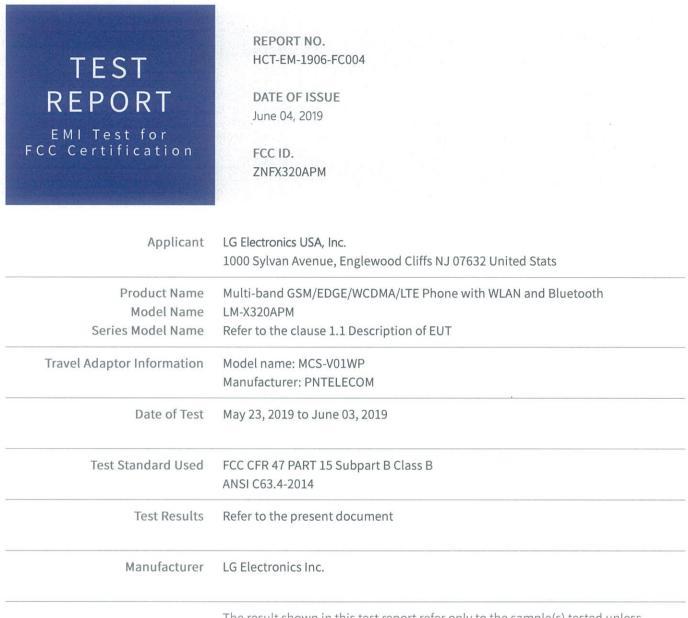


TEST REPORT

EMI Test for FCC Certification of LM-X320APM

APPLICANT LG Electronics USA, Inc.

REPORT NO. HCT-EM-1906-FC004


DATE OF ISSUE June 04, 2019

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

HCT Co., Ltd.

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Tested by		
Na-Eun Song	(signatare) Milen	
Technical Manager Jeong-Hyun Choi	(signature)	

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	June 04, 2019	Initial Release

The device bearing the trade name and model specified above, has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. (See Test Report if any modifications were made for compliance) I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. HCT certifies that no party to application has been denial the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 862

CONTENTS

1.1 Description of EUT051.2 Tested System Details051.3 Cable Description061.4 Noise Suppression Parts on Cable. (I/O Cable)061.5 Test Facility071.6 Calibration of Measuring Instrument071.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1. GENERAL INFORMATION	05
1.3 Cable Description061.4 Noise Suppression Parts on Cable. (I/O Cable)061.5 Test Facility071.6 Calibration of Measuring Instrument071.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Above 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.1 Description of EUT	05
1.4 Noise Suppression Parts on Cable. (I/O Cable)061.5 Test Facility071.6 Calibration of Measuring Instrument071.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.2 Tested System Details	05
1.5 Test Facility071.6 Calibration of Measuring Instrument071.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.3 Cable Description	06
1.6 Calibration of Measuring Instrument071.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.4 Noise Suppression Parts on Cable. (I/O Cable)	06
1.7 Measurement Uncertainty072. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.5 Test Facility	07
2. DESCRIPTION OF TEST082.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.6 Calibration of Measuring Instrument	07
2.1 Measurement of Conducted Emission082.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	1.7 Measurement Uncertainty	07
2.2 Measurement of Radiated Emission092.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	2. DESCRIPTION OF TEST	08
2.3 Configuration of Tested System103. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	2.1 Measurement of Conducted Emission	08
3. PRELIMINARY TEST113.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	2.2 Measurement of Radiated Emission	09
3.1 Conducted Emission113.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	2.3 Configuration of Tested System	10
3.2 Radiated Emission114. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY124.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	3. PRELIMINARY TEST	11
4. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY 12 4.1 Conducted Emission 12 4.2 Radiated Emission Below 1 GHz 19 4.3 Radiated Emission Above 1 GHz 21 5. CONCLUSION 23	3.1 Conducted Emission	11
4.1 Conducted Emission124.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	3.2 Radiated Emission	11
4.2 Radiated Emission Below 1 GHz194.3 Radiated Emission Above 1 GHz215. CONCLUSION23	4. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY	12
4.3 Radiated Emission Above 1 GHz215. CONCLUSION23	4.1 Conducted Emission	12
5. CONCLUSION 23	4.2 Radiated Emission Below 1 GHz	19
	4.3 Radiated Emission Above 1 GHz	21
	5. CONCLUSION	23
0. AFFENDIX A. TEST SETUP PHOTOGRAPHS 24	6. APPENDIX A. TEST SETUP PHOTOGRAPHS	24

1. GENERAL INFORMATION

1.1 Description of EUT

Its basic purpose is used for communications.

FCC ID	ZNFX320APM
Model	LM-X320APM
Series Model Name	LMX320APM, X320APM, LM-X320CM, LMX320CM, X320CM, LM-X320AM8, LMX320AM8, X320AM8
EUT Type	Multi-band GSM/EDGE/WCDMA/LTE Phone with WLAN and Bluetooth
TX Frequency	824.20 MHz to 848.80 MHz (GSM 850) 1 850.20 MHz to 1 909.80 MHz (GSM 1 900) 1 852.4 MHz to 1 907.6 MHz (WCDMA B2) 1712.4 MHz to 1752.6 MHz (WCDMA B4) 826.40 MHz to 846.60 MHz (WCDMA B5) 1 850 MHz to 1 910 MHz (LTE B2) 1 710 MHz to 1 755 MHz (LTE B4) 824 MHz to 849 MHz (LTE B5) 699 MHz to 716 MHz (LTE B12) 788 MHz to 798 MHz (LTE B14) 2 402 MHz to 2 480 MHz (Bluetooth) 2 412 MHz to 2 462 MHz (WiFi 2.4 GHz)
RX Frequency	869.20 MHz to 893.80 MHz (GSM 850) 1 930.20 MHz to 1 989.80 MHz (GSM 1 900) 1 932.4 MHz to 1 987.6 MHz (WCDMA B2) 2 112.4 MHz to 2 152.6 MHz (WCDMA B4) 871.40 MHz to 891.60 MHz (WCDMA B5) 1 930 MHz to 1 990 MHz (LTE B2) 2 110 MHz to 2 155 MHz (LTE B4) 869 MHz to 894 MHz (LTE B5) 729 MHz to 746 MHz (LTE B12) 758 MHz to 768 MHz (LTE B14) 2 402 MHz to 2 480 MHz (Bluetooth) 2 412 MHz to 2 462 MHz (WiFi 2.4 GHz)

1.2 Tested System Details

Device Type	Model Name	Serial Number	Manufacturer
EUT	LM-X320APM	-	LG
Data cable	EAD62377927	-	NINGBO
Earphone	EAB64468444	-	CRESYN
ТА	MCS-V01WP	-	PNTELECOM
Micro SD card	Extreme Micro SDHC UHS-1 CLASS 10 (32 GB)	-	SanDisk

All equipment descriptions used in the tested system (including inserted cards) are:

1.3 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
CU T	Micro USB	Υ	N/A	(P)1.0
EUT	Earphone	N/A	Ν	(D)1.2

NOTE. The marked "(D)" means the data cable and "(P)" means the power cable.

1.4 Noise Suppression Parts on Cable (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
FUT	Micro USB	Ν	N/A	Y	Both End
EUT	Earphone	Ν	N/A	Y	EUT End

1.5 Test Facility

Test site is located at 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, South Korea. Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014. The Normalized site attenuations (30 MHz to 1 GHz) and Site validation (1 GHz to 18 GHz) were performed in accordance with the standard in ANSI C63.4-2014

Measurement Facilities	Designation No.
Radiated Field strength measurement facility 3 m Semi Anechoic chamber	
Radiated Field strength measurement facility 10 m Semi Anechoic chamber #1	KR0032
Radiated Field strength measurement facility 10 m Semi Anechoic chamber #2	

1.6 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in ac cordance with the manufacturers recommendations for utilizing calibration equipment, which is traceable to recognized national standards.Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2006).

1.7 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty
Conducted Emission (0.15 MHz to 30 MHz)	1.82 dB
Radiated Emissions (30 MHz to 1 GHz)	5.20 dB
Radiated Emissions (1 GHz to 18 GHz)	5.24 dB
Radiated Emissions (18 GHz to 40 GHz)	5.40 dB

2. DESCRIPTION OF TEST

2.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).

If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).

Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

Frequency	Resolution Class A		Class B		
Frequency (MHz)	Bandwidth (kHz)	Quasi-Peak (dBµV)	Average (dBµV)	Quasi-Peak (dBµV)	Average (dBµV)
0.15 to 0.5	9	79	66	66 to 56*	56 to 46*
0.5 to 5	9	73	60	56	46
5 to 30	9	73	60	60	50

Conducted Emission Limits

NOTE. Decreases with the logarithm of the frequency.

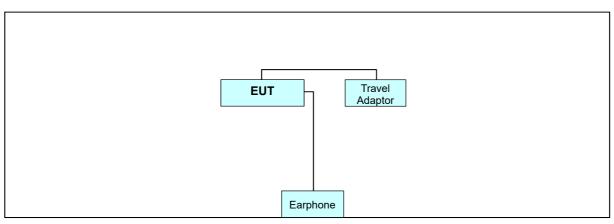
2.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
 (1 GHz to 40 GHz)

		Class A			Class B	
Frequency (MHz)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBµV/m)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBµV/m)
30 to 88	10	90	39.0	3	100	40.0
88 to 216	10	150	43.5	3	150	43.5
216 to 960	10	210	46.4	3	200	46.0
Above 960	10	300	49.5	3	500	54.0
F	Automa D			s A	Cla	ss B
Frequency (MHz)	Antenna D (m)		Peak (dBµV/m)	Average (dBµV/m)	Peak (dBµV/m)	Average (dBµV/m)
Above 1 000	3		80	60	74	54

Radiated Emission Limits



2.2.1 Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)	
Below 1.705	30	
1.705 to 108	1 000	
108 to 500	2 000	
500 to 1 000	5 000	
Above 1 000	5th harmonic of the highest frequency or 40 GHz , whichever is lower	
Below 1.705	30	

2.3 Configuration of Tested System

Non-Conductive Table Power Line: 120 VAC, 60 Hz

3. PRELIMINARY TEST

3.1 Conducted Emission

It was tested the following operating mode, after connecting all peripheral devices.

Operating Modes: FRONT CAMERA & MP3 mode REAR CAMERA & FM RADIO mode IDLE mode NOTE. The worst-case emissions are reported.

3.2 Radiated Emission

It was tested the following operating mode, after connecting all peripheral devices.

Operating Modes: FRONT CAMERA & MP3 mode REAR CAMERA & FM RADIO mode IDLE mode NOTE. The worst-case emissions are reported.

4. CONDUCTED EMISSION AND RADIATED EMISSION TEST SUMMARY

4.1 Conducted Emission

4.1.1 Measuring instruments

	Type Manufacturer Moo		Model Name	Serial Number	Calibration Cycle	Calibration Date
	EMI Test Receiver	Rohde & Schwarz	ESCI	100584	1 year	06.25.2018
\square	LISN	Rohde & Schwarz	ENV216	102245	1 year	12.12.2018
\boxtimes	Software	Rohde & Schwarz	EMC32 VER8.54.0	-	_	-

4.1.2 Operating Condition

The test results of conducted emission at mains ports provide the following information:

Test Standard Used	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak, CISPR-Average
Bandwidth	9 kHz (6 dB)
Operating Mode	FRONT CAMERA & MP3 mode
Kind of Test Site	Shielded Room
Temperature	23.7 °C
Relative Humidity	41.2 %
Test Date	May 23, 2019

4.1.3 Measuring Data

Figure 1: Conducted Emission, AC Main Port, Line (L1)

90 80 70 60 50 Level in dBµ 40 30 20 10 0 -10 150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz FCC CLASS B_QP FCC CLASS B_ AV Preview Result 1-PK+ × \times Preview Result 2-AVG Final Result 1-QPK Final Result 2-CAV

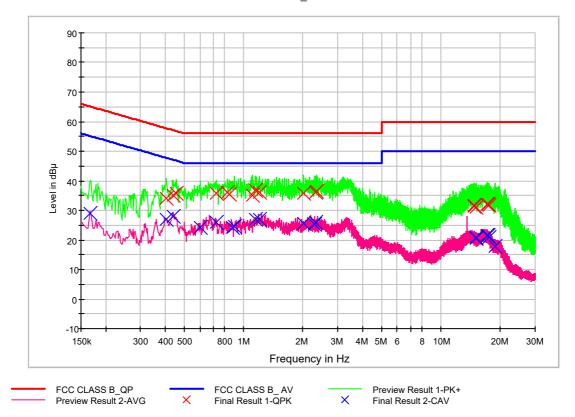
FCC CLASS B_Exten Cable

QuasiPeak Final Result, Line (L1)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	35.6	9.000	L1	9.7	30.2	65.8
0.158000	33.4	9.000	L1	9.7	32.1	65.6
0.746000	39.1	9.000	L1	9.8	16.9	56.0
0.754000	39.8	9.000	L1	9.8	16.2	56.0
0.832000	35.2	9.000	L1	9.8	20.8	56.0
0.854000	38.7	9.000	L1	9.8	17.3	56.0
1.118000	39.5	9.000	L1	9.8	16.5	56.0
1.206000	39.9	9.000	L1	9.8	16.1	56.0
2.200000	39.6	9.000	L1	9.9	16.4	56.0
2.346000	39.0	9.000	L1	9.9	17.0	56.0
2.390000	38.4	9.000	L1	9.9	17.6	56.0
2.464000	39.9	9.000	L1	9.9	16.1	56.0
15.420000	32.2	9.000	L1	10.4	27.8	60.0
15.458000	31.2	9.000	L1	10.4	28.8	60.0
15.962000	31.5	9.000	L1	10.4	28.5	60.0
15.998000	31.8	9.000	L1	10.4	28.2	60.0
16.098000	31.0	9.000	L1	10.5	29.0	60.0
16.122000	32.1	9.000	L1	10.5	27.9	60.0

Calculation Formula:

- 1. Conductor L1 = Hot, Conductor N = Neutral
- 2. Corr. = LISN Factor + Cable Loss
- 3. QuasiPeak or CAverage= Receiver Reading + Corr.
- 4. Margin = Limit QuasiPeak or CAverage


CAverage Final Result, Line (L1)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154000	27.4	9.000	L1	9.7	28.4	55.8
0.158000	25.4	9.000	L1	9.7	30.2	55.6
0.746000	26.8	9.000	L1	9.8	19.2	46.0
0.832000	25.4	9.000	L1	9.8	20.6	46.0
0.850000	27.7	9.000	L1	9.8	18.3	46.0
0.854000	26.9	9.000	L1	9.8	19.1	46.0
1.204000	29.3	9.000	L1	9.8	16.7	46.0
1.208000	29.6	9.000	L1	9.8	16.4	46.0
2.198000	28.8	9.000	L1	9.9	17.2	46.0
2.346000	26.6	9.000	L1	9.9	19.4	46.0
2.392000	26.9	9.000	L1	9.9	19.1	46.0
2.464000	28.0	9.000	L1	9.9	18.0	46.0
15.420000	21.9	9.000	L1	10.4	28.1	50.0
15.458000	21.5	9.000	L1	10.4	28.6	50.0
15.870000	22.3	9.000	L1	10.4	27.7	50.0
15.962000	22.1	9.000	L1	10.4	27.9	50.0
15.998000	22.5	9.000	L1	10.4	27.5	50.0
16.098000	22.2	9.000	L1	10.5	27.8	50.0

Figure 2: Conducted Emission, AC Main Port, Line (N)

FCC CLASS B_Exten Cable

QuasiPeak Final Result, Line (N)

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.406000	33.9	9.000	Ν	9.9	23.8	57.7
0.438000	35.2	9.000	Ν	9.9	21.9	57.1
0.458000	35.7	9.000	Ν	9.9	21.0	56.7
0.726000	35.7	9.000	Ν	9.9	20.3	56.0
0.828000	36.1	9.000	Ν	9.9	19.9	56.0
0.846000	35.6	9.000	Ν	10.0	20.4	56.0
1.106000	35.1	9.000	Ν	10.0	20.9	56.0
1.148000	36.8	9.000	Ν	10.0	19.2	56.0
1.196000	36.1	9.000	Ν	10.0	19.9	56.0
2.016000	35.7	9.000	Ν	10.0	20.3	56.0
2.326000	36.1	9.000	Ν	10.1	19.9	56.0
2.342000	36.5	9.000	Ν	10.1	19.5	56.0
14.718000	31.6	9.000	Ν	10.7	28.4	60.0
14.762000	31.5	9.000	Ν	10.7	28.5	60.0
14.982000	30.9	9.000	Ν	10.7	29.1	60.0
17.080000	31.9	9.000	Ν	10.8	28.1	60.0
17.342000	32.1	9.000	Ν	10.8	27.9	60.0
17.490000	31.6	9.000	Ν	10.8	28.4	60.0

CAverage Final Result, Line (N)

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.166000	29.0	9.000	Ν	9.8	26.2	55.2
0.406000	26.9	9.000	Ν	9.9	20.8	47.7
0.438000	28.0	9.000	Ν	9.9	19.1	47.1
0.604000	24.2	9.000	Ν	9.9	21.8	46.0
0.726000	25.8	9.000	Ν	9.9	20.2	46.0
0.882000	24.3	9.000	Ν	10.0	21.7	46.0
0.896000	24.6	9.000	Ν	10.0	21.4	46.0
1.148000	27.0	9.000	Ν	10.0	19.0	46.0
1.196000	27.0	9.000	Ν	10.0	19.0	46.0
2.016000	25.6	9.000	Ν	10.0	20.4	46.0
2.296000	25.2	9.000	Ν	10.1	20.8	46.0
2.326000	25.9	9.000	Ν	10.1	20.1	46.0
14.982000	20.9	9.000	Ν	10.7	29.1	50.0
15.130000	20.4	9.000	Ν	10.7	29.6	50.0
17.080000	21.5	9.000	Ν	10.8	28.5	50.0
17.342000	21.4	9.000	Ν	10.8	28.6	50.0
17.490000	20.8	9.000	Ν	10.8	29.2	50.0
18.748000	17.9	9.000	Ν	10.8	32.1	50.0

4.2 Radiated Emission Below 1 GHz

4.2.1 Measuring instruments

	Туре	Manufacturer	Model Name	Serial Number	Calibration Cycle	Calibration Date
\boxtimes	EMI test receiver	Rohde & Schwarz	ESU40	100524	1 year	05.17.2019
\boxtimes	Trilog antenna	Schwarzbeck	VULB 9168	255	2 year	03.26.2019
\boxtimes	Antenna master	INNCO Systems	MA4640-XP-ET	-	N/A	-
\boxtimes	Antenna master controller	INNCO Systems	CO 3000	CO3000/870/ 35990515/L	N/A	-
\boxtimes	Turn Table	INNCO Systems	1060	-	N/A	-
\boxtimes	Turn table controller	INNCO Systems	CO2000	CO2000/095/ 7590304/L	N/A	-
\boxtimes	Software	Rohde & Schwarz	EMC32 VER8.40.0	-	-	-

4.2.2 Operating Condition

The test results of radiated emission provide the following information:

Used Test Standard	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Quasi-Peak
Bandwidth	120 kHz (6 dB)
Operating Mode	FRONT CAMERA & MP3 mode
Kind of Test Site	3 m semi anechoic chamber
Temperature	24.7 °C
Relative Humidity	45.2 %
Test Date	May 29, 2019

4.2.3 Measuring Data

Frequency (MHz)	Quasi Peak (dBµV/m)	Antenna Height (cm)	Pol. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
31.494682	19.2	125.3	V	335.0	18.4	20.8	40.0
49.628000	24.5	100.0	V	189.0	19.8	15.5	40.0
60.512000	18.9	100.0	V	181.0	19.3	21.1	40.0
140.784800	19.5	100.0	V	299.0	19.1	24.0	43.5
663.467200	28.3	100.0	V	116.0	28.3	17.7	46.0
870.197600	31.1	116.8	V	346.0	31.2	14.9	46.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. QuasiPeak = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor + Cable Loss
- 4. Margin = Limit QuasiPeak

4.3 Radiated Emission Above 1 GHz

4.3.1 Measuring instruments

	Туре	Manufacturer	Model Name	Serial Number	Calibration Cycle	Calibration Date
\square	EMI test receiver	Rohde & Schwarz	ESU40	100524	1 year	05.17.2019
\boxtimes	Antenna master	INNCO Systems	MA4640-XP-ET	-	N/A	-
\boxtimes	Antenna master controller	INNCO Systems	CO3000	CO3000/870/ 35990515/L	N/A	-
\boxtimes	Turn table	INNCO Systems	1060	-	N/A	-
\boxtimes	Turn table controller	INNCO Systems	CO2000	CO2000/095/ 7590304/L	N/A	-
\boxtimes	Horn antenna	Schwarzbeck	BBHA 9120D	01836	2 year	07.20.2018
\boxtimes	Low Noise amplifier	TESTEK	TK-PA18H	170034-L	1 year	03.04.2019
\boxtimes	Software	Rohde & Schwarz	EMC32 VER8.40.0	-	-	-

4.3.2 Operating Condition

The test results of radiated emission provide the following information:

Used Test Standard	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
Detector	Peak mode: Peak (RBW: 1 MHz, VBW: 3 MHz) CISPR-Average mode: Peak (RBW: 1 MHz, VBW: 10 Hz)
Highest Frequency	2 480 MHz
Tested Frequency Range	1 GHz to 18 GHz
Operation Mode	FRONT CAMERA & MP3 mode
Kind of Test Site	3 m semi anechoic chamber
Temperature	22.5 ℃
Relative Humidity	43.1 %
Test Date	June 03, 2019

4.3.3 Measuring Data

Frequency (MHz)	Peak (dBµV/m)	Antenna Height (cm)	Pol. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2973.345000	34.5	149.6	V	0.0	-21.1	39.5	74.0
5620.240000	39.0	232.4	V	244.0	-15.1	35.0	74.0
7429.830000	44.7	149.5	V	63.0	-9.4	29.3	74.0
9423.025000	48.7	199.6	Н	29.0	-5.3	25.3	74.0
10888.330000	48.6	125.8	V	42.0	-2.6	25.4	74.0
14747.005000	49.8	150.0	Н	318.0	1.1	24.2	74.0

Frequency (MHz)	CAverage (dBµV/m)	Antenna Height (cm)	Pol. (H/V)	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
2973.345000	22.3	149.6	V	0.0	-21.1	31.7	54.0
5620.240000	26.5	232.4	V	244.0	-15.1	27.5	54.0
7429.830000	31.8	149.5	V	63.0	-9.4	22.2	54.0
9423.025000	35.2	199.6	Н	29.0	-5.3	18.8	54.0
10888.330000	35.8	125.8	V	42.0	-2.6	18.2	54.0
14747.005000	37.1	150.0	Н	318.0	1.1	16.9	54.0

- Calculation Formula:

- 1. POL. H = Horizontal, POL. V = Vertical
- 2. Peak or CAverage = Reading (Receiver Reading) + Corr.
- 3. Corr. (Correction Factor) = Antenna Factor+ Cable Loss Amplifier Gain
- 4. Margin = Limit Peak or CAverage

5. CONCLUSION

The data collected shows that the EUT Type: Multi-band GSM/EDGE/WCDMA/LTE Phone with WLAN and Bluetooth, Model: LM-X320APM complies with §15.107 and §15.109 of the FCC rules.

6. APPENDIX A. TEST SETUP PHOTO

Please refer to Appendix. A and test setup photo file no. as follows;

File No.	Date of Issue	Description
HCT-EM-1906-FC004-P	June 04, 2019	Initial Release

End of report