RF TEST REPORT

Report No.: 17070833-FCC-R3
Supersede Report No.: N/A

Applicant	Verykool USA Inc			
Product Name	Mobile phone			
Model No.	s5205			
Serial No.	s5204			
Test Standard	FCC Part 1	5.247: 2016,	ANSI C63.10: 2	013
Test Date	September	02 to 14, 201	7	
Issue Date	September	15, 2017		
Test Result	Pass	Fail		
Equipment compl	ied with the	specification	V	
Equipment did no	t comply with	n the specifica	ation 🗆	
Loven	Luo	David	Huang	
Loren Luo Test Engineer			l Huang eked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

T	est Report	17070833-FCC-R3
F	Page	2 of 68

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	17070833-FCC-R3
Page	3 of 68

This page has been left blank intentionally.

Test Report	17070833-FCC-R3
Page	4 of 68

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	CHANNEL SEPARATION	10
6.3	20DB BANDWIDTH	15
6.4	PEAK OUTPUT POWER	19
6.5	NUMBER OF HOPPING CHANNEL	23
6.6	TIME OF OCCUPANCY (DWELL TIME)	25
6.7	BAND EDGE & RESTRICTED BAND	30
6.8	AC POWER LINE CONDUCTED EMISSIONS	38
6.9	RADIATED EMISSIONS & RESTRICTED BAND	44
ANI	NEX A. TEST INSTRUMENT	51
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	52
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	63
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	67
ANI	NEX E. DECLARATION OF SIMILARITY	68

Test Report	17070833-FCC-R3
Page	5 of 68

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17070833-FCC-R3	NONE	Original	September 15, 2017

2. Customer information

Applicant Name	Verykool USA Inc	
Applicant Add	3636 Nobel Drive, Suite 325, San Diego, California 92122 United States	
Manufacturer	Guizhou Fortuneship Technology Co., Ltd	
Manufacturer Add	2nd Floor, Factory Building 4, Hi-Tech Industrial Park, Xinpu Economic Development	
	Zone, Xinpu New District, Zunyi City, Guizhou Province, P. R. China	

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Lab B:

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Addraga	2-1 Longcang Avenue Yuhua Economic and
Lab Address	Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC(ver.lcp-03A1)

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

Test Report	17070833-FCC-R3
Page	6 of 68

4. Equipment under Test (EUT) Information

Description of EUT: Mobile phone

Main Model: s5205

Serial Model: s5204

Date EUT received: September 01, 2017

Test Date(s): September 02 to 14, 2017

Equipment Category: DSS

GSM850: -1.5dBi

PCS1900: 0.5dBi

UMTS-FDD Band V: -1.5dBi

Antenna Gain: UMTS-FDD Band II: 0.5dBi

WIFI: -2dBi

Bluetooth/BLE: -2.3dBi

GPS: -2.3dBi

Antenna Type: PIFA antenna

GSM / GPRS: GMSK

EGPRS: GMSK,8PSK

UMTS-FDD: QPSK

Type of Modulation: 802.11b/g/n: DSSS, OFDM

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK

GPS:BPSK

Test Report	17070833-FCC-R3
Page	7 of 68

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RF Operating Frequency (ies): RX: 1932.4 ~ 1987.6 MHz

WIFI: 802.11b/g/n(20M): 2412-2462 MHz WIFI: 802.11n(40M): 2422-2452 MHz

Bluetooth& BLE: 2402-2480 MHz

GPS: 1575.42 MHz

Max. Output Power: 2.984dBm

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V : 102CH UMTS-FDD Band II : 277CH

Number of Channels: WIFI:802.11b/g/n(20M): 11CH

WIFI:802.11n(40M):7CH

Bluetooth: 79CH

BLE: 40CH GPS:1CH

Port: USB Port, Earphone Port

Adapter:

Model: UAX-C05Y10-00A00

Input: AC100-240V~50/60Hz,0.2A

Output: DC 5.0V,1A

Input Power:

Battery

Model: 366073AR

Spec: 3.7V, 2000mAh, 7.4Wh Limited charge voltage: 4.2V

Trade Name: verykool

FCC ID: WA6S5205

Test Report	17070833-FCC-R3
Page	8 of 68

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge& Restricted Band	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions& Restricted Band	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band Edge& Restricted Band and Radiated Emissions& Restricted Band	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

Test Report	17070833-FCC-R3
Page	9 of 68

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is -2.3dBi for Bluetooth/BLE, the gain is -2dBi for WIFI, the gain is -2.3dBi for GPS.

A permanently attached PIFA antenna for GSM/PCS/UMTS, the gain is -1.5dBi for GSM850, 0.5dBi for PCS1900, -1.5dBi for UMTS-FDD Band V, 0.5dBi for UMTS-FDD Band II.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	17070833-FCC-R3
Page	10 of 68

6.2 Channel Separation

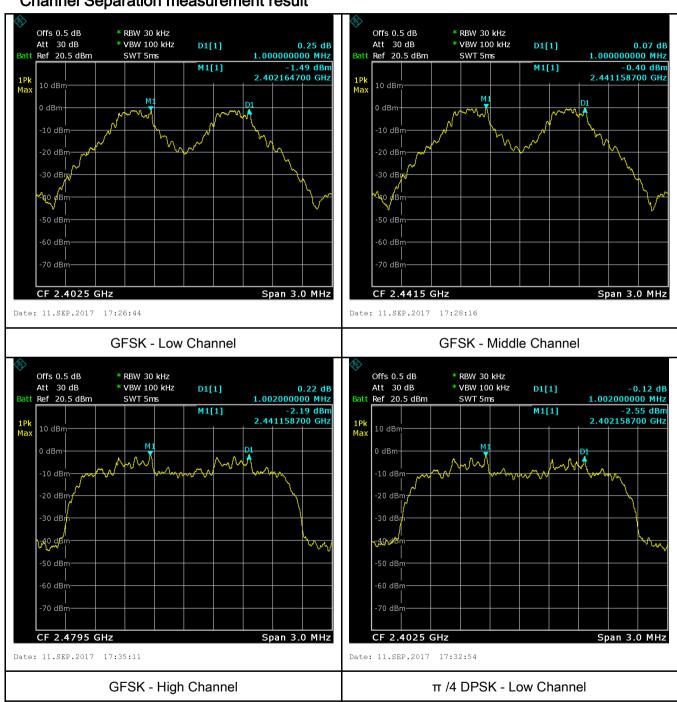
Temperature	23°C
Relative Humidity	54%
Atmospheric Pressure	1014mbar
Test date :	September 11, 2017
Tested By :	Loren Luo

Requirement(s):						
Spec	Item Requirement Applicat					
		Channel Separation < 20dB BW and 20dB BW <				
\$ 15 247(a)(1)		25KHz ; Channel Separation Limit=25KHz				
§ 15.247(a)(1)	a)	Chanel Separation < 20dB BW and 20dB BW >	>			
		25kHz; Channel Separation Limit=2/3 20dB BW				
Test Setup		Spectrum Analyzer EUT				
	The t	est follows FCC Public Notice DA 00-705 Measurement	Guidelines.			
	Use the following spectrum analyzer settings:					
	-	The EUT must have its hopping function enabled				
	-	- Span = wide enough to capture the peaks of two adjacent				
		channels				
	-	Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span				
Test Procedure	-	Video (or Average) Bandwidth (VBW) ≥ RBW				
Test i rocedure	- Sweep = auto					
	- Detector function = peak					
	- Trace = max hold					
	- Allow the trace to stabilize. Use the marker-delta function to					
	determine the separation between the peaks of the adjacent					
		channels. The limit is specified in one of the subparagr	aphs of this			
		Section. Submit this plot.				

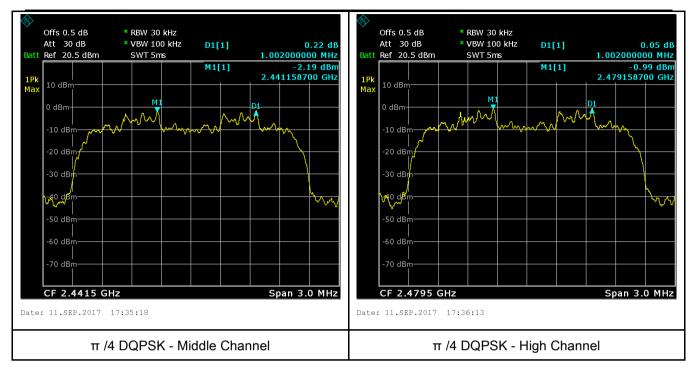
Test Report	17070833-FCC-R3
Page	11 of 68

Rema	rk				
Resu	lt	Pass	Fail		
Test Data	Yes	;	□ _{N/A}		
Test Plot Yes (See below)		N/A			

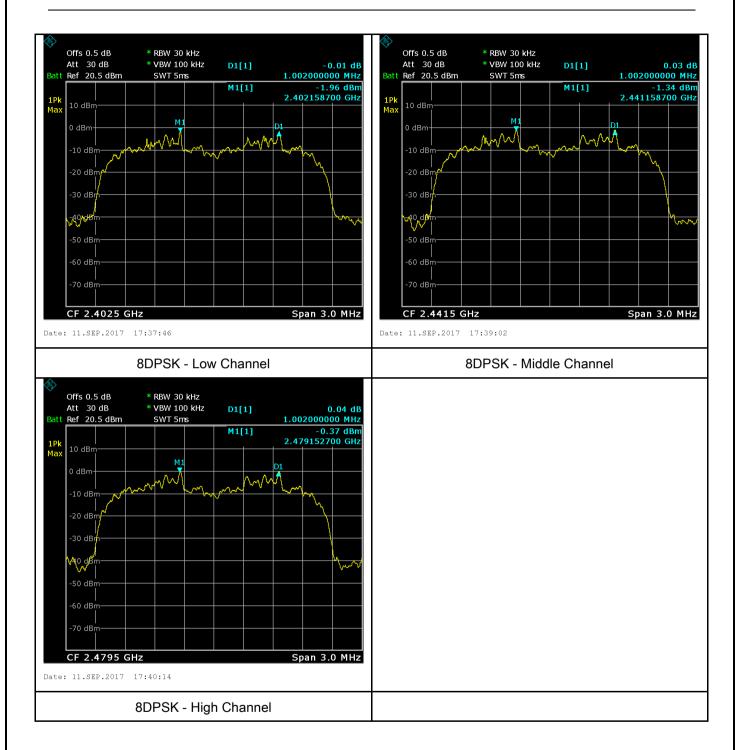
Channel Separation measurement result


Type/ Modulation	СН	CH Frequency (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1	0.690	Pass
	Adjacency Channel	2403	1	0.090	F d 5 5
CH Separation	Mid Channel	2440	1	0.691	Pass
GFSK	Adjacency Channel	2441	1	0.091	F d 5 5
	High Channel	2480	1	0.693	Pass
	Adjacency Channel	2479	-	0.093	Pass
	Low Channel	2402	1	0.859	Pass
	Adjacency Channel	2403	-	0.059	Pass
CH Separation	Mid Channel	2440	1	0.875	Pass
π /4 DQPSK	Adjacency Channel	2441	-	0.675	Pass
	High Channel	2480	4	0.057	Dees
	Adjacency Channel	2479	1	0.857	Pass
	Low Channel	2402	4	0.000	Desa
	Adjacency Channel	2403	1	0.868	Pass
CH Separation	Mid Channel	2440	1	0.050	Dana
8DPSK	Adjacency Channel	2441	1	0.858	Pass
	High Channel	2480	4	0.050	Dess
	Adjacency Channel	2479	1	0.856	Pass

Test Report	17070833-FCC-R3
Page	12 of 68


Test Plots

Channel Separation measurement result



Test Report	17070833-FCC-R3	
Page	13 of 68	

Test Report	17070833-FCC-R3	
Page	14 of 68	

Test Report	17070833-FCC-R3	
Page	15 of 68	

6.3 20dB Bandwidth

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	September 12, 2017
Tested By:	Loren Luo

Requirement(s):					
Spec	Item	Requirement Applicable			
		Frequency hopping systems shall have hopping			
§15.247(a)	2)	channel carrier frequencies separated by a minimum	V		
(1)	(a)	of 25 kHz or the 20 dB bandwidth of the hopping			
		channel, whichever is greater.			
Test Setup					
		Spectrum Analyzer EUT			
The test follows FCC Public Notice DA 00-705 Measurement Guideline					
	Use th	e following spectrum analyzer settings:			
	-	Span = approximately 2 to 3 times the 20 dB bandwidth,	centered on		
	a hopping channel				
	-	RBW ≥ 1% of the 20 dB bandwidth			
	- VBW≥ RBW				
Test	- Sweep = auto				
Procedure	-	Detector function = peak			
rioccurc	-	Trace = max hold.			
-		- The EUT should be transmitting at its maximum data rate. Allow the			
	trace to stabilize. Use the marker-to-peak function to set the marker				
	to the peak of the emission. Use the marker-delta function to				
		measure 20 dB down one side of the emission. Reset the marker-			
		delta function, and move the marker to the other side of the	he		
emission, until it is (as close as possible to) even with the r					

Test Report	17070833-FCC-R3	
Page	16 of 68	

		marker level. The marker-delta reading at this point is the 20 dB			
		bandwidth of the emission. If this value varies with different modes of			
		operation	operation (e.g., data rate, modulation format, etc.), repeat this test for		
		each var	each variation. The limit is specified in one of the subparagraphs of		
		this Sect	ion. Submit this plot(s).		
Remark					
Result		Pass	□ Fail		
	_				
Test Data	V	es	N/A		
Test Plot	V	es (See helow)	N/A		

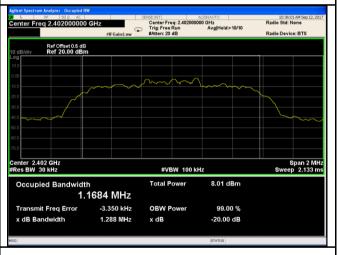
Measurement result

Modulation	СН	CH Frequency	20dB Bandwidth	99% Occupied
Modulation	Сп	(MHz)	(MHz)	Bandwidth (MHz)
	Low	2402	1.035	0.9033
GFSK	Mid	2441	1.036	0.9009
	High	2480	1.040	0.9031
π /4 DQPSK	Low	2402	1.288	1.1684
	Mid	2441	1.312	1.1692
	High	2480	1.286	1.1630
8-DPSK	Low	2402	1.302	1.1759
	Mid	2441	1.287	1.1668
	High	2480	1.284	1.1691

Test Report	17070833-FCC-R3	
Page	17 of 68	

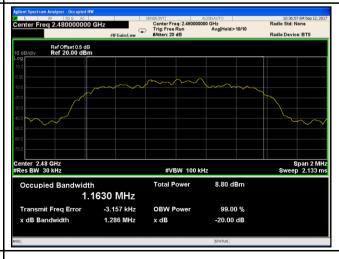
Test Plots

20dB Bandwidth measurement result



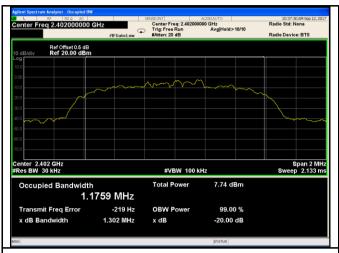
GFSK - Low Channel





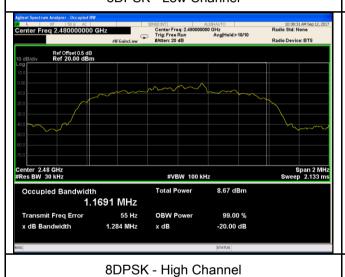
GFSK - High Channel

π /4 DPSK - Low Channel




π /4 DQPSK - Middle Channel

π /4 DQPSK - High Channel



Test Report	17070833-FCC-R3	
Page	18 of 68	

8DPSK - Low Channel

8DPSK - Middle Channel

Test Report	17070833-FCC-R3	
Page	19 of 68	

6.4 Peak Output Power

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	September 12, 2017
Tested By :	Loren Luo

Requirement(s):

Item	Requirement Applicable		
3)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1		
a)	Watt	<u>></u>	
b)	FHSS in 5725-5850MHz: ≤ 1 Watt		
c)	For all other FHSS in the 2400-2483.5MHz band:		
C)	≤ 0.125 Watt.	<u>></u>	
d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt		
٥)	FHSS in 902-928MHz with ≥ 25 & <50 channels:	1	
e)	≤ 0.25 Watt		
f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt		
	Spectrum Analyzer EUT		
The test follows FCC Public Notice DA 00-705 Measurement Guidelines.			
Use the following spectrum analyzer settings:			
- Span = approximately 5 times the 20 dB bandwidth, centered on a			
	hopping channel		
- RBW > the 20 dB bandwidth of the emission being measured			
-	VBW ≥ RBW		
-	Sweep = auto		
-	Detector function = peak		
-	Trace = max hold		
- Allow the trace to stabilize.			
	a) b) c) d) e) f) The tender the	a) FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt b) FHSS in 5725-5850MHz: ≤ 1 Watt c) For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt. d) FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt f) DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt The test follows FCC Public Notice DA 00-705 Measurement Gu Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centender thopping channel RBW > the 20 dB bandwidth of the emission being measured between the content of the	

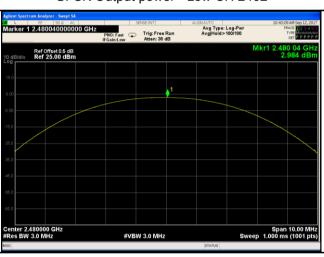
Test Report	17070833-FCC-R3
Page	20 of 68

		- Use the	marker-to-peak function to set the marker to the peak of the
		emissio	n. The indicated level is the peak output power (see the note
		above r	egarding external attenuation and cable loss). The limit is
		specifie	d in one of the subparagraphs of this Section. Submit this
		plot. A p	eak responding power meter may be used instead of a
		spectrui	m analyzer.
Remark			
Result		Pass	Fail
Test Data	V	'es	□ _{N/A}
Test Plot	V	es (See below)	□ _{N/A}

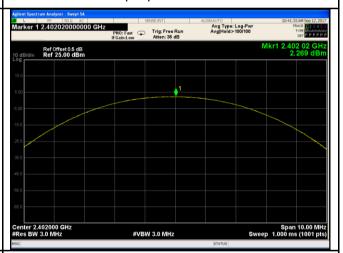
Peak Output Power measurement result

Туре	Modulation	СН	Frequenc y (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	2.428	125	Pass
	GFSK	Mid	2441	2.468	125	Pass
		High	2480	2.984	125	Pass
Outerist	π /4 DQPSK 8-DPSK	Low	2402	2.269	125	Pass
Output		Mid	2441	2.237	125	Pass
power		High	2480	2.806	125	Pass
		Low	2402	2.232	125	Pass
		Mid	2441	2.289	125	Pass
		High	2480	2.955	125	Pass

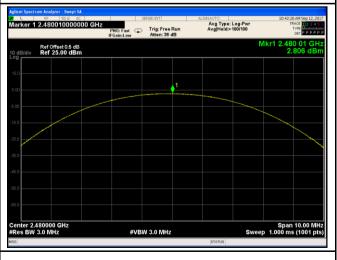
Test Report	17070833-FCC-R3
Page	21 of 68


Test Plots

Output Power measurement result

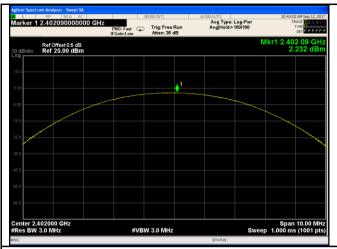


GFSK Output power - Low CH 2402


GFSK Output power - Mid CH 2441

GFSK Output power - High CH 2480

 π /4 DQPSK Output power - Low CH 2402



 π /4 DQPSK Output power - Mid CH 2441

 π /4 DQPSK Output power - High CH 2480

Test Report	17070833-FCC-R3
Page	22 of 68

8DPSK Output power - Low CH 2402

8DPSK Output power - Mid CH 2441

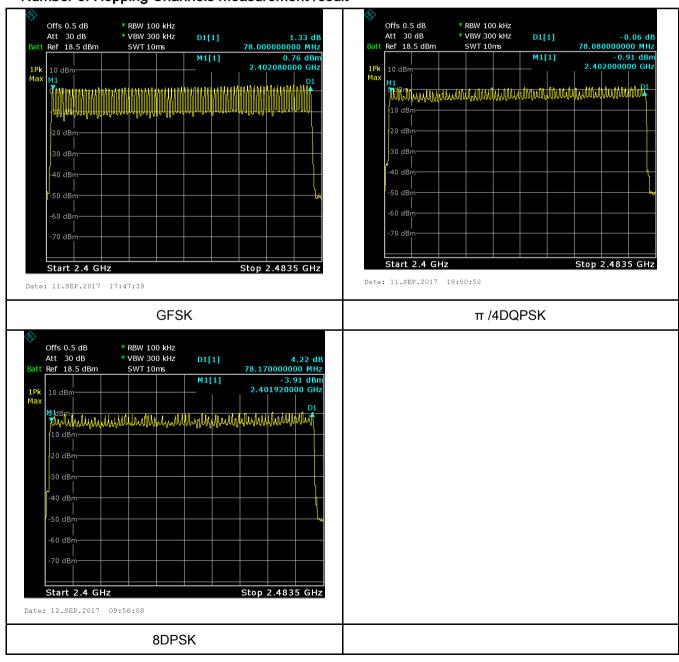
8DPSK Output power - High CH 2480

Test Report	17070833-FCC-R3
Page	23 of 68

6.5 Number of Hopping Channel

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	September 12, 2017
Tested By:	Loren Luo

Requirement(s):					
Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels	>		
Test Setup		Spectrum Analyzer EUT			
	The te	st follows FCC Public Notice DA 00-705 Measurement Gu	ıidelines.		
	Use the	e following spectrum analyzer settings:			
	The El	JT must have its hopping function enabled.			
	-	Span = the frequency band of operation			
	-	RBW ≥ 1% of the span			
- ,	- VBW ≥ RBW				
Test	-	Sweep = auto			
Procedure	-	Detector function = peak			
	-	Trace = max hold			
	-	Allow trace to fully stabilize.			
	-	It may prove necessary to break the span up to sections,	in order to		
		clearly show all of the hopping frequencies. The limit is specified in			
	one of the subparagraphs of this Section. Submit this plot(s).				
Remark					
Result	Pas	Fail			
Test Data	Yes	N/A			
Test Plot	Yes (See	below)			


Test Report	17070833-FCC-R3
Page	24 of 68

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number	GFSK	2400-2483.5	79	15
Number of Hopping Channel	π /4 DQPSK	2400-2483.5	79	15
	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	17070833-FCC-R3
Page	25 of 68

6.6 Time of Occupancy (Dwell Time)

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	September 12, 2017
Tested By :	Loren Luo

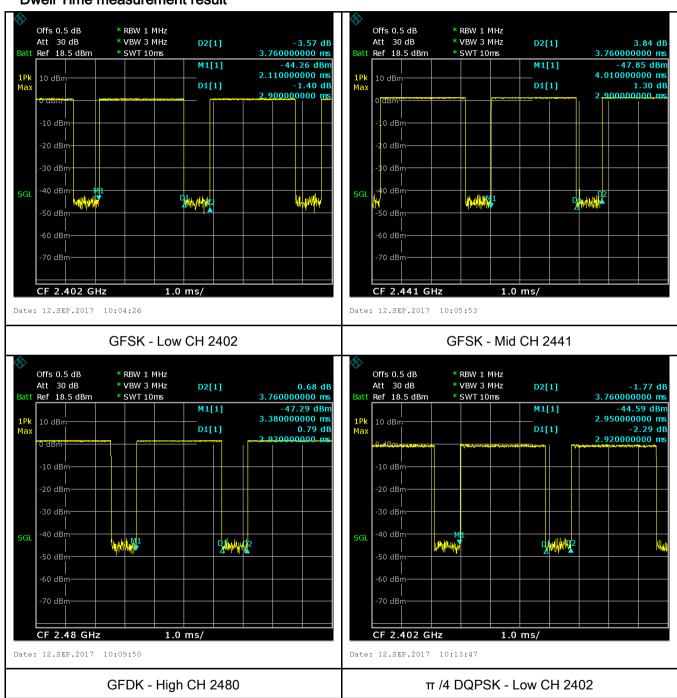
Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	V
Test Setup		Spectrum Analyzer EUT	
		st follows FCC Public Notice DA 00-705 Measurement G	Guidelines.
	Use th	e following spectrum analyzer	
	-	Span = zero span, centered on a hopping channel	
	-	RBW = 1 MHz	
Test	-	VBW ≥ RBW	
Procedure	-	Sweep = as necessary to capture the entire dwell time p	er hopping
		channel	
	-	Detector function = peak	
	-	Trace = max hold	
	-	use the marker-delta function to determine the dwell time	е
Remark			
Result	Pas	s Fail	

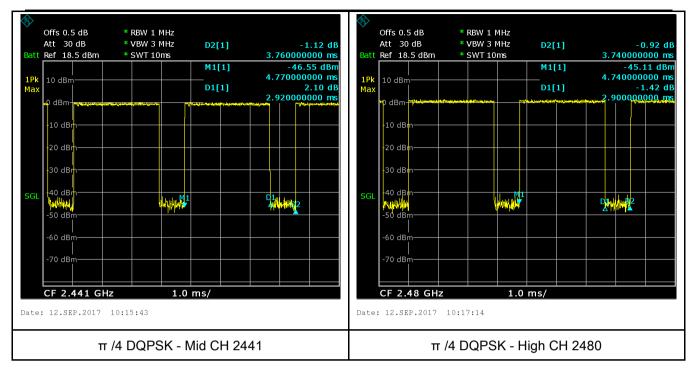
Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	$\square_{N/A}$

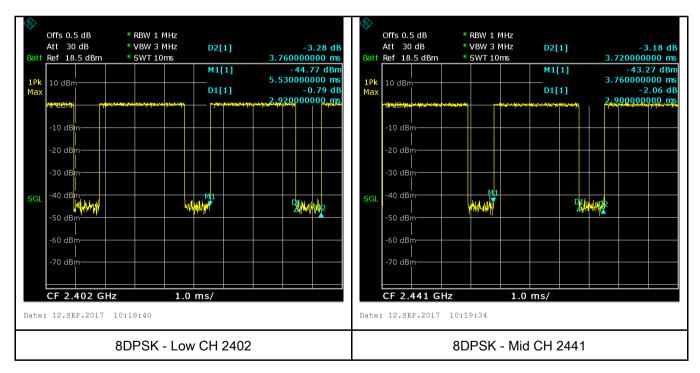
Test Report	17070833-FCC-R3
Page	26 of 68

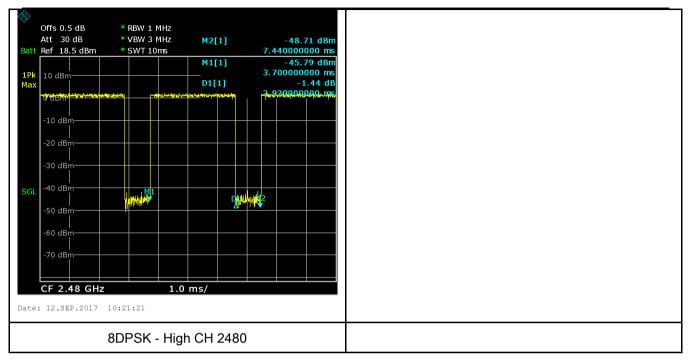
Dwell Time measurement result


Tymo	Modulation	СН	Pulse Width	Dwell Time	Limit	Docult
Туре	Modulation	СП	(ms)	(ms)	(ms)	Result
		Low	2.900	309.333	400	Pass
	GFSK	Mid	2.900	309.333	400	Pass
		High	2.920	311.467	400	Pass
Dwell Time		Low	2.920	311.467	400	Pass
	π /4 DQPSK	Mid	2.920	311.467	400	Pass
		High	2.900	309.333	400	Pass
		Low	2.920	311.467	400	Pass
	8-DPSK	Mid	2.900	309.333	400	Pass
		High	2.920	311.467	400	Pass
Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6						

Test Report	17070833-FCC-R3
Page	27 of 68


Test Plots


Dwell Time measurement result


Test Report	17070833-FCC-R3
Page	28 of 68

Test Report	17070833-FCC-R3
Page	29 of 68

Test Report	17070833-FCC-R3
Page	30 of 68

6.7 Band Edge & Restricted Band

Temperature	24°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	September 05, 2017
Tested By:	Loren Luo

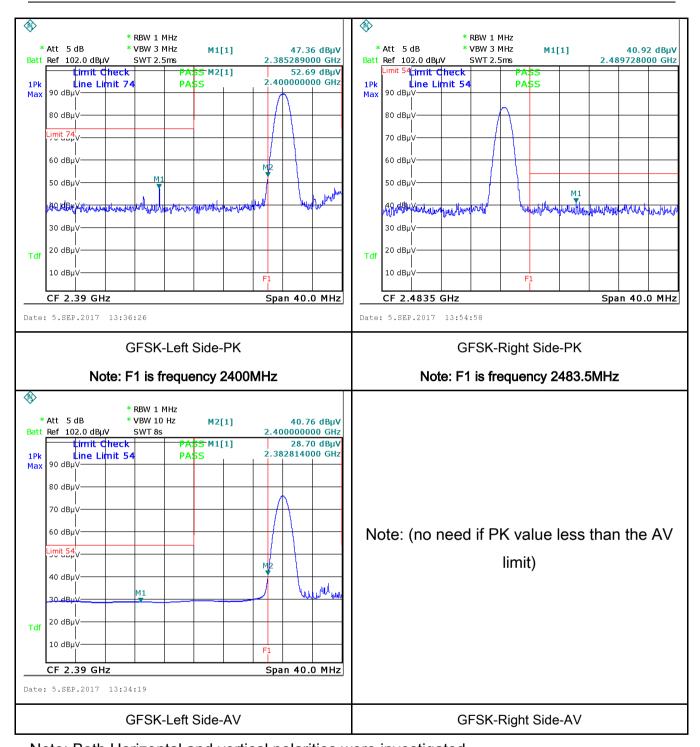
Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	
Test Setup	Ant. Tower Support Units Ground Plane Test Receiver		
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range,		

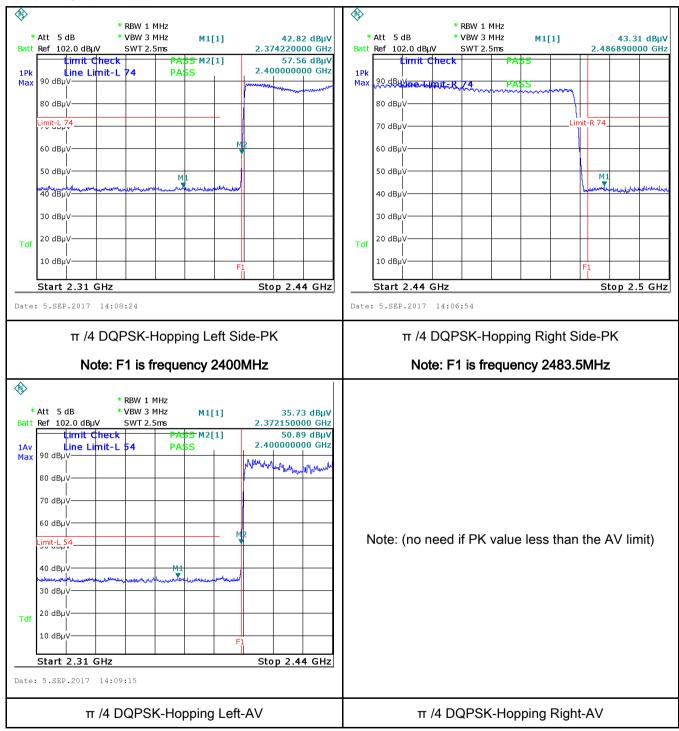
Test Report	17070833-FCC-R3
Page	31 of 68

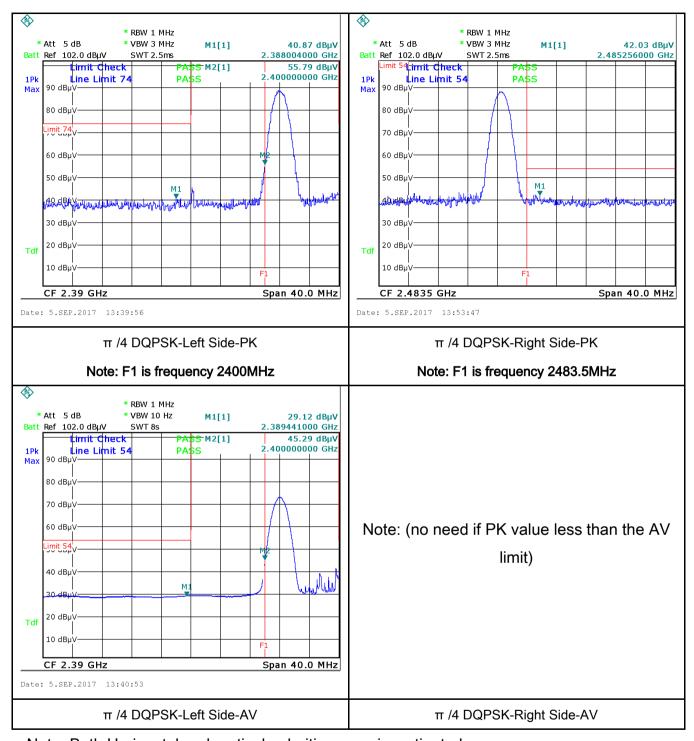

	and make sure the instrument is operated in its linear range.
	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as
	below at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Koman	
Result	Pass Fail
Test Data	Yes N/A
i est data	IVA
Test Plot	Yes (See below)

Test Report	17070833-FCC-R3
Page	32 of 68

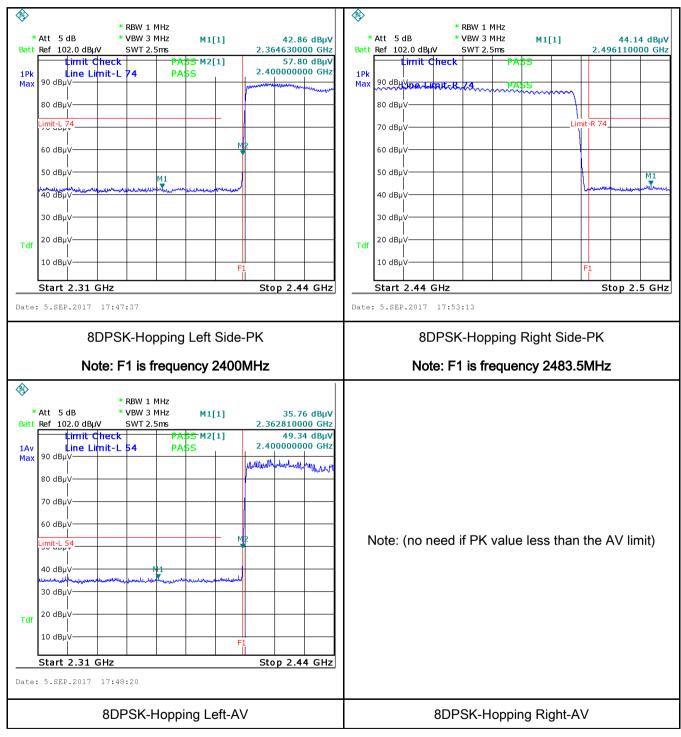

Test Plots

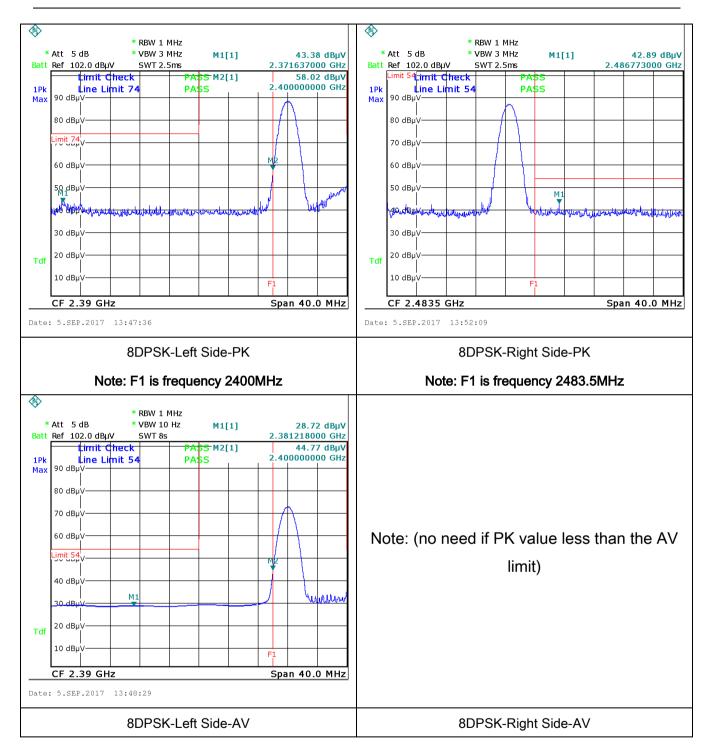
GFSK Mode:


Test Report	17070833-FCC-R3
Page	33 of 68


Test Report	17070833-FCC-R3
Page	34 of 68

π /4 DQPSK Mode:


Test Report	17070833-FCC-R3
Page	35 of 68


Test Report	17070833-FCC-R3
Page	36 of 68

8-DPSK Mode:

Test Report	17070833-FCC-R3
Page	37 of 68

Note: Both Horizontal and vertical polarities were investigated.

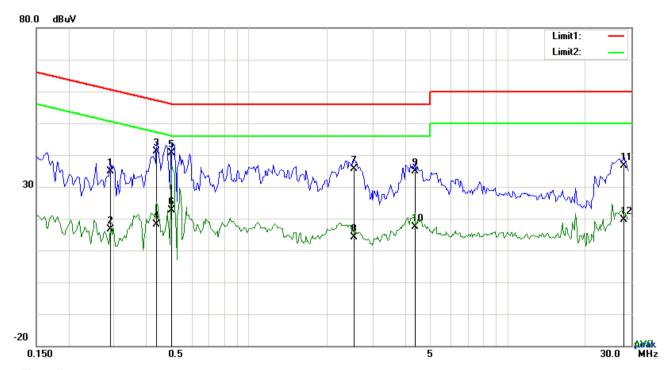
Test Report	17070833-FCC-R3
Page	38 of 68

6.8 AC Power Line Conducted Emissions

Temperature	24°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	September 05, 2017
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement		Applicable		
47CFR§15. 207, RSS210	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges Limit (dBµV)				
(A8.1)		(MHz)	QP	Average		
		0.15 ~ 0.5	66 – 56	56 – 46		
		0.5 ~ 5	56	46		
		5~30 60 50				
Test Setup	Vertical Ground Reference Plane EUT Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm					
	1. The		runits and other metal pla Juipment were set up in		auirements of	
		1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table.				
Procedure		50W/50mH EUT LISN, c	onnected to			
	3. The	RF OUT of the EUT LIS	SN was connected to the	ne EMI test receiver via	a low-loss	

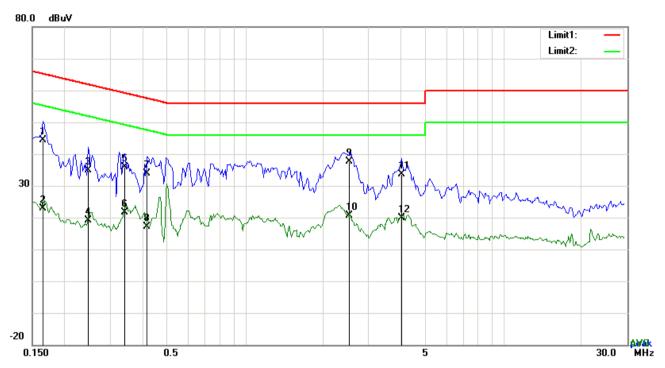

Test Report	17070833-FCC-R3
Page	39 of 68

	coaxial cable.
	4. All other supporting equipment were powered separately from another main supply.
	5. The EUT was switched on and allowed to warm up to its normal operating condition.
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)
	over the required frequency range using an EMI test receiver.
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the
	selected frequencies and the necessary measurements made with a receiver bandwidth
	setting of 10 kHz.
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	Pass Fail
Test Data	Yes N/A
Test Plot	Yes (See below) N/A

Test Report	17070833-FCC-R3
Page	40 of 68

Test Mode:	Bluetooth Mode

Test Data

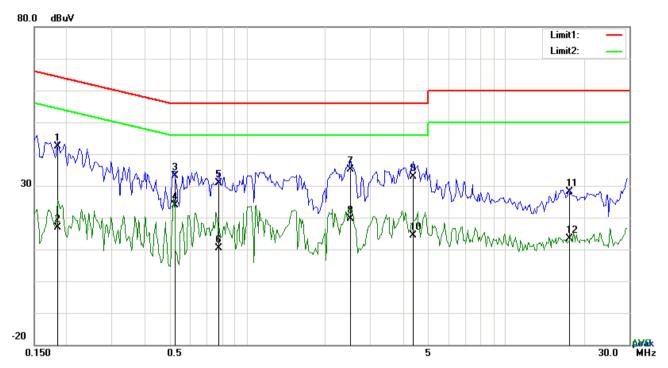

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.2904	24.96	QP	10.03	34.99	60.51	-25.52
2	L1	0.2904	6.53	AVG	10.03	16.56	50.51	-33.95
3	L1	0.4386	31.19	QP	10.03	41.22	57.09	-15.87
4	L1	0.4386	7.98	AVG	10.03	18.01	47.09	-29.08
5	L1	0.5010	30.56	QP	10.03	40.59	56.00	-15.41
6	L1	0.5010	12.60	AVG	10.03	22.63	46.00	-23.37
7	L1	2.5407	25.52	QP	10.05	35.57	56.00	-20.43
8	L1	2.5407	4.02	AVG	10.05	14.07	46.00	-31.93
9	L1	4.3728	24.76	QP	10.07	34.83	56.00	-21.17
10	L1	4.3728	7.20	AVG	10.07	17.27	46.00	-28.73
11	L1	28.0848	26.28	QP	10.45	36.73	60.00	-23.27
12	L1	28.0848	9.21	AVG	10.45	19.66	50.00	-30.34

Test Report	17070833-FCC-R3
Page	41 of 68

Test Mode: Bluetooth Mode	Test Mode:	Bluetooth Mode
---------------------------	------------	----------------

Test Data

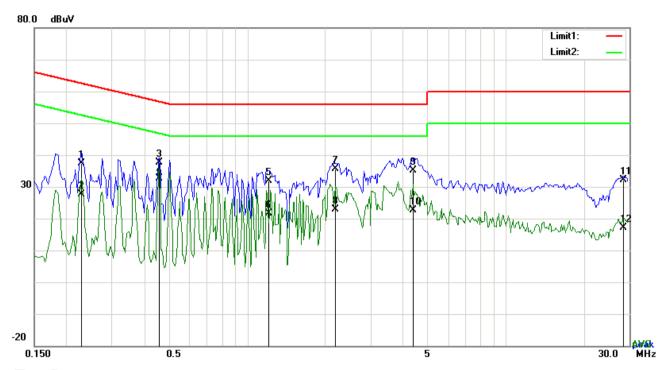

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	N	0.1656	34.32	QP	10.02	44.34	65.18	-20.84
2	N	0.1656	12.81	AVG	10.02	22.83	55.18	-32.35
3	Ν	0.2475	24.92	QP	10.02	34.94	61.84	-26.90
4	Ν	0.2475	9.12	AVG	10.02	19.14	51.84	-32.70
5	N	0.3411	25.91	QP	10.02	35.93	59.18	-23.25
6	Ν	0.3411	11.53	AVG	10.02	21.55	49.18	-27.63
7	Ν	0.4191	23.82	QP	10.02	33.84	57.47	-23.63
8	Ν	0.4191	7.21	AVG	10.02	17.23	47.47	-30.24
9	N	2.5290	27.57	QP	10.05	37.62	56.00	-18.38
10	N	2.5290	10.63	AVG	10.05	20.68	46.00	-25.32
11	N	4.0257	23.57	QP	10.06	33.63	56.00	-22.37
12	N	4.0257	9.84	AVG	10.06	19.90	46.00	-26.10

Test Report	17070833-FCC-R3
Page	42 of 68

Test Mode: Bluetooth Mode

Test Data


Phase Line Plot at 240Vac, 60Hz

	· · · · · · · · · · · · · · · · · · ·							
No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB}	(dBuV)	(dBuV)	(dB)
1	L1	0.1851	32.43	QP	10.03	42.46	64.25	-21.79
2	L1	0.1851	6.76	AVG	10.03	16.79	54.25	-37.46
3	L1	0.5244	23.15	QP	10.03	33.18	56.00	-22.82
4	L1	0.5244	13.93	AVG	10.03	23.96	46.00	-22.04
5	L1	0.7779	20.97	QP	10.03	31.00	56.00	-25.00
6	L1	0.7779	0.32	AVG	10.03	10.35	46.00	-35.65
7	L1	2.5095	24.98	QP	10.05	35.03	56.00	-20.97
8	L1	2.5095	9.59	AVG	10.05	19.64	46.00	-26.36
9	L1	4.3884	22.89	QP	10.07	32.96	56.00	-23.04
10	L1	4.3884	4.36	AVG	10.07	14.43	46.00	-31.57
11	L1	17.5782	17.97	QP	10.26	28.23	60.00	-31.77
12	L1	17.5782	3.18	AVG	10.26	13.44	50.00	-36.56

Test Report	17070833-FCC-R3
Page	43 of 68

Test Mode:	Bluetooth Mode

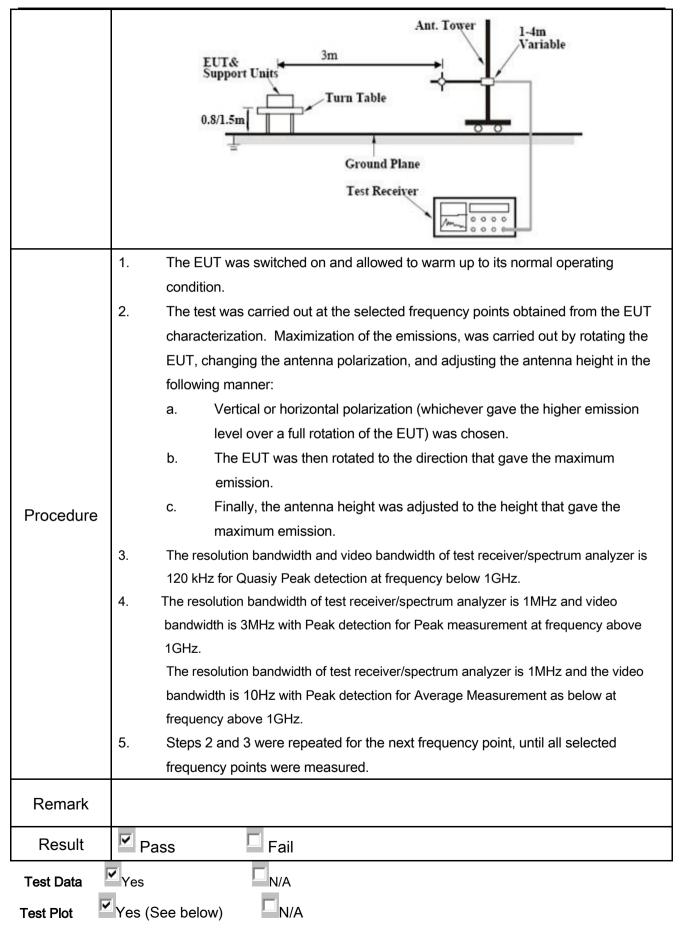
Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	Ν	0.2280	27.48	QP	10.02	37.50	62.52	-25.02
2	Ν	0.2280	17.73	AVG	10.02	27.75	52.52	-24.77
3	N	0.4581	27.64	QP	10.02	37.66	56.73	-19.07
4	Ν	0.4581	22.57	AVG	10.02	32.59	46.73	-14.14
5	Ν	1.2108	21.93	QP	10.03	31.96	56.00	-24.04
6	Ν	1.2108	11.55	AVG	10.03	21.58	46.00	-24.42
7	Ν	2.1936	25.51	QP	10.04	35.55	56.00	-20.45
8	Ν	2.1936	12.75	AVG	10.04	22.79	46.00	-23.21
9	Ν	4.3728	25.09	QP	10.06	35.15	56.00	-20.85
10	N	4.3728	12.48	AVG	10.06	22.54	46.00	-23.46
11	Ν	28.5333	21.63	QP	10.40	32.03	60.00	-27.97
12	N	28.5333	6.69	AVG	10.40	17.09	50.00	-32.91

Test Report	17070833-FCC-R3
Page	44 of 68

6.9 Radiated Emissions & Restricted Band


Temperature	24°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	September 05, 2017
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement Applicable			
47CFR§15.		Except higher limit as specified else emissions from the low-power radio exceed the field strength levels specified the level of any unwanted emissions the fundamental emission. The tight edges			
205, §15.209,	a)	Frequency range (MHz) 0.009~0.490	Field Strength (μV/m) 2400/F(KHz)	V	
§15.247(d)		0.490~1.705	24000/F(KHz)		
913.247(d)		1.705~30.0	30		
		30 - 88	100		
		88 – 216	150		
		216 960	200		
		Above 960	500		
Test Setup		Above 960 Sometimes Ground Plane FITE Receives			

Test Report	17070833-FCC-R3	
Page	45 of 68	

Test Report	17070833-FCC-R3
Page	46 of 68

Test Result:

Test Mode: Transmitting Mode

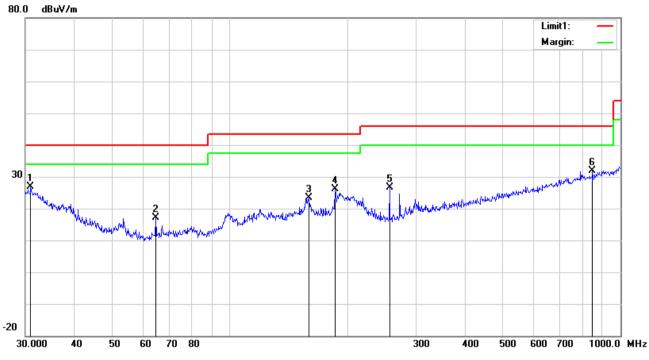
Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

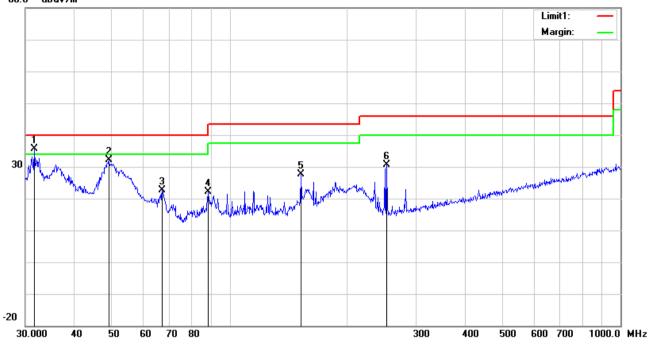
Test Report	17070833-FCC-R3
Page	47 of 68

Test Mode: Bluetooth Mode

30MHz -1GHz

Test Data

Horizontal Polarity Plot @3m


No.	P/L	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
				or								ее
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	30.9619	27.74	peak	20.66	22.27	0.65	26.78	40.00	-13.22	100	37
2	Н	64.6594	31.09	peak	7.53	22.40	0.87	17.09	40.00	-22.91	200	245
3	Н	159.2251	31.65	peak	12.60	22.28	1.39	23.36	43.50	-20.14	100	50
4	Н	186.4409	35.65	peak	11.35	22.29	1.48	26.19	43.50	-17.31	100	115
5	Н	256.5211	35.53	peak	11.69	22.29	1.71	26.64	46.00	-19.36	100	246
6	Н	848.0563	28.00	peak	21.93	21.02	2.87	31.78	46.00	-14.22	100	224

Test Report	17070833-FCC-R3
Page	48 of 68

30MHz -1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
		(MHz)	(dBuV/m)	Oi .	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	٧	31.6202	37.00	QP	20.15	22.27	0.67	35.55	40.00	-4.45	100	233
2	٧	49.0145	44.98	peak	8.83	22.36	0.79	32.24	40.00	-7.76	100	247
3	٧	67.2022	36.54	peak	7.66	22.39	0.92	22.73	40.00	-17.27	100	334
4	٧	88.0329	35.63	peak	7.92	22.34	1.00	22.21	43.50	-21.29	100	245
5	V	152.1297	36.06	peak	12.60	22.33	1.35	27.68	43.50	-15.82	100	116
6	V	252.0627	39.76	peak	11.49	22.29	1.70	30.66	46.00	-15.34	200	31

Test Report	17070833-FCC-R3
Page	49 of 68

Above 1GHz

Test Mode:

Low Channel: GFSK Mode (Worst Case) (2402 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	38.82	AV	V	33.39	7.22	48.46	30.97	54	-23.03
4804	40.44	AV	Н	33.39	7.22	48.46	32.59	54	-21.41
4804	49.23	PK	V	33.39	7.22	48.46	41.38	74	-32.62
4804	45.59	PK	Н	33.39	7.22	48.46	37.74	74	-36.26
6812	25.07	AV	V	36.88	7.94	49.17	20.72	54	-33.28
6812	24.07	AV	Н	36.88	7.94	49.17	19.72	54	-34.28
6812	40.94	PK	V	36.88	7.94	49.17	36.59	74	-37.41
6812	42.1	PK	Н	36.88	7.94	49.17	37.75	74	-36.25

Middle Channel: GFSK Mode (Worst Case) (2441 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4882	38.22	AV	V	33.62	7.53	48.36	31.01	54	-22.99
4882	39.82	AV	Η	33.62	7.53	48.36	32.61	54	-21.39
4882	48.74	PK	٧	33.62	7.53	48.36	41.53	74	-32.47
4882	46.48	PK	Η	33.62	7.53	48.36	39.27	74	-34.73
12457	24.84	AV	٧	40.44	13.42	46.15	32.55	54	-21.45
12457	23.98	AV	Н	40.44	13.42	46.15	31.69	54	-22.31
12457	41.67	PK	٧	40.44	13.42	46.15	49.38	74	-24.62
12457	41.42	PK	Η	40.44	13.42	46.15	49.13	74	-24.87

Test Report	17070833-FCC-R3
Page	50 of 68

High Channel: GFSK Mode (Worst Case) (2480 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	36.64	AV	V	33.89	7.86	48.31	30.08	54	-23.92
4960	37.4	AV	Н	33.89	7.86	48.31	30.84	54	-23.16
4960	47.07	PK	V	33.89	7.86	48.31	40.51	74	-33.49
4960	46.82	PK	Н	33.89	7.86	48.31	40.26	74	-33.74
17862	24.33	AV	V	42.56	18.45	45.54	39.8	54	-14.2
17862	23.6	AV	Н	42.56	18.45	45.54	39.07	54	-14.93
17862	41.47	PK	V	42.56	18.45	45.54	56.94	74	-17.06
17862	40.8	PK	Н	42.56	18.45	45.54	56.27	74	-17.73

Note:

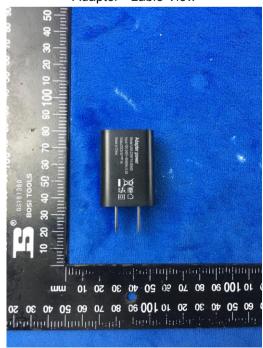
- 1, The testing has been conformed to 10*2480MHz=24,800MHz
- 2, All other emissions more than 30 dB below the limit
- $\it 3, X-Axis, Y-Axis \ and \ Z-Axis \ were \ investigated.$ The results above show only the worst case.
- 4, The radiated spurious test above 18GHz is subcontracted to SIEMIC (Nanjing-China) Laboratories. and found 30dB below the limit at least.

Test Report	17070833-FCC-R3
Page	51 of 68

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/16/2016	09/15/2017	~
Line Impedance	LI-125A	191106	09/24/2016	09/23/2017	•
Line Impedance	LI-125A	191107	09/24/2016	09/23/2017	>
ISN	ISN T800	34373	09/24/2016	09/23/2017	
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	✓
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/16/2016	09/15/2017	>
Power Splitter	1#	1#	08/30/2017	08/29/2018	>
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	~
Positioning Controller	UC3000	MF780208282	11/18/2016	11/17/2017	>
OPT 010 AMPLIFIER	04475	0707400400	00/00/0047	00/00/0040	_
(0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	•
Microwave Preamplifier	0440D	2000 4 02 402	00/00/0047	00/00/0040	V
(1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	V
Horn Antenna	BBHA9170	3145226D1	09/28/2016	09/27/2017	>
1101117 tilterilla	DB11/10170	011022001	00/20/2010	00/21/2011	
Active Antenna	A1 400	101001	40/40/0040	10/10/0017	_
(9kHz-30MHz)	AL-130	121031	10/13/2016	10/12/2017	~
Bilog Antenna					
(30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	V
,					
Double Ridge Horn	AH-118	71283	09/23/2016	09/22/2017	<u> </u>
Antenna (1 ~18GHz)				, , , , , , , , , , , , , , , , , , , ,	
Universal Radio					
Communication Tester	CMU200	121393	09/24/2016	09/23/2017	✓

Test Report	17070833-FCC-R3
Page	52 of 68


Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Whole Package View

Adapter - Lable View

Test Report	17070833-FCC-R3
Page	53 of 68

EUT - Front View

EUT - Rear View

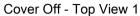
Test Report	17070833-FCC-R3
Page	54 of 68

EUT - Top View

EUT - Bottom View

Test Report	17070833-FCC-R3
Page	55 of 68

EUT - Left View


EUT - Right View

Test Report	17070833-FCC-R3
Page	56 of 68

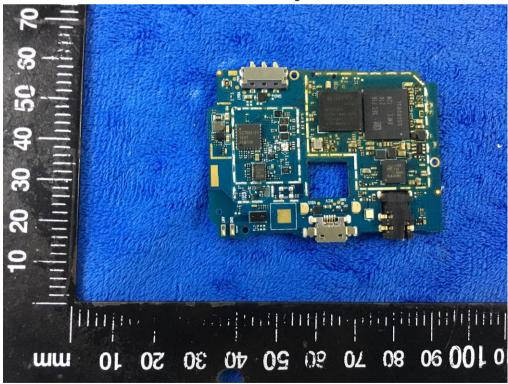
Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 2

Test Report	17070833-FCC-R3
Page	57 of 68

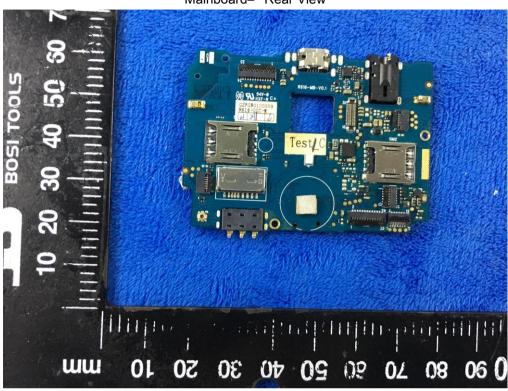
Battery - Front View


Battery - Rear View



Test Report	17070833-FCC-R3
Page	58 of 68

Mainboard with Shielding - Front View


Mainboard without Shielding - Front View

Test Report	17070833-FCC-R3
Page	59 of 68

Mainboard- Rear View

LCD - Front View

Test Report	17070833-FCC-R3
Page	60 of 68

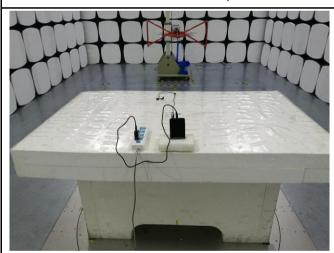
LCD - Rear View

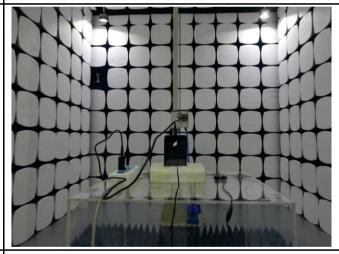
GSM/PCS/UMTS-FDD Antenna View

Test Report	17070833-FCC-R3
Page	61 of 68

WIFI/BT/BLE/GPS - Antenna View

Test Report	17070833-FCC-R3
Page	62 of 68

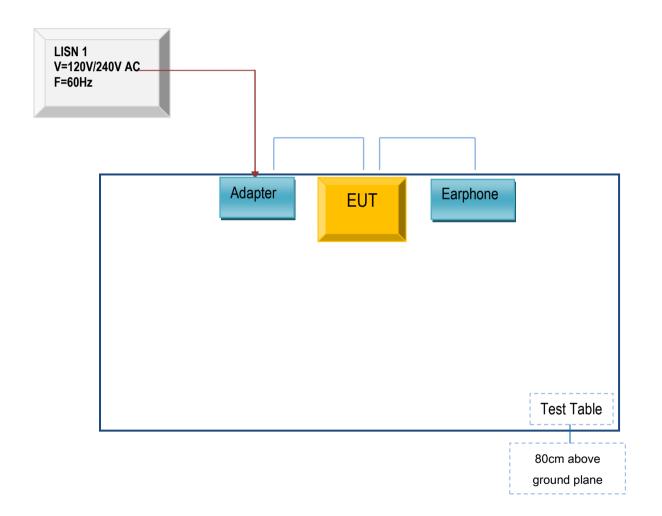

Annex B.iii. Photograph: Test Setup Photo


Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

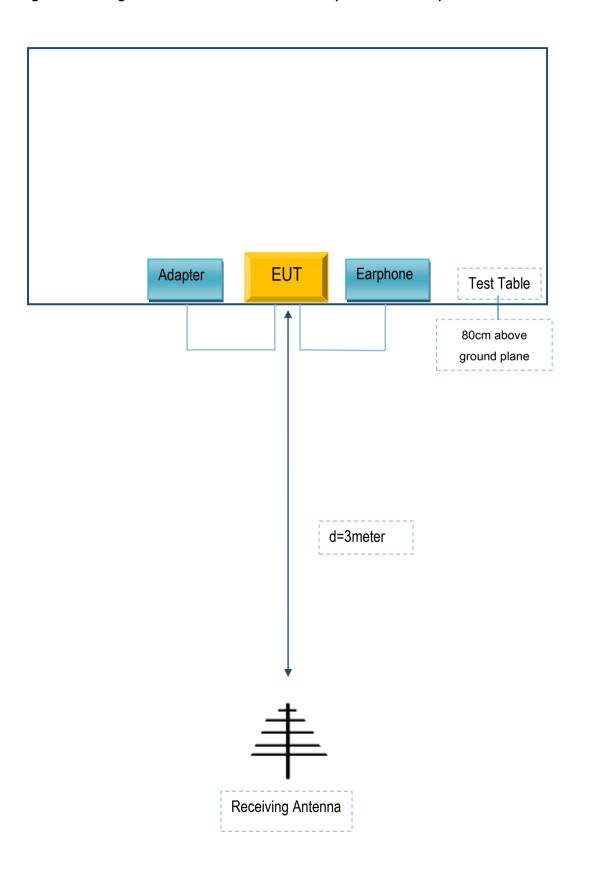
Radiated Spurious Emissions Test Setup Above 1GHz



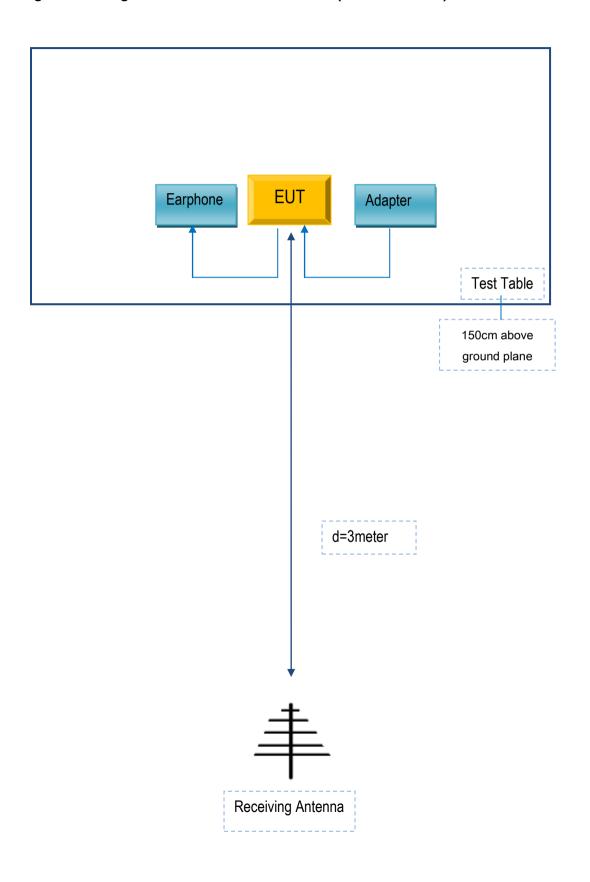
Test Report	17070833-FCC-R3
Page	63 of 68

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report	17070833-FCC-R3
Page	64 of 68


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	17070833-FCC-R3
Page	65 of 68

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	17070833-FCC-R3
Page	66 of 68

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Verykool USA Inc	Adapter	s5205	N/A
Verykool USA Inc	Earphone	s5205	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	N/A

Test Report	17070833-FCC-R3
Page	67 of 68

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report	17070833-FCC-R3
Page	68 of 68

Annex E. DECLARATION OF SIMILARITY

Verykool USA Inc

To: 775 Montague Expressway Mlpitas, CA 95035, USA

Declaration Letter

Dear Sir.

For our business issue and marketing requirement, we would like to list serial model numbers on The FCC reports, as following:

Model No:, s5205 Serial Model No: s5204

We declare that: s5205, s5204 all models the same PCB and Appearance shape, accessories ,the difference of these is listed as below:

Main Model No	Serial Model No	Difference
s5205	s5204	The only difference between s5205 and s5204 is the front camera change from 8+8 (5+5AFHW) to 5+8 (2+5AFHW)

Thank you!

Sincerely,

Client's signature :

Client's name: Sunny Choi Title: Product Director

Date:9/1/2017

Contact information : Verykool USA Inc

Address: 3636 Nobel Drive, Suite 325, San Diego, California 92122 United States