kHz bandwidth; total SWEEP TIME is calculated as follows:

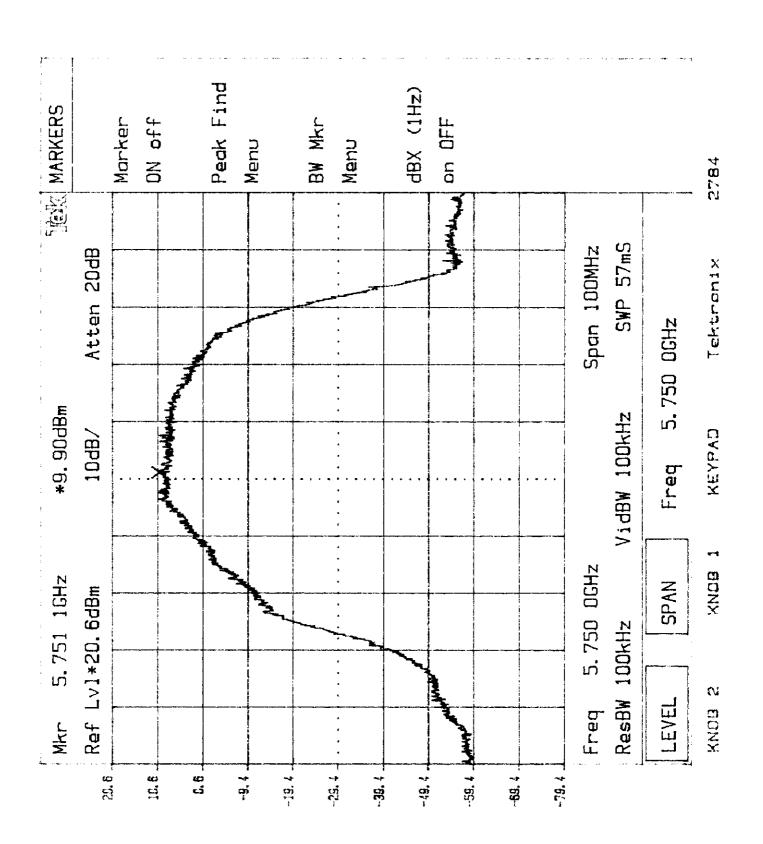
SWEEP TIME (SEC) =
$$(Fstop, kHz - Fstart, kHz)/3 kHz$$

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

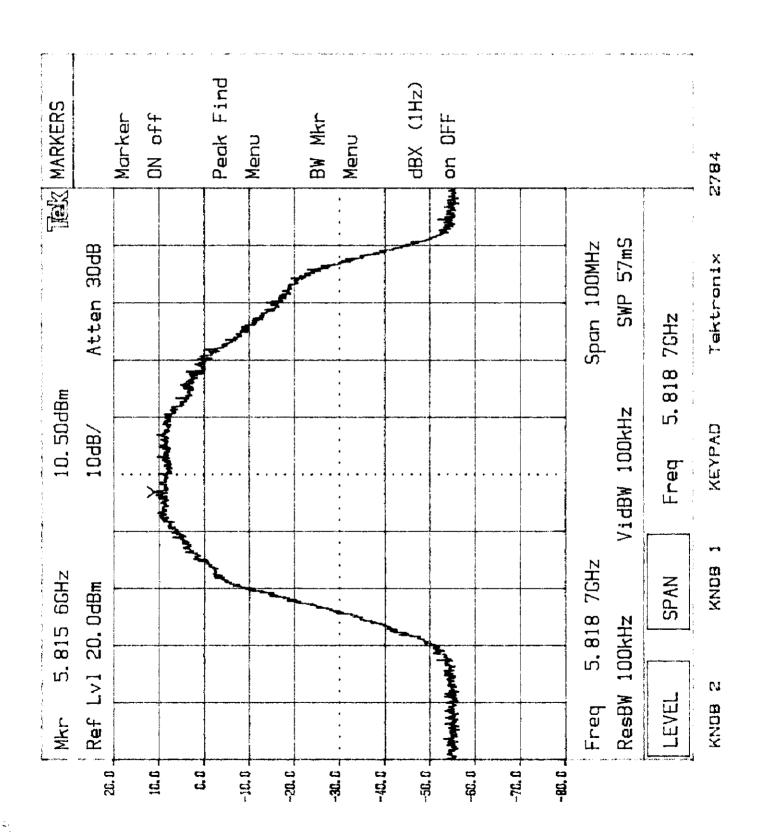
Frequency (MHz)	Power Density (dBm)
5816	-4.1

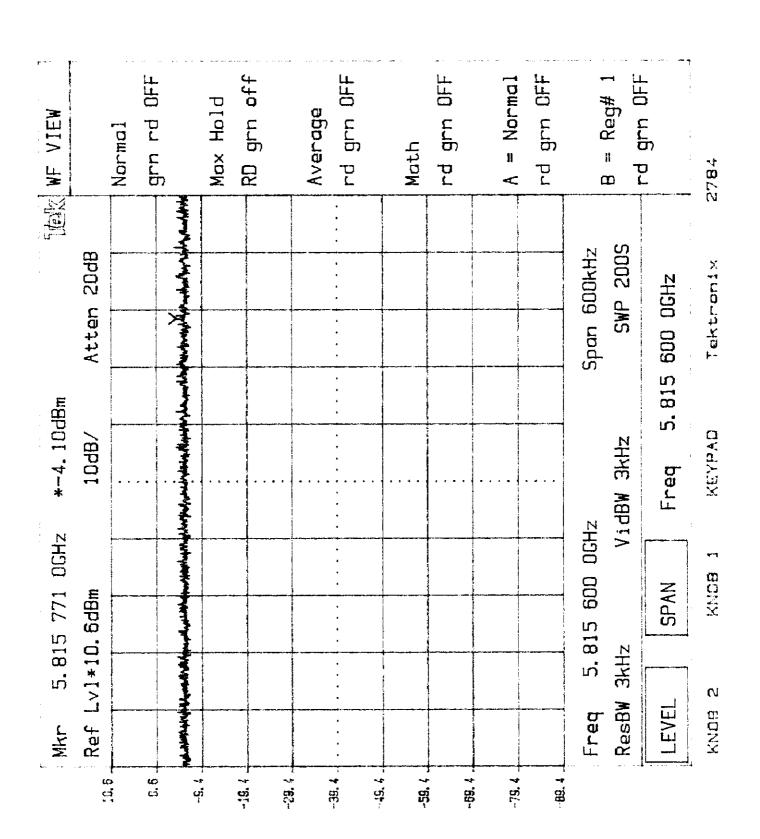
Frequency Span = 60

600 kHz


Sweep Time

Frequency Span/3 kHz


= 200 seconds


Refer to the following plots for power density data:

Plot 3a.1-3a.3: Low Channel Power Density Plot 3b.1-3b.2: High Channel Power Density

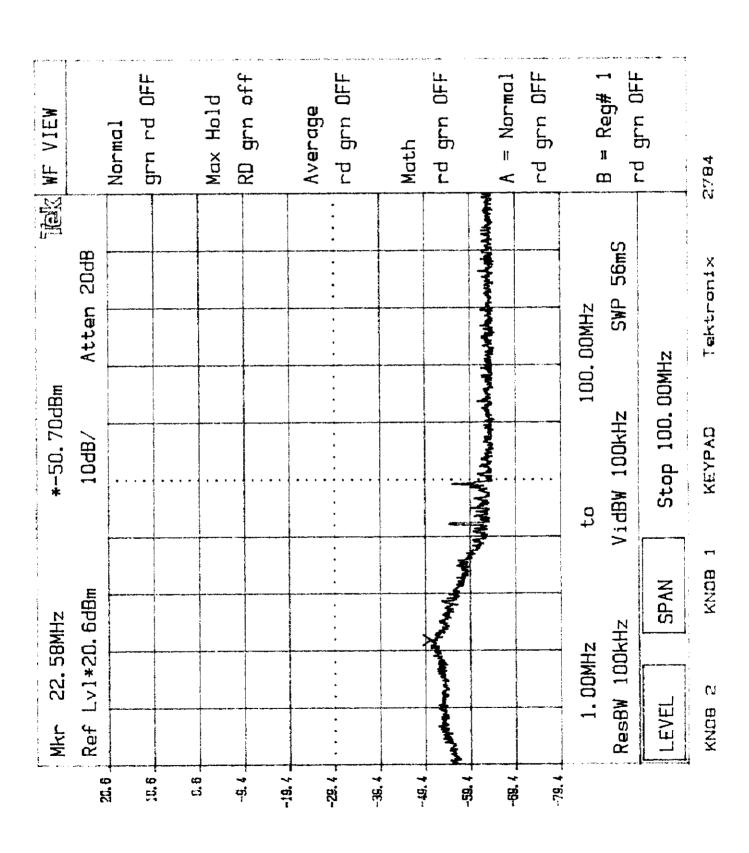
315 4GHz
大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大
5.751 100 OGHz
VidBW
SWP 2005

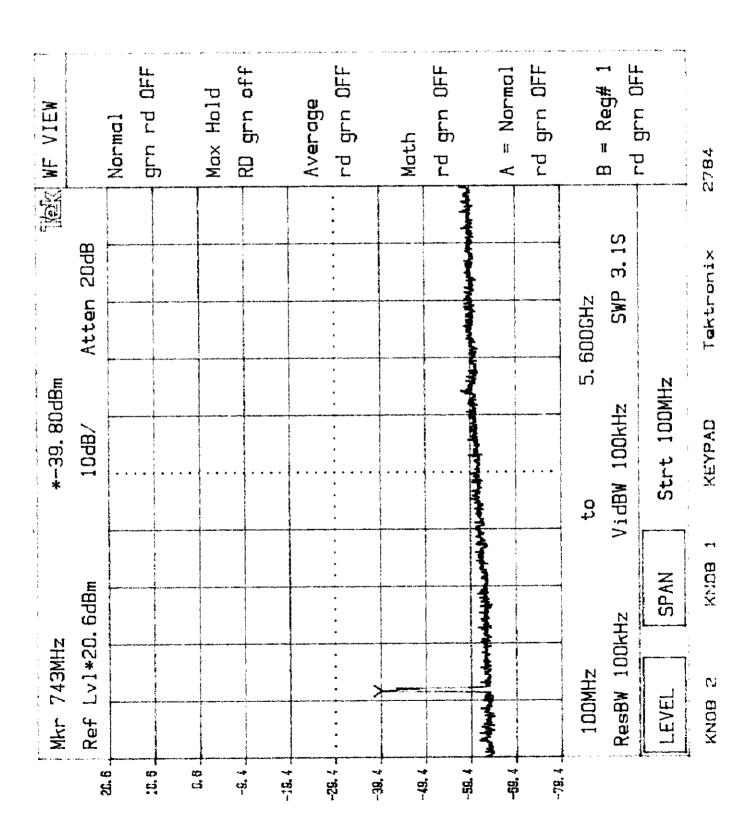
Date of Test: September 7-13, 1999

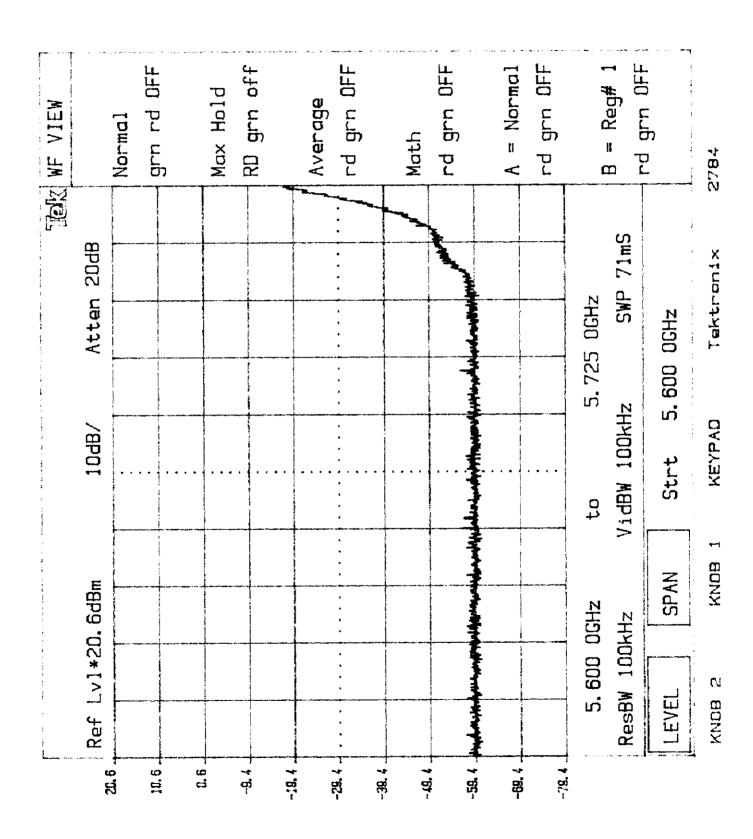
Western Multiplex Corporation, Model No. 27705

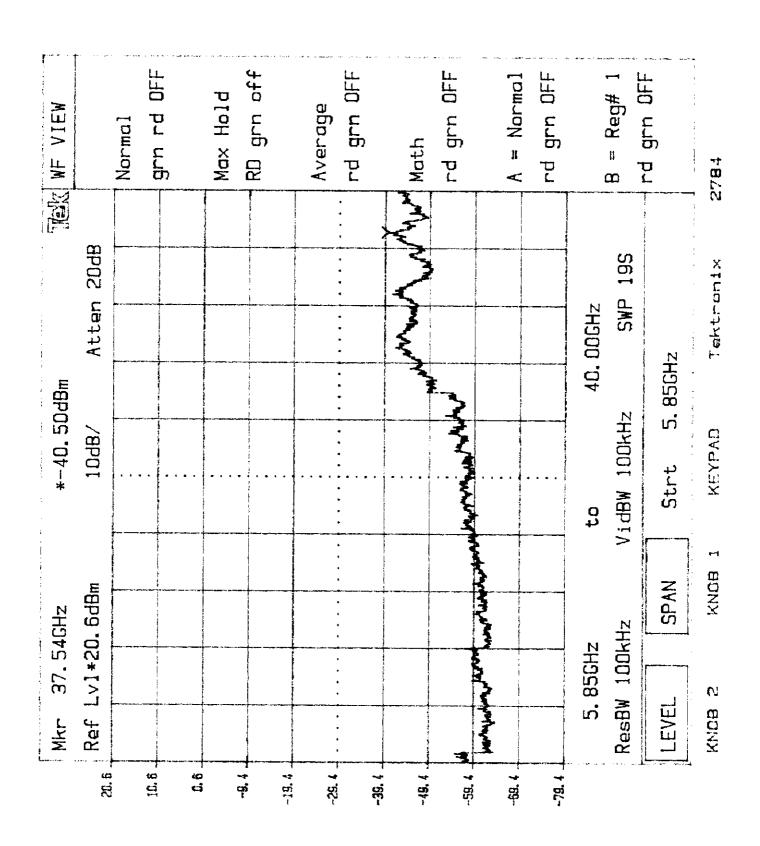
FCC ID: HZB-S58-25

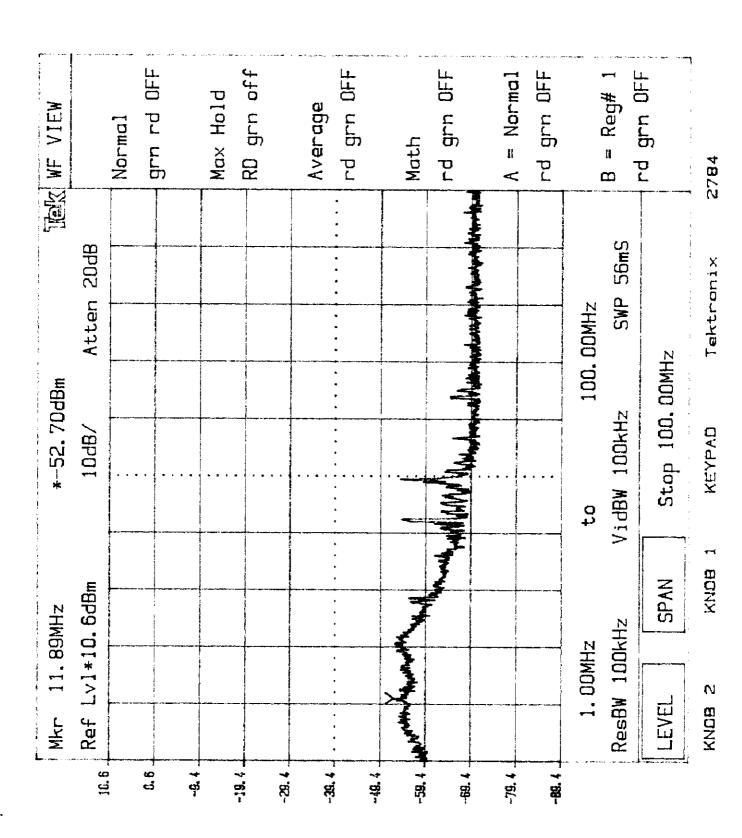
4.4 Out of Band Conducted Emissions, FCC Rule 15.247(c):

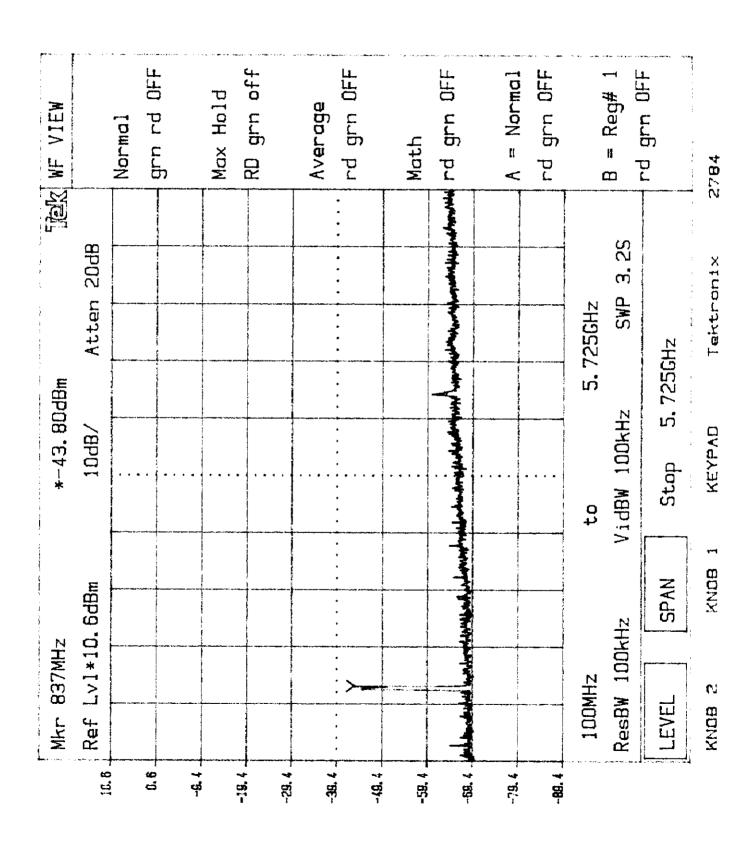

In any 100 kHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

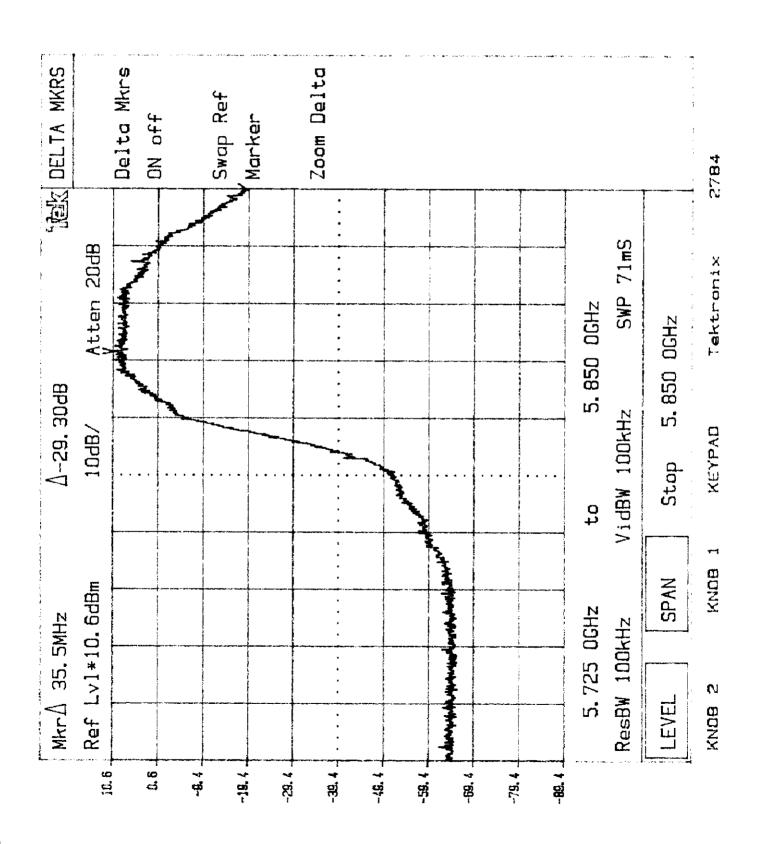

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the passband.

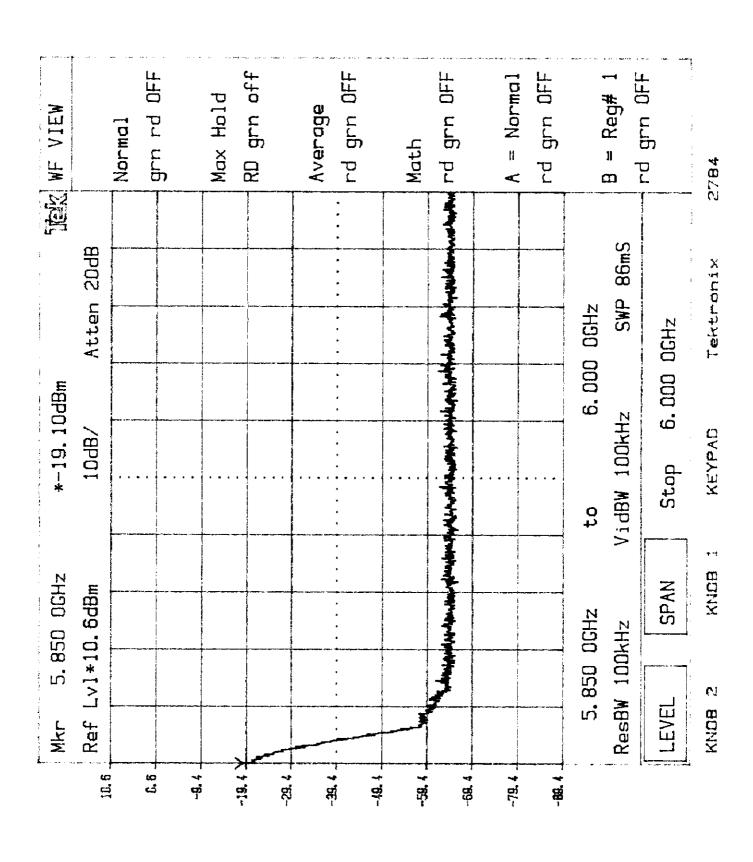

Refer to the following plots for out of band conducted emissions data:


Plot 4a.1 - 4a.5: Low Channel Emissions Plot 4b.1 - 4b.5: High Channel Emissions


File: 9022866C.DOC Version 1.0 Page 10 of 20







9

a

- - I

Western Multiplex Corporation, Model No. 27705

Date of Test: September 7-13, 1999

FCC ID: HZB-S58-25

4.5 Out of Band Radiated Emissions (for emissions in 4.4 that are less than 26 dB below carrier), FCC Rule 15.247(c):

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

[X] Not required

[] See attached data sheet

Date of Test: September 7-13, 1999

4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b), (c):

Radiated emission measurements were performed from 30 MHz to 40 GHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for >1000 MHz.

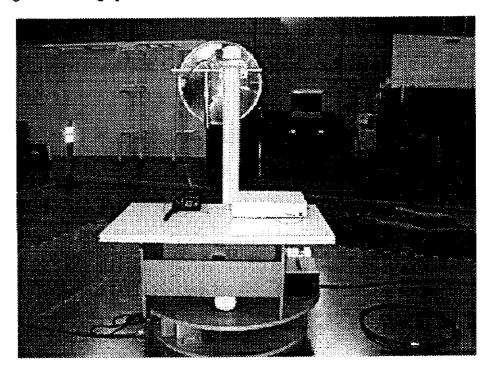
Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak or quasi-peak detection below 1 GHz and with peak and average detection above 1 GHz.

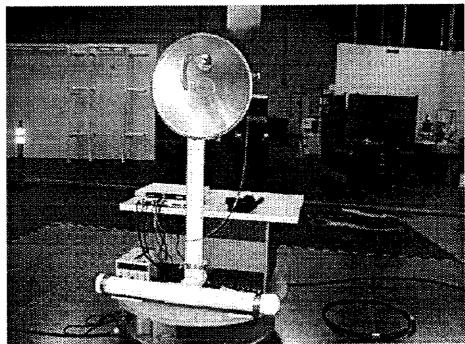
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

ITS Intertek Testing Services

Radiated Emissions Test Data

Company:	Glenayre Western Multiplex	Model #:	Standard_ FCC § 15,247 (R.B.)
EUT:	Radio	S/N #:	Limits 11
Project #:	J99022866	Test Date: September 17, 1999	Test Distance 3 meters
Test Mode:		Engineer: Xi-Ming Y.	Duty 0 dB Relaxation

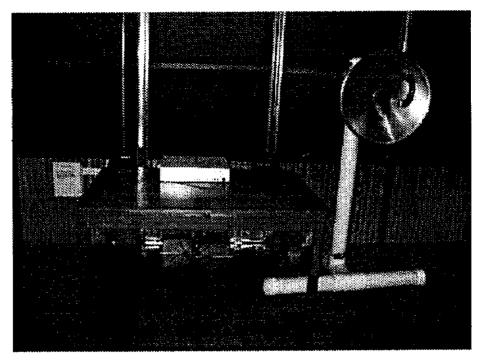

	Antenn	a Used		Pre-Ar	np Used		Catile L	sed		Transducer Used
Number:	21	8	19	2	10	13	12	10	0	0
Model:	9180-0	EMCC	C	HP 84470	AFT1885E	ACC/400	Gm_M+L	Green.	None	None

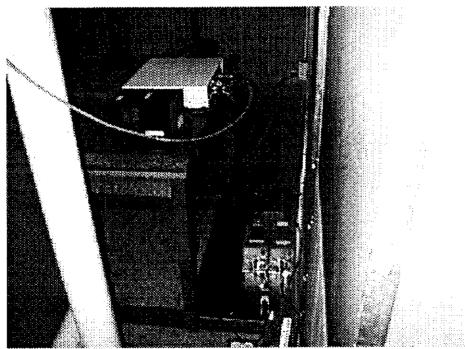

Frequency	Reading	Delector	Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	insert. Loss	D.C. F.	Net	Limit £03m	Margin
MHz	dB(µV)	PIA/Q	#		HV	dB(1/m)	d5	dB	æ	dB(µV/m		đĐ
Low Ch.			********	************								
1.15E+4	40.2	Peak	8	10	Н	42.4	39.7	7.4	0.0	50.3	74.0	-23.7
1.15E+4	31.0	Ave.	8	10	Н	42.4	39.7	7.4	0.0	41.1	54.0	-12.9
2.30E+4	36.0	Peak	21	13	Н	40.4	23.3	7.5	-9.5	51.1	74.0	-22.9
2.30E+4	26.0	Ave.	21	13	Н	40.4	23.3	7.5	-9.5	41.1	54.0	-12.9
High Ch.									† -			
1.16E+4	40.0	Peak	8	10	Н	42.4	39.7	7.4	0.0	50.1	74.0	-23.9
1.16E+4	30.2	Ave.	8	10	H	42.4	39.7	7.4	0.0	40.3	54.0	-13.7
					•				T			
					:							
					:							
			1									
											j	
			1		!							
										T		
			† · · · · ·							T		

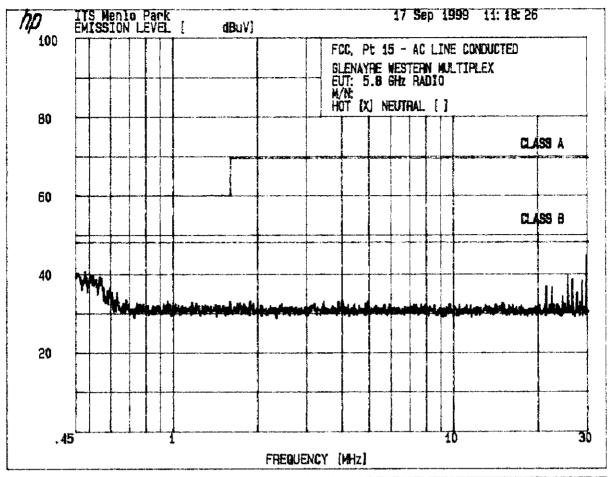
Notes: a) D.C.F.:Distance Correction Factor	
b) Insert Loss (dB) = Cable A + Cable B + Cable C.	
c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss Transducer Loss - Duty Rela	axation (transmitter
only).	
d) Negative signs (-) in Margin column signify levels below the limits.	
e) All other emissions not reported are below the equipment noise floor which is at least 20 dB be	elow the limits.
only). d) Negative signs (-) in Margin column signify levels below the limits.	

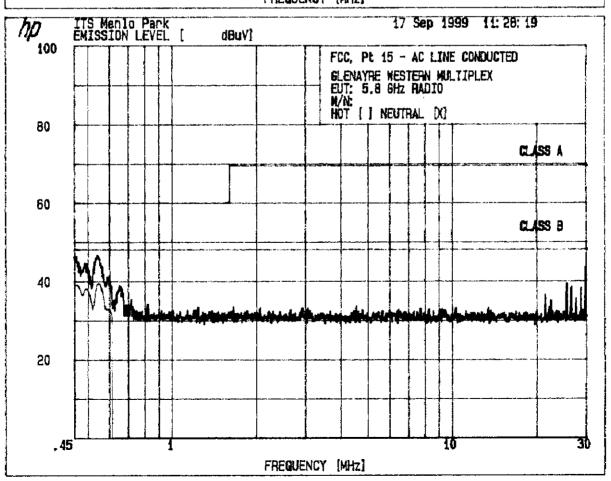
Date of Test: September 7-13, 1999

4.7 Configuration Photographs – Radiated Emissions




Date of Test: September 7-13, 1999


- AC Line Conducted Emission, FCC Rule 15.207: 4.8
- Not required; battery operation only
- [X] Test data attached


Date of Test: September 7-13, 1999

4.9 Configuration Photographs – AC Line Conducted Emissions

Date of Test: September 7-13, 1999

- Radiated Emissions from Digital Section of Transceiver (Transmitter), FCC Ref: 15.109 4.10
- Not required No digital part
- Test results are attached [X]
- Included in the separate DOC report. []

ITS Intertek Testing Services

Radiated Emissions Test Data

Company:	Glenayre Western Multiplex	Model #:	Standard_ FCC § 15.209
EUT:	Radio	S/N #:	Linila 3
Project #:	J99022866	Test Date: September 17, 1999	Test Distance 3 melers
Test Mode:	Normal	Engineer: Xi-Ming Y.	Duty 0 dB Relaxation

Anten	na Used		Pre-Amj	Used		Cable (Ised		Transducer Used
Number: 2	3	19	2	3	13	1	0	0	0
Model: EMCO	CDI 8100	0	HP 84470	MC 15542	ACO/400	Ste 1	None	None	None

Frequency	Reading	Detector	Αnt	Amp.	Ant Pol	Ant	Pre-Amp	insert.	D, C.	Net	Limit	Margin
						Factor		LOSS	F.		@3m	
MHz	dB(µV)	PIAIQ			HV	0B(1/m)	65	48	db.	dB(µV/m	dB(µV/m)	dB
37.88E+0	46.0	QP	2	2	Н	12.4	22.4	0.3	0.0	36.3	40.0	-3.7
44.00E+0	44.0	Peak	2	2	H	10.6	22.8	0.7	0.0	32.5	40.0	-7.5
57.35E+0	52.0	Peak	2	2	V	5.5	22.5	8.0	0.0	35.8	40.0	-4.2
71.60E+0	47.0	Peak	2	2	Н	7.2	22.8	8.0	0.0	32.2	40.0	-7.8
115.25E+0	40.0	QP	2	2	Н	6.7	22.0	0.9	0.0	25.6	43.5	-17.9
140.00E+0	47.0	Peak	2	2	Н	9.2	22.5	1.0	0.0	34.7	43.5	-8.8
172.88E+0	36.0	Peak	2	2	Н	9.1	21.8	1.2	0.0	24.5	43.5	-19.0
230.53E+0	42.0	Peak	2	2	Н	11.3	22.1	1.6	0.0	32.8	46.0	1 3.2 _:
250.58E+0	47.7	Peak	2	2	Н	12.4	22.0	1.6	0.0	39.7	46.0	-6.3
345.80E+0	43.0	Peak	2	2	Н	15.3	22.6	1.7	0.0	37.4	46.0	-8.6
633.97E+0	43.0	Peak	2	2	Н	20.0	22.7	2.2	0.0	42.5	46.0	-3.5
749.64E+0	33.2	Peak	2	2	Н	21.8	22.4	2.5	0.0	35.1	46.0	-1 0.9
806.88E+0	33.3	Peak	2	2	Н	21.5	22.3	2.7	0.0	35.2	46.0	-10.8
835.69E+0	35.3	Peak	2	2	Н	21.9	22.3	2.7	0.0	37.6	46.0	-8.4
922.13E+0	31.0	QP	2	2	Н	23.2	22.1	3.3	0.0	35.4	46.0	-10.6
1				-	! " "							
										! 		

Afores: a) D.C.F.: Distance Correction Factor
b) Insert. Loss (dB) = Cable A + Cable B + Cable C.
c) Net (dB) = Reading + Antenna Factor - Pre-amp + Insert. Loss Transducer Loss - Duty Relaxation (transmitter
only).
d) Negative signs (-) in Margin column signify levels below the limits.
e) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Western Multiplex Corporation, Model No. 27705

FCC ID: HZB-S58-25

4.11 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), FCC Ref: 15.109, 15.111

[X] Not required - EUT operation above 960 MHz only

[] Not required - EUT is transmitter only

[] Not performed; exempt until June 1999

[] Test results are attached

Western Multiplex Corporation, Model No. 27705

FCC ID: HZB-S58-25

Date of Test: September 7-13, 1999

4.12 Processing Gain Measurements, FCC Rule 15.247(e)

The processing gain shall be determined from the ratio in dB of the signal to noise ratio with the system spreading code turned OFF, to the signal to noise ratio with the system spreading code turned ON, as measured at the demodulated output of the receiver. The processing gain shall be at least 10 dB for a direct sequence spread spectrum system.

X	Refer to attached test procedure and data sheets in Exhibit 13 - Processing Gain.
	Refer to circuit analysis and processing gain calculations provided by manufacturer.

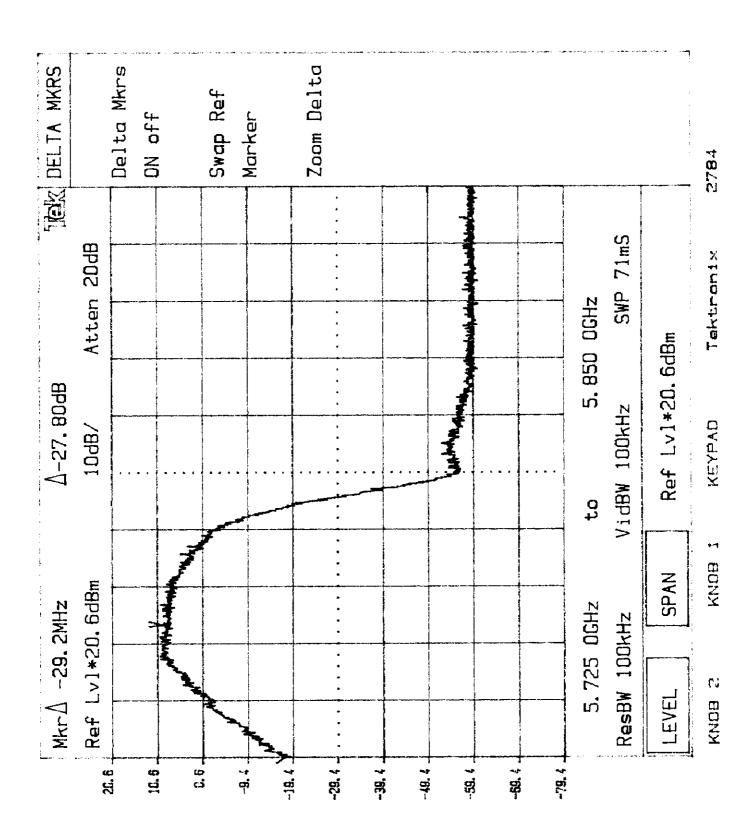
File: 9022866C.DOC Version 1.0 Page 18 of 20

1365 Adams Ct. Menlo Park, CA 94025

Western Multiplex Corporation, Model No. 27705 FCC ID: HZB-S58-25

Date of Test: September 7-13, 1999

4.13 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)


The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

- Duty cycle = Maximum ON time in 100 msec/100
- Duty cycle correction, dB = 20 * log(DC)
- [X] Duty cycle correction was not used.

Date of Test: September 7-13, 1999

5.0 **Document History**

/99 O r	riginal document
	inginiar document

