

TEST REPORT

APPLICANT	ShenZhen Gospell Smarthome Electronic Co., Ltd.
PRODUCT NAME	: Full HD Remote Home Surveillance
MODEL NAME	: GD7122
BRAND NAME	: N/A
FCC ID	: TW5GD7122
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2017-12-27 to 2018-01-11
ISSUE DATE	: 2018-01-11

Tested by:

Le Jung Zour

Li Jingzong (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Technical Information 4
1.1. Manufacturer and Factory Information4
1.2. Equipment Under Test (EUT) Description4
1.3. Test Standards and Results5
1.4. Environmental Conditions6
2. 47 CFR Part 15C Requirements7
2.1. Antenna requirement7
2.2. Number of Hopping Frequency7
2.3. Peak Output Power 10
2.4. 20dB Bandwidth 17
2.5. Carried Frequency Separation 24
2.6. Time of Occupancy (Dwell time) 27
2.7. Conducted Spurious Emissions 33
2.8. Restricted Frequency Bands 46
2.9. Conducted Emission 55
2.10. Radiated Emission 59
Annex A Test Uncertainty72
Annex B Testing Laboratory Information73

	Change History					
Issue	Issue Date Reason for change					
1.0	2018-01-11	First edition				

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	ShenZhen Gospell Smarthome Electronic Co., Ltd.				
Applicant Address:	5Floor/Block 2, Vision (SZ) Park, Hi-Tech Industrial Park, Shenzhen, China				
Manufacturer:	ShenZhen Gospell Smarthome Electronic Co., Ltd.				
Manufacturer Address:	East of 01st-04st Floor,Block A,No.1 Industrial park, Fenghuanggang, South of No.1 Baotian Road, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province 518126,P.R.China				

1.2. Equipment Under Test (EUT) Description

Product Name:	Full HD Remote Home Surveillance
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	GD7115GM02
Software Version:	V977
Modulation Type:	BPSK, QPSK, 16QAM
Operating Frequency Banger	The frequency range used is 2406MHz – 2475MHz
Operating Frequency Range:	(24 channels, at intervals of 3MHz);
Antenna Type:	Dipole Antenna
Antenna Gain:	5.0 dBi

Note 1: The EUT is operating at 2.4GHz ISM band; the frequencies is F(MHz)=2406+3*(n-1) (1<=n<=24). The lowest, middle, highest channel numbers of the EUT tested in this report are separately 1 (2406MHz), 13 (2442MHz) and 24 (2475MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2406	13	2442
2	2409	14	2445
3	2412	15	2448
4	2415	16	2451
5	2418	17	2454
6	2421	18	2457
7	2424	19	2460
8	2427	20	2463
9	2430	21	2466
10	2433	22	2469
11	2436	23	2472
12	2439	24	2475

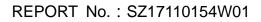
1.3. The channel number and frequency of EUT

Note: The Lowest Channel 1, Middle Channel 13 and Highest Channel 24 were selected for test in the report.

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No							
	Identity			cument Title			
1	47 CFR Part 15 (10-1-15 Edition)		Radio Frequency Devices				
Test d	est detailed items/section required by FCC rules and results are as below:						
No.	Section in CFR 47	Description		Test Date	Test Engineer	Result	
1	15.203	Antenna Requirement		N/A	N/A	PASS	
2	15.247(a)	Number of Hopping Freque	ncy	Nov 27, 2017	Li Jingzong	PASS	
3	15.247(b)	Peak Output Power		Nov 27, 2017 Jan 10, 2018	Li Jingzong	PASS	
4	15.247(a)	20dB Bandwidth		Nov 27, 2017 Jan 10, 2018	Li Jingzong	PASS	
5	15.247(a)	Carrier Frequency Separation		Nov 27, 2017	Li Jingzong	PASS	
6	15.247(a)	Time of Occupancy (Dwell time)		Nov 27, 2017	Li Jingzong	PASS	
7	15.247(d)	Conducted Spurious Emission		Nov 27, 2017 Jan 10, 2018	Li Jingzong	PASS	
8	15.247(d)	Restricted Frequency Bands		Jan 01&11, 2018	Wu Zhongwen	PASS	
9	15.209, 15.247(d)	Radiated Emission		Jan 11, 2018	Wu Zhongwen	PASS	
10	15.207	Conducted Emission		Jan 04, 2018	Wu Zhongwen	PASS	


Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

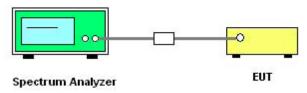
2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

A. Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please reference ANNEX A(1.5).

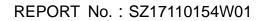
2.2.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW \geq 1% of the span VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

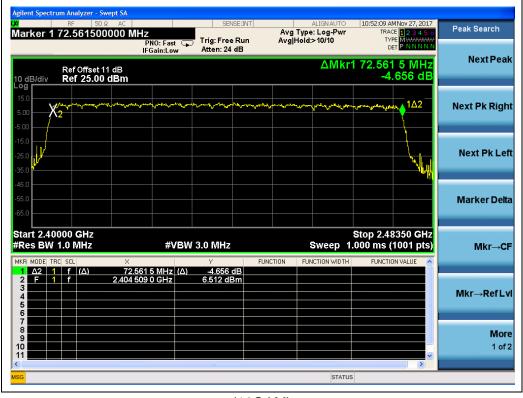
2.2.4. Test Result

A. Test Verdict:

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Verdict
BPSK	2400 - 2483.5	24	15	PASS
QPSK	2400 - 2483.5	24	15	PASS
16QAM	2400 - 2483.5	24	15	PASS


B. Test Plots:

(BPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

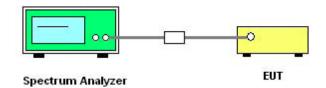
Agilent Spectrum Analyzer - Swe	pt SA				
x RF 50 Ω Marker 1 72.5615000	AC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold>10/10	01:14:33 PM Nov 27, 2017 TRACE 123456 TYPE MWWW DET PNNNNN	Peak Search
Ref Offset 11 10 dB/div Ref 20.00 d	dB		ΔMkr	1 72.561 5 MHz -0.599 dB	NextPea
10.0 0.00 -10.0	and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1Δ2	Next Pk Righ
-10.0 -20.0 -30.0					Next Pk Le
-50.0 -60.0 -70.0					Marker Del
Start 2.40000 GHz #Res BW 1.0 MHz	#VE	SW 3.0 MHz	Sweep 1	Stop 2.48350 GHz .000 ms (1001 pts)	Mkr→C
3 4 5 6	72.561 5 MHz (/ 2.404 258 5 GHz	Δ) -0.599 dB 4.778 dBm			Mkr→RefL
7 8 9 10 11 11				×	Mo 1 of
isg			STATUS	,	

(QPSK)

(16QAM)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3. Test Result

BPSK Mode

A. Test Verdict:

Channel	Frequency	Measured Output Peak Power		Limit		Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
1	2406	12.49	0.01774			PASS
13	2442	11.65	0.01462	30	1	PASS
24	2475	10.51	0.01125			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

ectrum Analyzer - Swept SA 32 PM Jan 10, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N Peak Search Marker 1 2.405780000000 GHz PN0: Fast C IFGain:Low Atten: 20 dB Avg Type: Log-Pwr Avg|Hold:>10/10 Next Peak Mkr1 2.405 78 GHz 12.486 dBm Ref Offset 11 dB Ref 20.00 dBm 10 dB/div Ø Next Pk Right Next Pk Left n nn TT T Marker Delta Mkr→CF Mkr→RefLv More Center 2.40600 GHz #Res BW 5 MHz Span 20.00 MHz Sweep 1.000 ms (1001 pts) 1 of 2 #VBW 50 MHz

(BPSK, Channel 1, 2406MHz)

(BPSK, Channel 13, 2442MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Rarker 1 2.4	F 50 Q AC 74810000000	GHz PNO: Fast G IFGain:Low	SENSE:INT Trig: Free Run Atten: 20 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>10/10	01:28:45 PMNov 27, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	Peak Search
Re 0 dB/div Re	f Offset 11 dB ef 20.00 dBm			Mkr	1 2.474 81 GHz 10.512 dBm	NextPea
10.0			1			Next Pk Rig
0.00					August and a second sec	Next Pk Lo
					THE REAL PROPERTY OF THE PROPE	Marker De
40.0						Mkr→
50.0						Mkr→RefL
70.0						Mc
Center 2.4750 Res BW 5 M		VBW	50 MHz	Sweep 1	Span 20.00 MHz .067 ms (2001 pts)	1 o

(BPSK, Channel 24, 2475MHz)

QPSK Mode

A. Test Verdict:

Channel Frequency		Measured Outp	ut Peak Power	Lim	nit	Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
1	2406	13.18	0.02080	30	1	PASS
13	2442	12.40	0.01738			PASS
24	2475	11.46	0.01400			PASS

B. Test Plots:

(QPSK, Channel 1, 2406MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(QPSK, Channel 13, 2442MHz)

(QPSK, Channel 24, 2475MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



16QAM Mode

A. Test Verdict:

Channel	Frequency	Measured Outp	ut Peak Power	Lin	nit	Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
1	2406	15.49	0.03540		1	PASS
13	2442	14.64	0.02911	30		PASS
24	2475	13.58	0.02280			PASS

B. Test Plots:

(16QAM, Channel 1, 2406MHz)

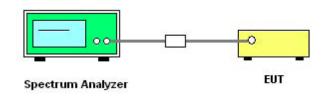
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(16QAM, Channel 13, 2442MHz)

(16QAM, Channel 24, 2475MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.4.1. Definition

According to FCC 15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

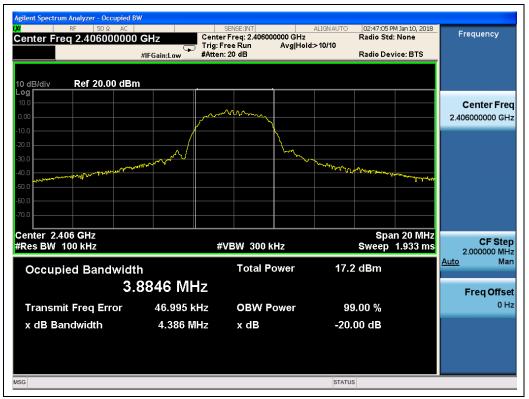
The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Procedure

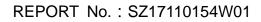
Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold


2.4.4. Test Result

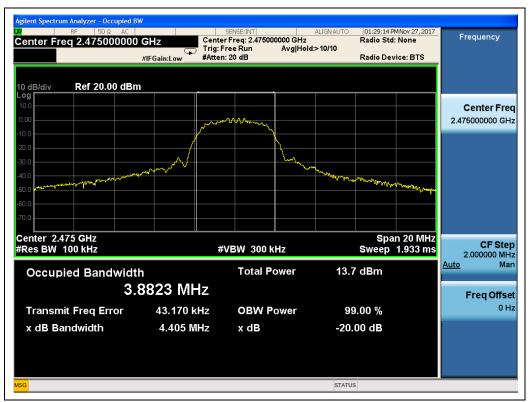
BPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
1	2406	4.39	PASS
13	2442	4.47	PASS
24	2475	4.41	PASS


B. Test Plots:

(BPSK, Channel 1, 2406MHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

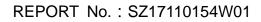
(BPSK, Channel 24, 2475MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

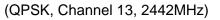
QPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
1	2406	4.49	PASS
13	2442	4.47	PASS
24	2475	4.48	PASS


B. Test Plots:

(QPSK, Channel 1, 2406MHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(QPSK, Channel 24, 2475MHz)

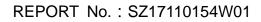
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



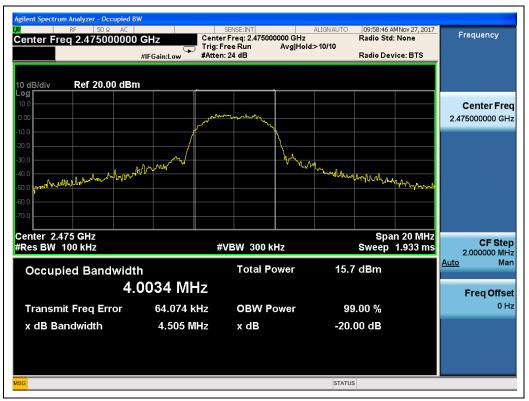
16QAM Mode

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
1	2406	4.49	PASS
13	2442	4.45	PASS
24	2475	4.51	PASS

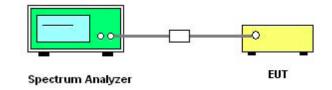

B. Test Plots:


(16QAM, Channel 1, 2406MHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(16QAM, Channel 24, 2475MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) \geq 1% of the span Video (or Average) Bandwidth (VBW) \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 2.4.4), whichever is greater. So, the verdict is PASSING

	Measured	Carried Frequency	20dB		
Test Mode	Channel		bandwidth	Min. Limit	Verdict
	Numbers	Separation	(MHz)		
BPSK	12 and 13	3.01	4.39	- two-thirds of the	PASS
QPSK	12 and 13	3.01	4.47		PASS
16QAM	12 and 13	3.01	4.45	20dB bandwidth	PASS

RF 50 Ω AC arker 1 Δ 3.010000000 M		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>10/10	01:44:45 PM Nov 27, 2017 TRACE 1 2 3 4 5 6 TYPE Mediatation	Marker
	PNO: Fast 😱 IFGain:Low	Atten: 20 dB		TYPE MWWWWWW DET P N N N N N	Select Marker
Ref Offset 11 dB 0 dB/div Ref 20.00 dBm			ΔΝ	1kr1 3.010 MHz 0.291 dB	1
0.0				1Δ2	Norma
		X2			
0.0					Delt
0.0					Final
0.0					Fixed
0.0					o
0.0					
0.0					Properties
0.0					Mor
enter 2.442000 GHz Res BW 1.0 MHz	#VBW 3	B.0 MHz	Sweep 1	Span 10.00 MHz .067 ms (2001 pts)	1 of

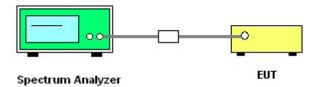
(BPSK)

lark		κ 50 Ω 3.010000	000 MHz	IO: Fast 🕞 Gain:Low				ALIGN AUTO :: Log-Pwr >10/10	TRAC	4Nov 27, 2017 E 1 2 3 4 5 6 M WWWWWW T P N N N N N	Marker
0 dB/ og r	Re Idiv R e	ef Offset 11 e f 20.00 c	dB	Sain:Low	Atten. 20			Δ	Mkr1 3. 0	01 MHz .068 dB	Select Marke
			արուպետո						1Δ2		Norn
	they was a first	IL . Wear strates	in the set of Millinger	^{relve} yee _{nsem} rrr [~]	. Migata and a second	(2 ^{,2} ,	Muran	4a. J.I. and a start of the second start of th	an sa an	www.	
0.00											De
20.0											Fixe
80.0											
10.0											(
50.0											
6.0											Propertie
0.0											
											Mo
	er 2.442 BW 1.0	000 GHz MHz		#\/B\A	3.0 MHz			Sween_1	Span 1	0.00 MHz 1001 pts)	1 c

(QPSK)

(16QAM)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

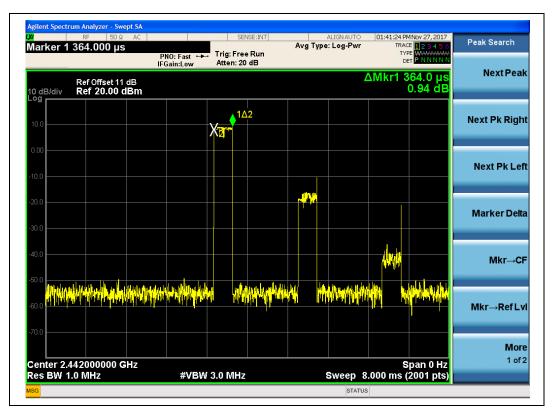
The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please reference ANNEX A(1.5).

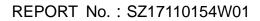
2.6.3. Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence. The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

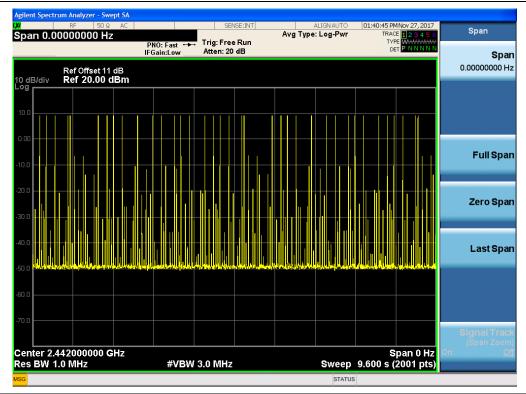

2.6.4. Test Result

BPSK Mode

A. Test Verdict:


Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
0.36	37	0.01332	0.1332	0.4	PASS

B. Test Plots:



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(BPSK)

QPSK Mode

A. Test Verdict:

Pulse Wid (msec)	h Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
0.37	38	0.01406	0.1406	0.4	PASS

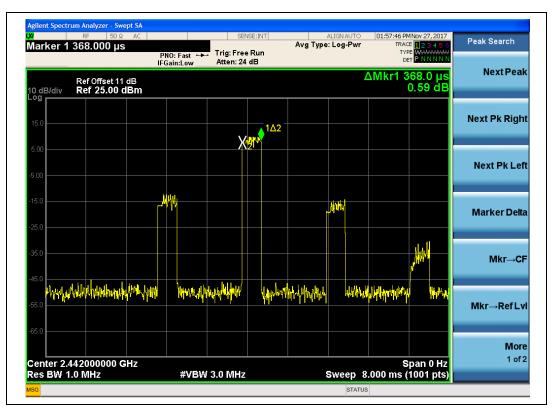
B. Test Plots:

01:07:03 PM Nov 27, 2017 SENSE:INT TRACE 123 Peak Search Marker 1 368.000 µs Avg Type: Log-Pwr Trig: Free Run Atten: 20 dB TYPE DET PNO: Fast 🔸 Next Peak ΔMkr1 368.0 μs -0.08 dB Ref Offset 11 dB Ref 20.00 dBm I0 dB/div 1<u>Δ</u>2 Next Pk Right Х<mark>и</mark> Next Pk Left r N Marker Delta Mkr→CF e hanning at the second states in the second states of the second states of the second states of the second stat White Williams 1 ALAN A Mkr→RefLvl More Center 2.442000000 GHz Res BW 1.0 MHz 1 of 2 Span 0 Hz Sweep 8.000 ms (2001 pts) #VBW 3.0 MHz STATUS ectrum Analyzer - Swept SA 01:05:25 PMNov 27, 2017 TRACE **1** 2 3 4 5 6 TYPE WWWWWW DET P N N N N N SENSE:INT Marker Avg Type: Log-Pwr Trig: Free Run Atten: 20 dB PNO: Fast +++ IFGain:Low **Marker Table** On Off Ref Offset 11 dB Ref 20.00 dBm 0 dB/div Marker Count [Off] Couple Markers Off On All Markers Off More Center 2.442000000 GHz Res BW 1.0 MHz 2 of 2 Span 0 Hz Sweep 9.600 s (2001 pts) #VBW 3.0 MHz

(QPSK)

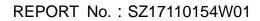
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

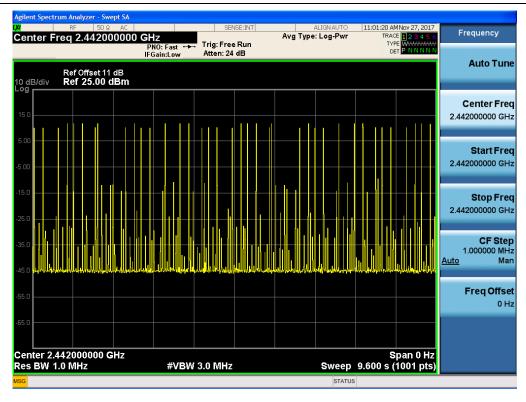


16QAM mode

A. Test Verdict:


Pulse Width (msec)	Number of pulse in 3.16 seconds	Average Time of Occupancy in 3.16 seconds (sec)	Average Time of Occupancy in 31.6 seconds (sec)	Limit (sec)	Verdict
0.37	38	0.01406	0.1406	0.4	PASS

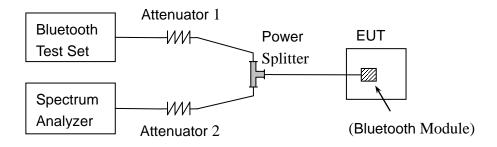
B. Test Plots:



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(16QAM)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Test Set with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Trace = max hold Allow the trace to stabilize.

2.7.4. Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

BPSK Mode

A. Test Verdict:

	Frequency	Measured Max. Out of Band	Limit	(dBm)	
Channel	Frequency	(MHz) Emission (dBm)		Calculated	Verdict
(MHZ)	(ועורוב)			-20dBc Limit	
1	2406	-43.22	4.27	-15.73	PASS
13	2442	-43.62	1.75	-18.25	PASS
24	2475	-43.75	1.09	-18.91	PASS

B. Test Plots:

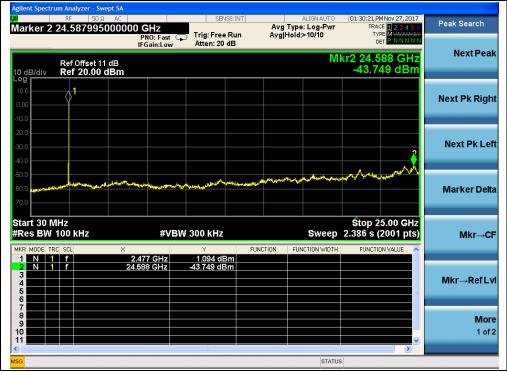
Note: the power of the Module transmitting frequency should be ignored.

(BPSK, Channel = 1, 30MHz to 25GHz,)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

(BPSK, Channel = 1, Band edge)


(BPSK, Channel = 1, Band edge with hopping on)

Agilent Spectr	um Analyzer - Swe									
<mark>W</mark> Marker 2	RF 50 Ω 24.5505400		7	SENS	E:INT	Avg Typ	ALIGNAUTO e: Log-Pwr	TRA	MNov 27, 2017 CE 1 2 3 4 5 6	Peak Search
	24.0000400	PNO:	Fast 😱	Trig: Free Atten: 20 d		AvgHold		TY D	PE MWWWWWW ET P N N N N N	
IFGain:Low Atten: 20 dB Mkr2 24,551 GHz										Next Peak
10 dB/div	Ref Offset 11 dB 10 dB/div Ref 20.00 dBm -og							-43.619 dBm		
10.0	1									
0.00	Y									Next Pk Right
-10.0										
-20.0										
-30.0										Next Pk Left
-40.0									^?	
-50.0							an Annal and	LAM.	JAN N	
-60.0	and wanter warder	the state way and a second	a for the second second	and the second states a	t and second and	alana di serang di s				Marker Delta
-70.0										Marker Dela
	Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (2001 pts								5.00 GHz	
			#VBW							Mkr→CF
MKR MODE TF		× 2.440 G	Hz	۲ 1.748 dB	FUNC	TION FU	NCTION WIDTH	FUNCTI	DN VALUE	
2 N 1	f	24.551 0		-43.619 dBi						
3 4										Mkr→RefLvl
5									=	
7										
8 9										More
10									×	1 of 2
<										
MSG							STATU	5		

(BPSK, Channel = 13, 30MHz to 25GHz)

(BPSK Channel = 24, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 2.483500000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	01:31:06 PMNov 27, 2017 TRACE 1 2 3 4 5 6	Marker
PNO: Fast		Avg Hold>10/10	TYPE MWWWWWW DET P N N N N N	
IFGain:Low	Atten: 20 dB			Select Marker
Ref Offset 11 dB 10 dB/div Ref 20.00 dBm		Mkr2	2.483 500 GHz -47.243 dBm	2
10.0 0.00 -10.0				Normal
-20.0 -30.0 -40.0	2-			Delta
-50.0 -60.0 -70.0	· · · · · · · · · · · · · · · · · · ·	Mar and a state of the state of	tantasian distantasi na sata sa Mataka	Fixed⊳
	BW 300 kHz	-	Span 30.00 MHz .933 ms (2001 pts)	Off
MKR MODE TRC SCL X 1 N 1 f 2.474 665 GHz	Y FL 1.408 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.483 500 GHz 3 4 5 5 6	-47.243 dBm			Properties►
7 8 9 10				More 1 of 2
<	ш		~	
MSG		STATUS	3	

(BPSK, Channel = 24, Band edge)

(BPSK ,Channel = 24, Band edge with hopping on)

MORLAB

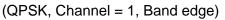

QPSK Mode

A. Test Verdict:

	Fraguanay	Measured Max. Out of Band	Limit	(dBm)	
Channel	Channel Frequency	Emission (dBm)	Carrier	Calculated	Verdict
(MHz)		Level	-20dBc Limit		
1	2406	-49.44	1.52	-18.48	PASS
13	2442	-48.96	0.70	-19.30	PASS
24	2475	-49.94	0.14	-19.86	PASS

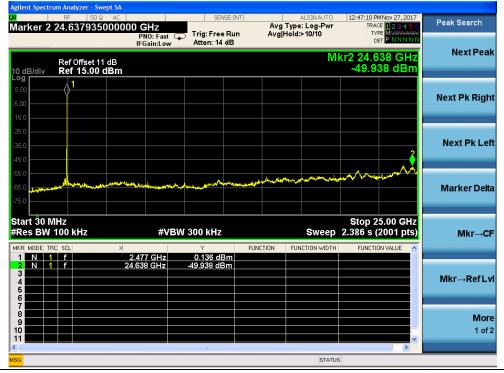
B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.


(QPSK, Channel = 1, 30MHz to 25GHz)

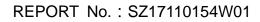
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(QPSK, Channel = 1, Band edge with hopping on)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum An							
Marker 2 24.0	50 Ω AC 08859500000	0 GHz PNO: Fast G	Trig: Free Ru Atten: 14 dB	Avg	ALIGN AUTO Type: Log-Pwr Hold:>10/10	12:40:55 PM Nov 27, 201 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N	6 Peak Search
10 dB/div Re	f Offset 11 dB f 15.00 dBm	II GUILLEW			M	kr2 24.089 GH -48.957 dBr	
5.00 -5.00 -15.0	1						Next Pk Right
-25.0 -35.0 -45.0						¢²	Next Pk Left
-55.0 -65.0	hart begen generation of the second	ang	analis and a list of the state of	an a	منوبي والمستقوم والم		Marker Delta
Start 30 MHz #Res BW 100	. ×	#VBW	/ 300 kHz Y 0.704 dBm	FUNCTION	Sweep	Stop 25.00 GH 2.386 s (2001 pts FUNCTION VALUE	
2 N 1 f 3 4 5 6		.089 GHz	-48.957 dBm				Mkr→RefLvl
7 8 9 10 11						, ,	More 1 of 2
MSG					STATUS	1 120	


(QPSK, Channel = 13, 30MHz to 25GHz)

(QPSK, Channel = 24, 30MHz to 25GHz,)

MORLAB

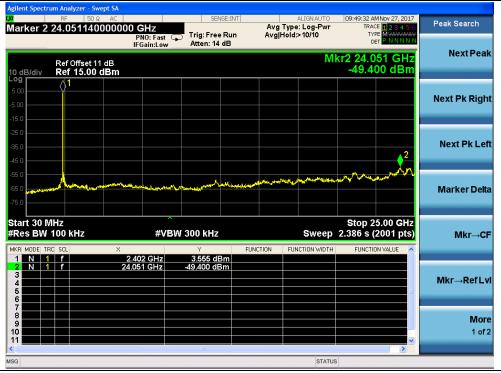
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(QPSK, Channel = 24, Band edge)

(QPSK, Channel = 24, Band edge with hopping on)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn


16QAM Mode

A. Test Verdict:

	Fraguanay	Measured Max. Out of Band	Limi	t (dBm)	
Channel	Channel	Emission (dBm)	Carrier Calculated		Verdict
(MHz)	Emission (dBm)	Level	-20dBc Limit		
1	2406	-49.40	3.56	-16.44	PASS
13	2442	-48.94	1.86	-18.14	PASS
24	2475	-48.84	0.58	-19.42	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(16QAM, Channel = 1, 30MHz to 25GH)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

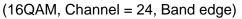
(16QAM, Channel = 1, Band edge)

(16QAM, Channel = 1, Band edge with hopping on)

MORLAB

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.01368500000	DO GHZ PNO: Fast IFGain:Low Atten: 14 dl	Avg Type: Log-Pwr un Avg Hold:>10/10	09:56:03 AMNov 27, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Peak Search
Ref Offset 11 dB 10 dB/div Ref 15.00 dBm	II Gain. Low Frideric Frideric		kr2 24.014 GHz -48.943 dBm	NextPeak
5.00 1 -5.00				Next Pk Right
-25.0			2	Next Pk Left
-56 0 -65 0	and the second s		m	Marker Delta
Start 30 MHz #Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 kHz	FUNCTION FUNCTION WIDTH	Stop 25.00 GHz 2.386 s (2001 pts) FUNCTION VALUE	Mkr→CF
2 N 1 f 2 3 4 -	4.014 GHz -48.943 dBm			Mkr→RefLvl
7 8 9 10 11			~	More 1 of 2
MSG		STATUS		

(16QAM, Channel = 24, 30MHz to 25GHz)

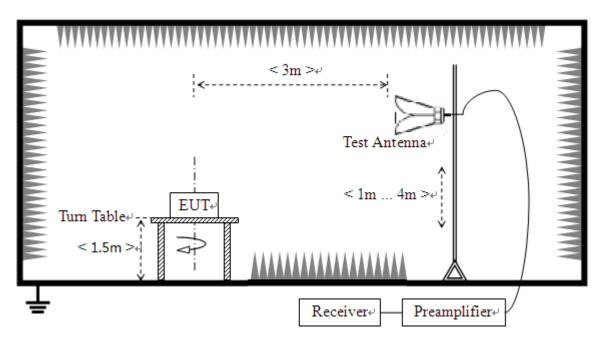


(16QAM, Channel = 24, 30MHz to 25GH)

(16QAM, Channel = 24, Band edge with hopping on)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz VBW = 3 MHz for peak and 10Hz for average Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; AT = L_{Cable loss} [dB] - G_{preamp} [dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain

AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

BPSK Mode

A. Test Verdict:

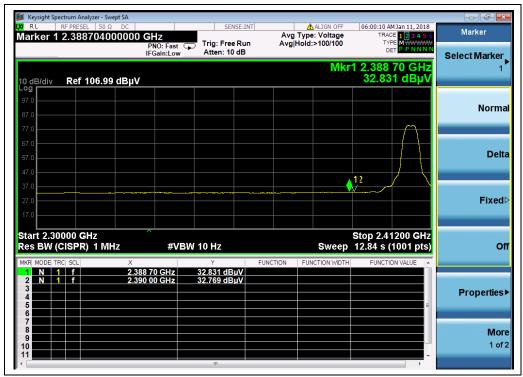
Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
1	2388.70	PK	52.45	-33.63	32.56	51.38	74	Pass
1	2388.70	AV	32.83	-33.63	32.56	31.76	54	Pass
24	2484.12	PK	58.36	-33.18	32.5	57.68	74	Pass
24	2483.70	AV	33.01	-33.18	32.5	32.33	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

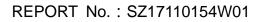
Fax: 86-755-36698525

Http://www.morlab.cn


E-mail: service@morlab.cn

B. Test Plots:

📕 Keysight Spectrum Analyzer - Swept S ALIGN OFF Avg Type: Voltage Avg|Hold:>100/100 05:59:21 AM Jan 11, 2018 TRACE 12 3 4 5 TYPE MWWWW DET P P N N N D Marker Marker 1 2.388704000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast IFGain:Low Select Marker Mkr1 2.388 70 GHz 52.445 dBµV Ref 106.99 dBµV I0 dB/div οď Normal 12 Delta **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUNCTION EUI 2.388 70 GHz 2.390 00 GHz 52.445 dBµV 51.979 dBµV **Properties**► More 1 of 2


(Channel = 1, PEAK, BPSK)

(Channel = 1, AVERAGE, BPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - R L RF PRESEL 50 arker 2 2.484120) Ω DC	SENSE:INT	ALIGN OFF Avg Type: Voltage Avg Hold:>100/100	06:05:27 AM Jan 11, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW	Marker
) dB/div Ref 106.	IFGain:Low 99 dBuV	Atten: 10 dB	Mk	72 2.484 12 GHz 58.360 dBμV	Select Marker 2
7.0					Norm
7.0 MJUNA	y the state	An Ulilum and the starting			De
7.0				ahidayi ta ga ang na kana kana kana kana kana kan	Fixe
art 2.47000 GHz es BW (CISPR) 1 I		BW 3.0 MHz	-	Stop 2.50000 GHz 1.000 ms (1001 pts)	
R MODE TRC SCL N 1 f N 1 f 1 f 3 f 5 f	× 2.483 50 GHz 2.484 12 GHz	Υ 56.245 dBμV 58.360 dBμV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Propertie
6 7					Mo 1 c

(Channel = 24, PEAK, BPSK)

(Channel = 24, AVERAGE, BPSK)

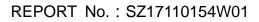
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

QPSK Mode

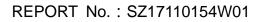
A. Test Verdict:


Channel	innel	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	voraiot
1	2387.98	PK	50.78	-33.63	32.56	49.71	74	Pass
1	2387.31	AV	32.65	-33.63	32.56	31.58	54	Pass
24	2483.92	PK	56.54	-33.18	32.5	55.86	74	Pass
24	2483.86	AV	32.93	-33.18	32.5	32.25	54	Pass

B. Test Plots:

(Channel = 1, PEAK, QPSK)

Keysight Spectrum Analyze		SENSE:INT	ALIGN OFF	02:00:34 AM Jan 02, 2018	
arker 1 2.38730		t 🕞 Trig: Free Run	Avg Type: Voltage Avg Hold: 2/100	TRACE 123456 TYPE MWWWW DET P P N N N N	Marker Select Marker
dB/div Ref 10	6.99 dBµV		Mk	r1 2.387 31 GHz 32.646 dBµV	
7 .0					Norm
7.0					
7.0					De
7.0				1,2	Fina
·.o					Fixe
art 2.30000 GHz es BW (CISPR) 1		/BW 10 Hz	Sweep	Stop 2.41200 GHz 12.84 s (1001 pts)	
R MODE TRC SCL	× 2.387 31 GHz	32.646 dBµV	FUNCTION FUNCTION WIDTH	H FUNCTION VALUE	
2 N 1 f	2.390 00 GHz	32.567 dBµV			Propertie
					M
					IVIO


(Channel = 1, AVERAGE, QPSK)

(Channel = 24, PEAK, QPSK)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

MORLAB	

Keysight Spectrum Analyze	50 Ω DC	SENSE	Avg	ALIGN OFF	TRAC	1 Jan 02, 2018 E 1 2 3 4 5 6	Marker
	PNO: Fas IFGain:Lo			Hold: 10/100	DE		Select Marker
10 dB/div Ref 100	6.99 dΒμV			Mkı	2 2.483 32.92	86 GHz 6 dBµV	2
97.0 97.0							Normal
77.0							
67.0 57.0							Delta
47.0		2			-		
27.0 17.0							Fixed⊳
Start 2.47000 GHź Res BW (CISPR) 1		/BW 10 Hz		Sweep	Stop 2.50 3.440 s (*	000 GHz 001 pts)	Off
MKR MODE TRC SCL	× 2.483 50 GHz	۲ 33.108 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTIO		
2 N 1 F 3	2.483 86 GHz	32.926 dBµV					Properties►
5						=	
8 9 10							More 1 of 2
11							

(Channel = 24, AVERAGE, QPSK)

16QAM Mode

A. Test Verdict:

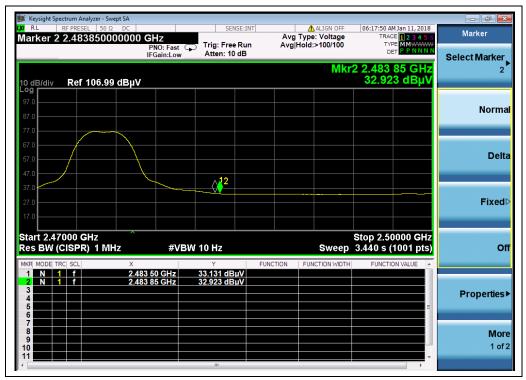
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamler	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Voraiot
1	2389.38	PK	52.57	-33.63	32.56	51.5	74	Pass
1	2382.54	AV	32.97	-33.63	32.56	31.90	54	Pass
24	2483.97	PK	58.40	-33.18	32.5	57.72	74	Pass
24	2483.85	AV	32.92	-33.18	32.5	32.24	54	Pass

B. Test Plots:

🍺 Keysight Spectrum Analyzer - Swept SA 05:48:19 AM Jan 11, 2018 TRACE 12345 TYPE M DET P P N N N Avg Type: Voltage Avg|Hold:>100/100 D. Marker Marker 1 2.389376000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Select Marker Mkr1 2.389 38 GHz 52.565 dBµV 10 dB/div Ref 106.99 dBµV Normal NYU Delta **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off 2.389 38 GHz 2.390 00 GHz 52.565 dBµV 52.020 dBµV 1 7 N **Properties** More 1 of 2

(Channel = 1, PEAK, 16QAM)

(Channel = 1, AVERAGE, 16QAM)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	1 Jan 11, 2018 E 1 2 3 4 5 6		ALIGN OFF		SE:INT	SEN		DC 0000 GH		RF PRES	
Select Marke			>100/100			Trig: Free Atten: 10	C:Fast ⊂ ain:Low	PI	39700	2.40	
	97 GHz 5 dBµV	2 2.483 58.39	Mkr					dBµV	106.99	Ref	3/div
Norr								nw _	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_/	
De			and and a star	linger pelse	here and the special states of the second states of	Hall Martin	utun 1/1- vinty	M. W.		,r	iyka ^{ru} i
Fixe											
	000 GHz 1001 pts)	Stop 2.50 .000 ms (1	Sweep 1			3.0 MHz	#VBW	z	GHz R) 1 MI	7000 (CISPI	
	IN VALUE	FUNCTIO	ICTION WIDTH	TION F	V	Y 56.378 dBi 58.395 dBi		× 2.483 5 2.483 9		RC SCL	DE TI
Propertie	=							2.4000			
M											
1	-										

(Channel = 24, PEAK, 16QAM)

(Channel = 24, AVERAGE, 16QAM)

MORLAB

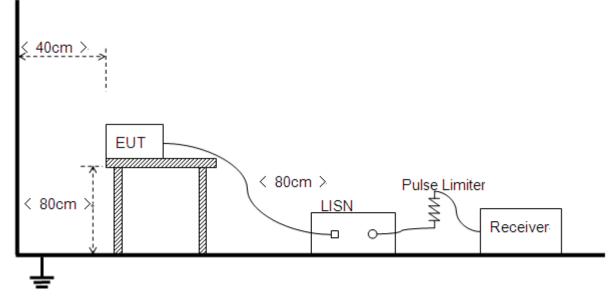
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

2.9. Conducted Emission

2.9.1. Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency rang	e Conducted Limit (dBµV)	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5- 30	60	50		


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.9.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

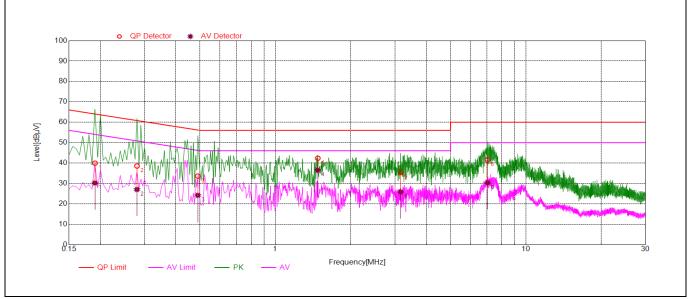
EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.9.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


A. Test setup:

The EUT configuration of the emission tests is $\underline{\text{EUT} + \text{Link.}}$ **Note:** The test voltage is AC 120V/60Hz.

B. Test Plots:

NO.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average			
1	0.19	39.93	30.20	64.03	54.03		PASS	
2	0.28	38.52	27.02	60.82	50.82		PASS	
3	0.49	33.58	24.16	56.17	46.17	Line	PASS	
4	1.48	42.36	36.51	56.00	46.00	Line	PASS	
5	3.16	35.30	25.81	56.00	46.00		PASS	
6	7.02	41.61	30.33	60.00	50.00		PASS	

(Plot B: N Phase)

NO.	\mathcal{D}	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.19	35.56	29.66	64.20	54.20		PASS
2	0.28	35.80	26.51	60.77	50.77		PASS
3	0.47	28.79	22.74	56.49	46.49		PASS
4	0.75	28.78	21.76	56.00	46.00	Neutral	PASS
5	1.96	40.99	35.19	56.00	46.00	1	PASS
6	7.09	37.70	28.83	60.00	50.00		PASS

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

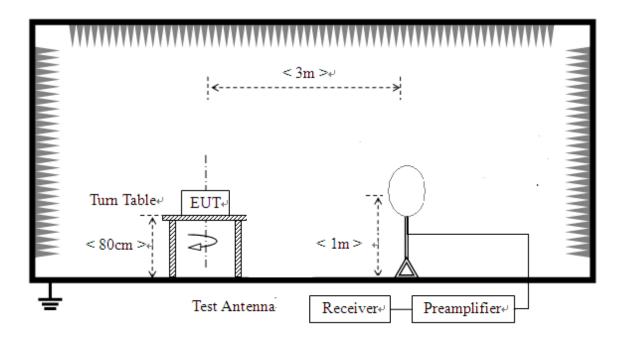
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

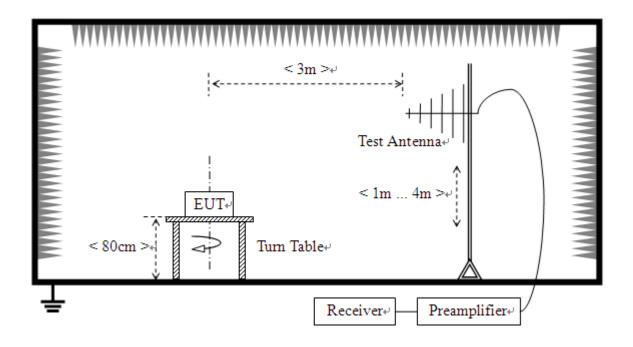
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

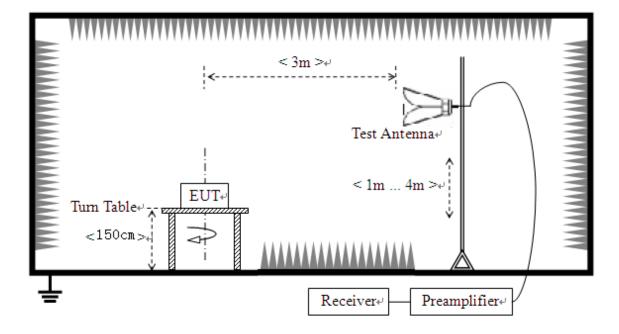



2.10.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, the EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be

higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3. Test Procedure

Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold

2.10.4. Test Result

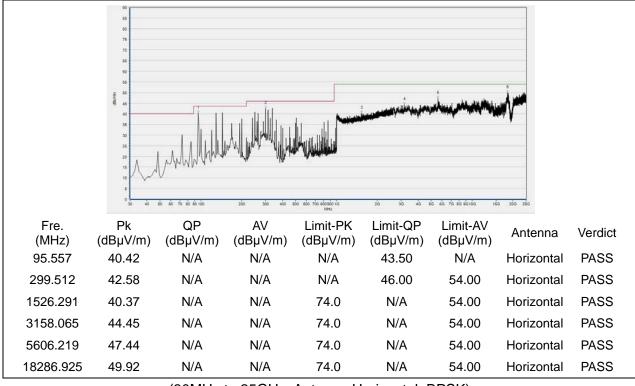
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

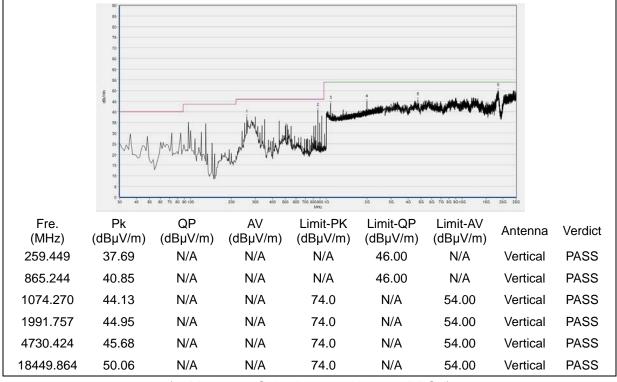
The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB] \\ A_T: Total correction Factor except Antenna \\ U_R: Receiver Reading \\ G_{preamp}: Preamplifier Gain \\ A_{Factor}: Antenna Factor at 3m$

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

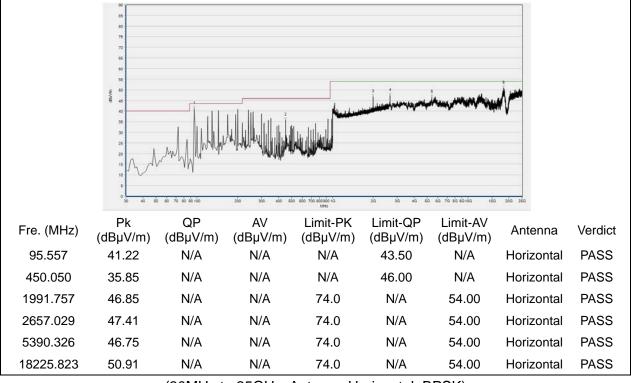

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



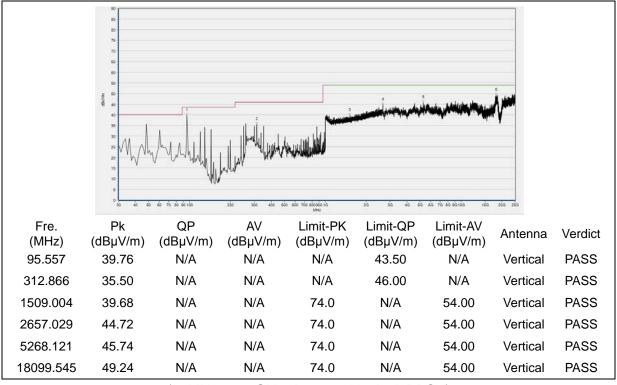
BPSK Mode:

Plots for Channel = 1

(30MHz to 25GHz, Antenna Horizontal, BPSK)

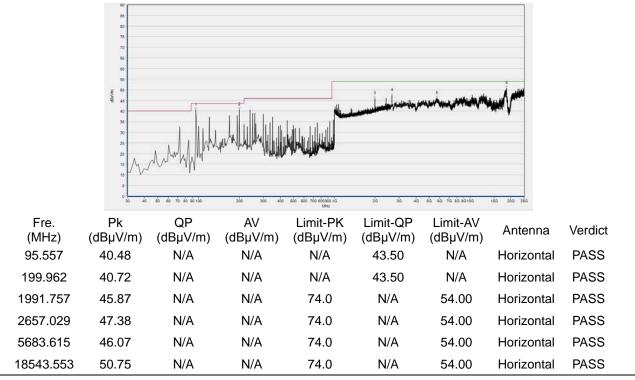

(30MHz to 25GHz, Antenna Vertical, BPSK)

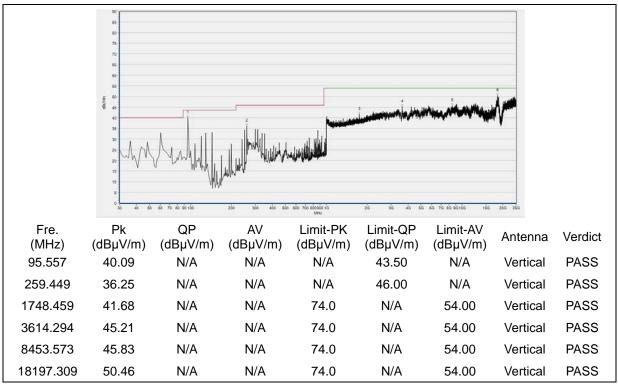
MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Plot for Channel = 13

(30MHz to 25GHz, Antenna Horizontal, BPSK)

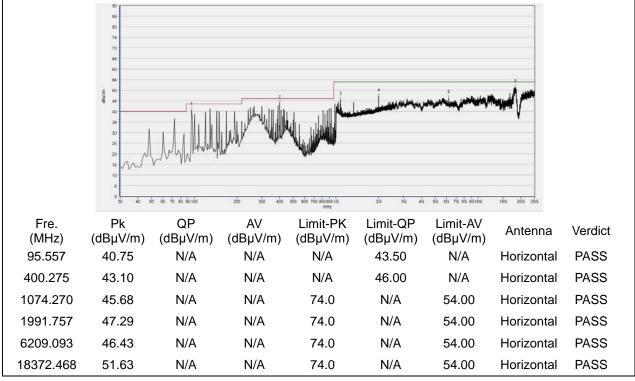

(30MHz to 25GHz, Antenna Vertical, BPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

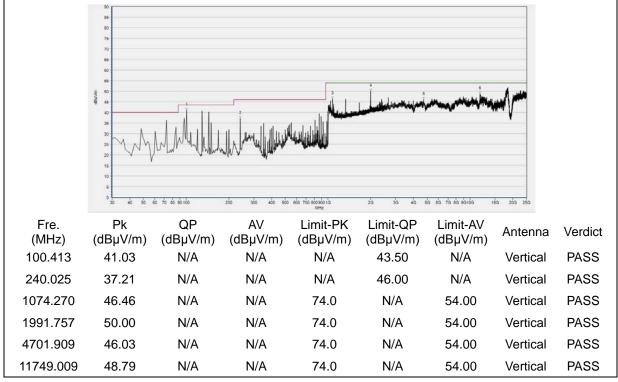
Plot for Channel = 24

(30MHz to 25GHz, Antenna Horizontal, BPSK)

(30MHz to 25GHz, Antenna Vertical, BPSK)


MORLAB

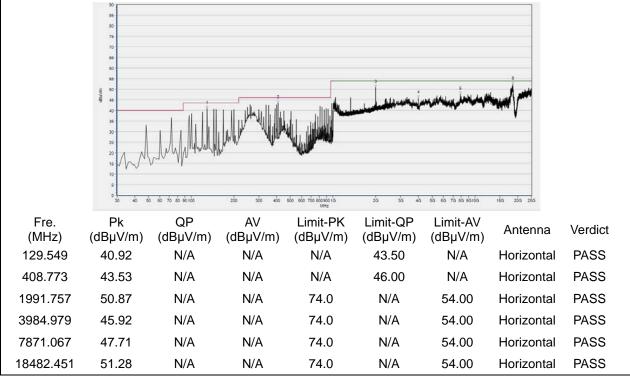
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

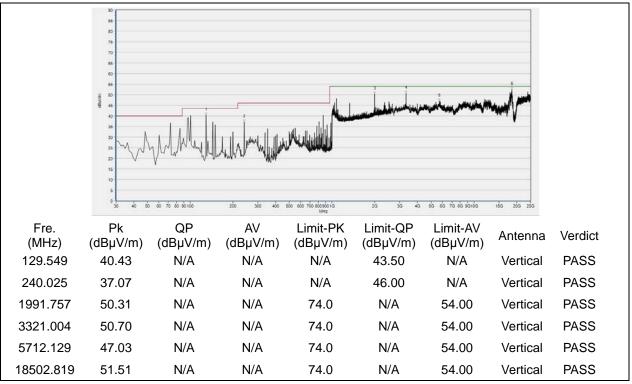


QPSK Mode:

Plots for Channel = 1

(30MHz to 25GHz, Antenna Horizontal, QPSK)

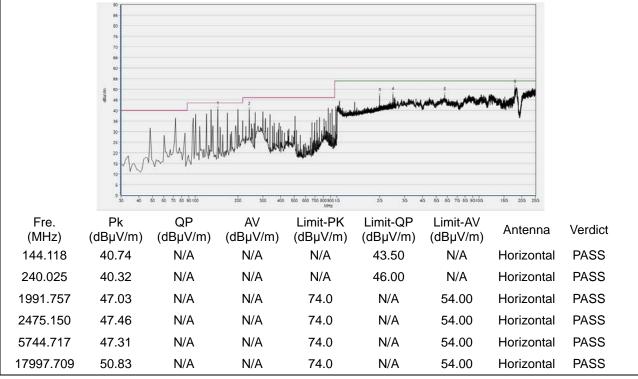

(30MHz to 25GHz, Antenna Vertical, QPSK)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

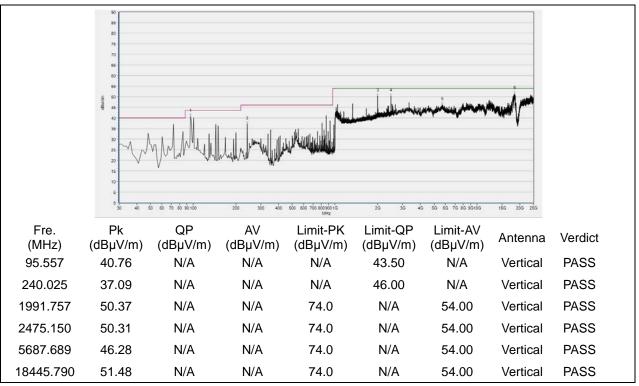
Plot for Channel = 13

(30MHz to 25GHz, Antenna Horizontal, QPSK)

(30MHz to 25GHz, Antenna Vertical, QPSK)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

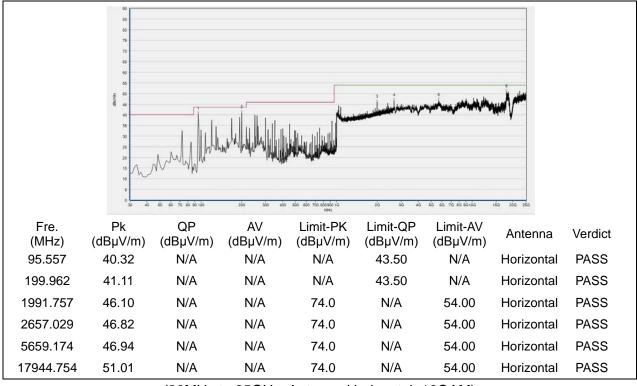

rlab.cn E-mail: service@morlab.cn

Plot for Channel = 24

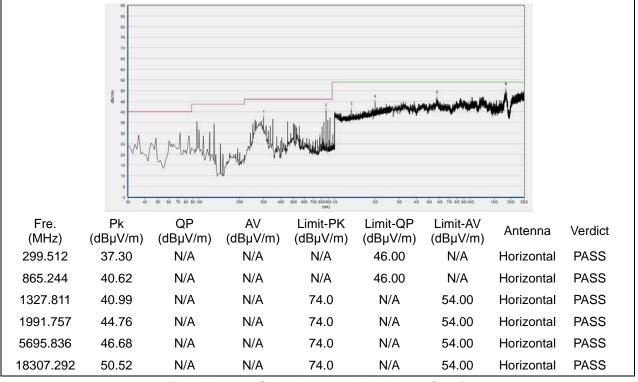
(30MHz to 25GHz, Antenna Horizontal, QPSK)

(30MHz to 25GHz, Antenna Vertical, QPSK)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

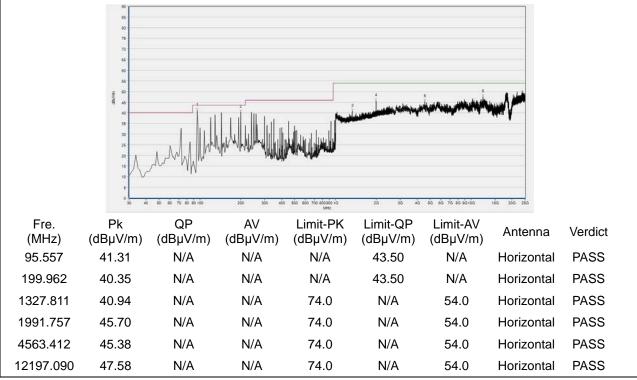

Fax: 86-755-36698525 E-mail: service@morlab.cn

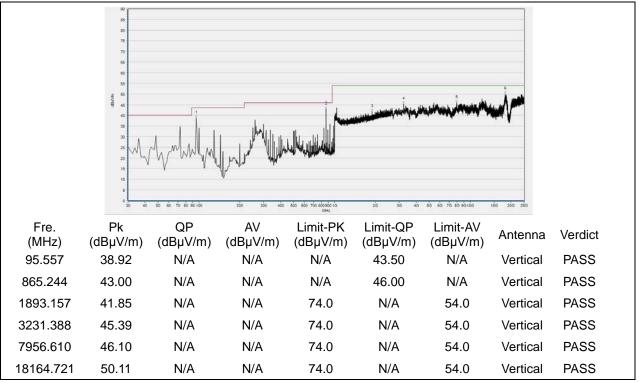
Http://www.morlab.cn



16QAM Mode:

(30MHz to 25GHz, Antenna Horizontal, 16QAM)

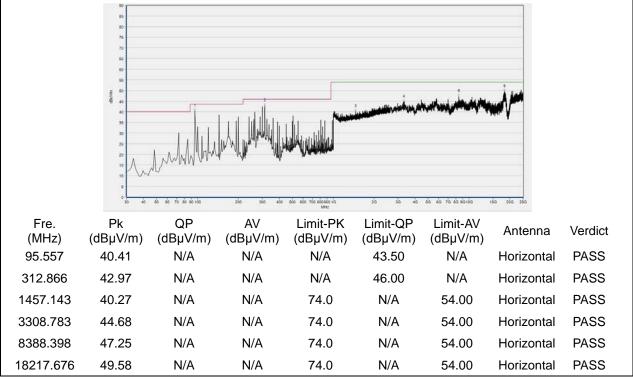

(30MHz to 25GHz, Antenna Vertical, 16QAM)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

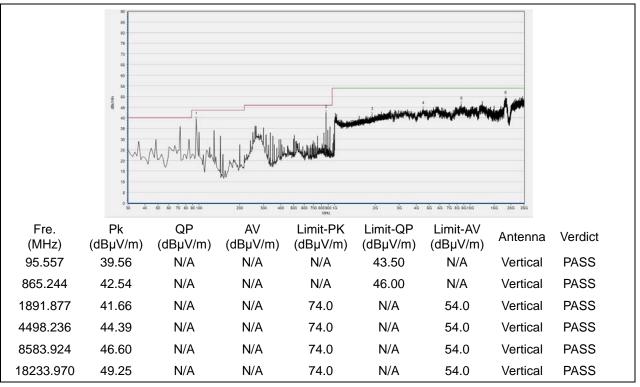
Plot for Channel = 13

(30MHz to 25GHz, Antenna Horizontal, 16QAM)

(30MHz to 25GHz, Antenna Vertical, 16QAM)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525


E-mail: service@morlab.cn

Plot for Channel = 24

(30MHz to 25GHz, Antenna Horizontal, 16QAM)

(30MHz to 25GHz, Antenna Vertical, 16QAM)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

b.cn E-mail: service@morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.					
Department:	Morlab Laboratory					
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					
Responsible Test Lab	Mr. Su Feng					
Manager:						
Telephone:	+86 755 36698555					
Facsimile:	+86 755 36698525					

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Bluetooth Base Station	6K00006210	MT8852B	Anritsu	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.11.03	2018.11.02
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter	9391	VTSD	Schwarzbeck	2017.05.17	2018.05.16
(20dB)		9561-D			
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2017.05.14	2018.05.13
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.07	2018.03.06
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

