

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

3TL

Table of Contents P	Page
REPORT ISSUED HISTORY	4
1. GENERAL SUMMARY	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	11
3.3 EUT OPERATING CONDITIONS	12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
3.5 DESCRIPTION OF SUPPORT UNITS	14
4. EMC EMISSION TEST	15
4.1 CONDUCTED EMISSION MEASUREMENT	15
4.1.1 POWER LINE CONDUCTED EMISSION	15
4.1.2 MEASUREMENT INSTRUMENTS LIST 4.1.3 TEST PROCEDURE	15 16
4.1.3 TEST PROCEDURE 4.1.4 DEVIATION FROM TEST STANDARD	16
4.1.5 TEST SETUP	16
4.1.6 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	29
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	29
4.2.2 MEASUREMENT INSTRUMENTS LIST	30
4.2.3 TEST PROCEDURE	30
4.2.4 DEVIATION FROM TEST STANDARD	30
4.2.5 TEST SETUP	31
4.2.6 TEST RESULTS-BELOW 1 GHZ 4.2.7 TEST RESULTS-ABOVE 1 GHZ	31 44
	••

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Apr. 22, 2019
R01	Changed Software Version.	May 13, 2019
	Changed the FCC ID QISMAR-LX3Am to QISMAR-LX3AM.	May 20, 2019

1. GENERAL SUMMARY

Equipment : Brand Name :	
Test Model :	
Series Model :	N/A
Applicant :	Huawei Technologies Co., Ltd.
Manufacturer :	Huawei Technologies Co., Ltd.
Address :	Administration Building, Headquarters of Huawei Technologies Co., Ltd.,
	Bantian, Longgang District, Shenzhen, 518129, China
Date of Test :	Apr. 08, 2019 ~ Apr. 18, 2019
Test Sample :	Engineering Sample No.: D190403529
	IMEI1:865004040000701, IMEI2:865004040001626
Standard(s) :	FCC Part 15, Subpart B
	ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCE-1-1904C018) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	EMC Emission						
Standard(s)	Test Item	Limit	Judgment	Remark			
	Conducted Emission	Class B	PASS				
FCC Part15, Subpart B ANSI C63.4-2014	Radiated emission Below 1 GHz	Class B	PASS				
	Radiated emission Above 1 GHz	Class B	PASS	NOTE(1)			

NOTE:

(1) The EUT's max operating frequency is 2.4 GHz which does exceed 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C01	CISPR	150 kHz ~ 30MHz	3.16

B. Radiated Measurement

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	3.83
DG-CB02	CISPR	30MHz ~ 200MHz	Н	3.79
(3m)		200MHz ~ 1,000MHz	V	4.04
		200MHz ~ 1,000MHz	Н	4.02

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB02	CISPR	1GHz ~ 6GHz	4.50
(3m)	CISER	6GHz ~ 18GHz	5.18

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Phone
Brand Name	HUAWEI
Test Model	MAR-LX3Am
Series Model	N/A
Model Difference(s)	N/A
Work Frequency	Please refer to Note 2.
Hardware Version	HL4MARM
Software Version	9.0.1.156(SP1C900E141R1P6)
Power Source	1# DC voltage supplied from AC/DC adapter.
Fower Source	2# Supplied from battery. 3# Supplied from USB port.
	1# I/P: 100-240V~ 50/60Hz, 0.5A
Power Rating	O/P: 5V === 2A OR 9V === 2A
i owor realing	2# DC 3.82V, 3240 mAh
	3# DC 5V

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

	Mode	Work Fred	quency	
	Mode	Transmit Frequency(MHz)	Receive Frequency(MHz)	
GSM	GSM 850	824 - 849	869 - 894	
0.510	PCS1900	1850-1910	1930-1990	
V	VCDMA B5	824 - 849	869 - 894	
V	VCDMAB4	1710-1755	2110-2155	
V	VCDMA B2	1850-1910	1930-1990	
	LTE B2	1850 -1910	1930 -1990	
	LTE B4	1710 -1755	2110 -2155	
	LTE B5	824-849	869-894	
	LTE B7 2500 -2570		2620 - 2690	
	LTE B12	699-716	729-746	
	LTE B17	704-716	734-746	
	LTE B66	1710–1780	2110-2200	
	Bluetooth	2400-24	83.5	
2	2.4G Wi-Fi	2400-24	83.5	
	GPS	/	1575.42	
	BDS	/	1561.098	
	Glonass	/	1602	
FM		/	Support	

*The above work frequency is exemption frequency.

3. The EUT contains following accessory devices.

Itomo	Eastan	Model Nemo	Decoription
Items	Factory	Model Name	Description
Adapter	Salcomp (Manufacturer: Huawei Technologies Co., Ltd.) BYD (Manufacturer: Huawei Technologies Co., Ltd.)	HW-090200EH0 HW-090200BH0 HW-090200AH0 HW-090200UH0 HW-059200EHQ	I/P: 100-240V ~50/60Hz, 0.5A O/P: 5V === 2A OR
	HUNTKEY (Manufacturer: Huawei Technologies Co., Ltd.)	HW-090200EH0 HW-090200BH0 HW-090200UH0	9V === 2A
	Huawei Technologies Co., Ltd.	HW-090200UH1	
Battery	Sunwoda (Manufacturer: Huawei Technologies Co., Ltd.) Desay (Manufacturer: Huawei Technologies Co., Ltd.) SCUD (Manufacturer: Huawei Technologies Co., Ltd.)	HB356687ECW	Rated capacity: 3240mAh Nominal Voltage: +3.82V Charging Voltage: +4.40V
	Jiangxi Lianchuang Hongsheng Electronic Co., LTD.	MEND1532B528A02 MEND1532B528B00	
Earphone	Boluo County Quancheng Electronic Co.,Itd	1293-3283-3.5mm-322 1293-3283-3.5mm-336	-
	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	EPAB542-2WH05-DH EPAB542-2WH06-DH	
	HUIZHOU DEHONG TECHNOLOGY CO.,LTD.	330-50507	-
	FOXCONN INTERCONNECT TECHNOLOGY LIMITED	CUDU01B-HC295-EH	
USB Cable	NingBo Broad Telecommunication Co.,Ltd.	WA0020	
	LUXSHARE Precision Industry Co., Ltd.	L99UC131-CS-H	
	Freeport Resources Enterprises (Jiangxi) Co.,Ltd	18-93C2CHO-001HF	
	Dongguan Mingji Electronics Technology Group Co.,Ltd	203-1572-0	

4. Configuration table:

ltem	Factory	Model	config1	config2	config3	config4	config5	config6	config7	config8	config9
Live the second		HW-090200EH0	V								
	HuntKey	HW-090200UH0		V							
		HW-090200EH0			V						
	Salcomp	HW-090200UH0				V					
Adapter		HW-059200EHQ					V				
		HW-090200EH0						V			
	BYD	HW-090200UH0							V		
		HW-059200EHQ								V	
	HUAWEI	HW-090200UH1									V
	LUXSHARE	L99UC131-CS-H	V						V	V	V
	DEHONG	330-50507		V							
USB	Lianji	18-93C2CHO-001HF			V						
Cable	FOXCONN	CUDU01B-HC295-EH				V					
	Mingji	203-1572-0					V				
	Ningbo Broad	WA0020						V			
	Desay		V			V	V	V	V	V	V
Battery	Sunwoda	HB356687ECW		V							
	SCUD				V						
	Quancheng	1293-3283-3.5mm-322	V						V	V	V
	Quancheng	1293-3283-3.5mm-336		V							
Fornhone	Lianchuang	MEND1532B528A02			V						
Earphone	Lianchuang	MEND1532B528B00				V					
	FOXCONN	EPAB542-2WH05-DH					V				
	FOXCONN	EPAB542-2WH06-DH						V			

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Adapter+ Idle+ Playing+ Earphone
Mode 2	Adapter+ Idle+ Playing+ Speaker
Mode 3	Adapter+Idle+2.4G WIFI +GPS+BT +Camera on(Front)
Mode 4	Adapter+Idle+2.4G WIFI +GPS+BT +Camera on(Rear)
Mode 5	Adapter + FM 88MHz+ Earphone
Mode 6	Adapter + FM 98MHz+ Earphone
Mode 7	Adapter + FM 108MHz+ Earphone
Mode 8	Adapter + Traffic(GSM)
Mode 9	Adapter+ Traffic(WCDMA)
Mode 10	Adapter+ Traffic(LTE)
Mode 11	USB Copy + Idle

For Conducted Test							
Final Test Mode	Description						
Mode 1	Adapter+ Idle+ Playing+ Earphone						
Mode 2	Adapter+ Idle+ Playing+ Speaker						
Mode 3	Adapter+Idle+2.4G WIFI +GPS+BT +Camera on(Front)						
Mode 6	Adapter + FM 98MHz+ Earphone						
Mode 10	Adapter+ Traffic(LTE)						
Mode 11	USB Copy + Idle						

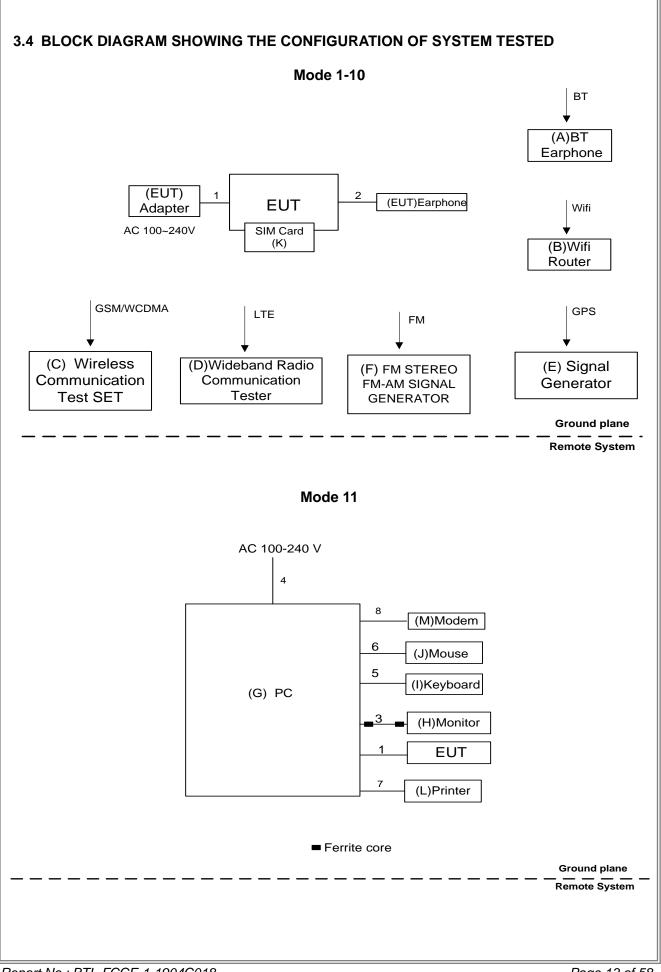
For Radiated Test							
Final Test Mode Description							
Mode 1	Mode 1 Adapter+ Idle+ Playing+ Earphone						
Mode 2 Adapter+ Idle+ Playing+ Speaker							
Mode 3	Adapter+Idle+2.4G WIFI +GPS+BT +Camera on(Front)						
Mode 6	Adapter + FM 98MHz+ Earphone						
Mode 10	Adapter+ Traffic(LTE)						
Mode 11	USB Copy + Idle						

Evaluation description:

- 1. Mode 1 tested config 1-9, config 1 is the worst case and tested Mode 2-10.
- 2. Mode 11 tested config 1-6.
- 3. Config 1 with Mode 1/2/3/6/10/11 are the worst case and recorded in this report.

3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:


Mode 1-10:

- 1. EUT connected to earphone via earphone cable.
- 2. EUT connected to adapter via DC cable.
- 3. EUT connected to wireless router via WiFi function.
- 4. EUT connected to BT earphone via BT function.
- 5. EUT connected to wireless communication test SET via radio signal.
- 6. EUT connected to GPS signal generator via radio signal.
- 7. EUT connected to wideband radio communication tester via radio signal.
- 8. EUT connected to FM STEREO FM-AM signal generator via FM function.

Mode 11:

- 1. Send "H" pattern to video port device (Monitor).
- 2. EUT connected to PC via USB cable and transmission the data.
- 3. PC connected to mouse and keyboard via USB cable.
- 4. PC connected to printer via parallel cable.
- 5. PC connected to modem via RS232 cable.

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
Α	BT earphone	MICROKIA	M9	N/A
В	wireless router	ASUS	RT-AC66U	E8ICGG000138
С	Wireless Communication Test SET	Agilent	(8960 Series) E5515C	MY48364183
D	Wideband Radio Communication Tester	RS	CMW500	122125
Е	Signal Generator	Agilent	E4438C	MY49071316
F	FM STEREO FM-AM SIGNAL GENERATOR	KENWOOD	SG-5110	HR1010099
G	PC	Dell	DCSM	G7K832X
н	LCD monitor	Dell	E177FPc	CNOFJ179-64180-6AG-1WN S
I	Keyboard	Dell	L100	CNORH6596589071T08NE
J	Mouse	Dell	MO56UOA	FQJ000BS
K	SIM Card	R&S	N/A	N/A
L	Printer	SII	DPU-414	3018507 B
М	Modem	ACEEX	DM-1414V	0603002131
Item	Shielded Type	Ferrite Core	Length	Note
1	YES	NO	1m	USB Cable
2	NO	NO	1.2m	Earphone Cable
3	YES	YES	1.8m	D-SUB Cable
4	NO	NO	1.8m	AC Cable
5	YES	NO	1.8m	USB Cable
6	YES	NO	1.8m	USB Cable
7	YES	NO	1.8m	Parallel Cable
8	YES	NO	1.8m	RS232 Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

FREQUENCY (MHz)	Class B (dBuV)				
	Quasi-peak	Average			
0.15 - 0.5	66 - 56 *	56 - 46 *			
0.5 - 5.0	56.00	46.00			
5.0 - 30.0	60.00	50.00			

Note:

(1) The tighter limit applies at the band edges.

- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

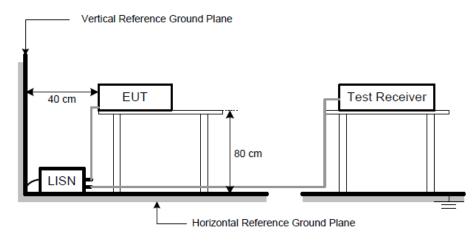
4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1*	LISN	EMCO	3816/2SH	52766	Mar. 10, 2022
2	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 10, 2020
4	EMI Test Receiver	R&S	ESR3	101862	Aug. 11, 2019
5	Cable	N/A	N/A(6m)	N/A	Mar. 12, 2020
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.


4.1.3 TEST PROCEDURE

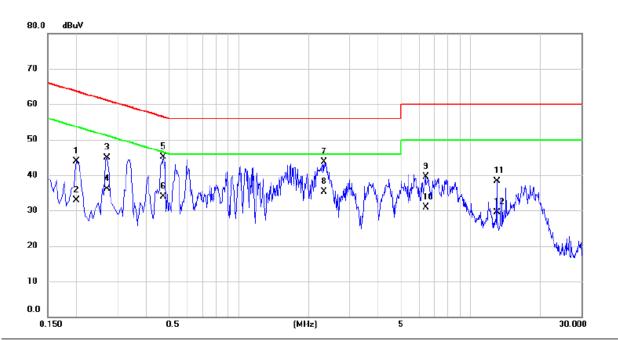
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

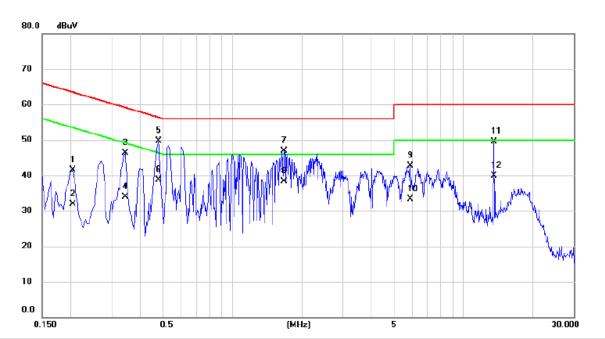
4.1.5 TEST SETUP

4.1.6 TEST RESULTS


Remark

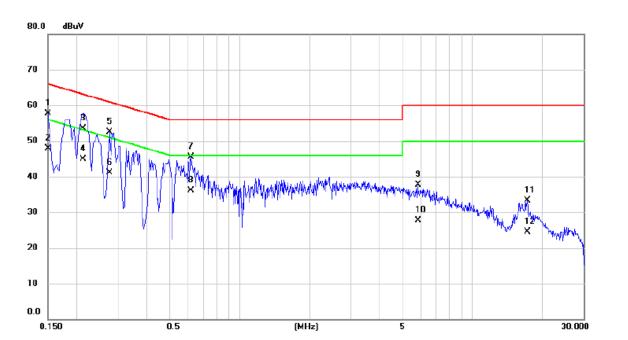
- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.

	1						
EUT	Smart Phone	Model Name	MAR-LX3Am				
Temperature	25°C	Relative Humidity	53%				
Test Voltage	AC 120V/60Hz	Phase	Line				
Test Mode	Mode 1						
Test Engineer	Jason Yang						



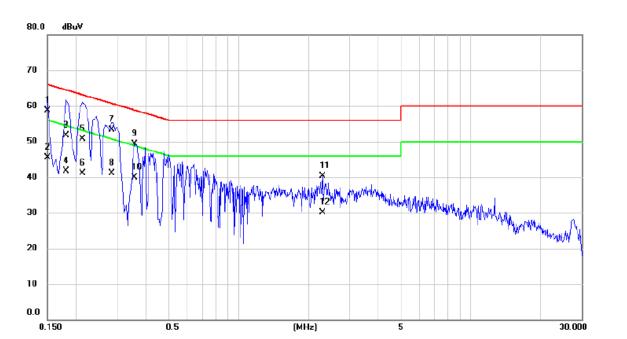
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1995	33.38	10.48	43.86	63.63	-19.77	QP	
2		0.1995	22.40	10.48	32.88	53.63	-20.75	AVG	
3		0.2714	34.51	10.48	44.99	61.07	-16.08	QP	
4		0.2714	25.60	10.48	36.08	51.07	-14.99	AVG	
5		0.4740	34.57	10.50	45.07	56.44	-11.37	QP	
6		0.4740	23.40	10.50	33.90	46.44	-12.54	AVG	
7		2.3325	33.01	10.66	43.67	56.00	-12.33	QP	
8	*	2.3325	24.64	10.66	35.30	46.00	-10.70	AVG	
9		6.4050	28.66	10.84	39.50	60.00	-20.50	QP	
10		6.4050	19.98	10.84	30.82	50.00	-19.18	AVG	
11		12.9570	27.30	10.97	38.27	60.00	-21.73	QP	
12		12.9570	18.52	10.97	29.49	50.00	-20.51	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am				
Temperature	25°C	Relative Humidity	53%				
Test Voltage	AC 120V/60Hz	Phase	Neutral				
Test Mode	Mode 1						
Test Engineer	Jason Yang						



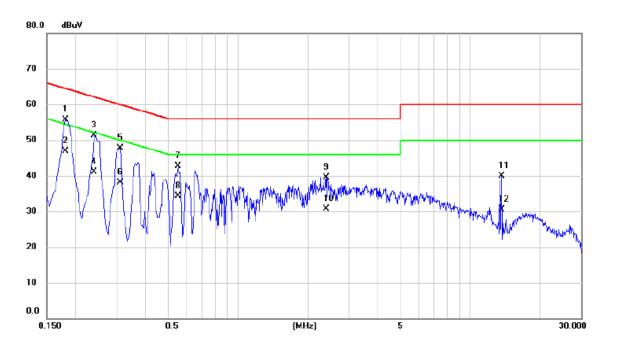
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2040	30.99	10.45	41.44	63.45	-22.01	QP	
2		0.2040	21.52	10.45	31.97	53.45	-21.48	AVG	
3		0.3435	35.80	10.46	46.26	59.12	-12.86	QP	
4		0.3435	23.41	10.46	33.87	49.12	-15.25	AVG	
5	*	0.4785	39.26	10.49	49.75	56.37	-6.62	QP	
6		0.4785	28.20	10.49	38.69	46.37	-7.68	AVG	
7		1.6800	36.36	10.56	46.92	56.00	-9.08	QP	
8		1.6800	27.82	10.56	38.38	46.00	-7.62	AVG	
9		5.8920	31.99	10.77	42.76	60.00	-17.24	QP	
10		5.8920	22.56	10.77	33.33	50.00	-16.67	AVG	
11		13.5195	38.59	10.96	49.55	60.00	-10.45	QP	
12		13.5195	28.92	10.96	39.88	50.00	-10.12	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am				
Temperature	25°C	Relative Humidity	53%				
Test Voltage	AC 120V/60Hz	Phase	Line				
Test Mode	Mode 2						
Test Engineer	Jason Yang						



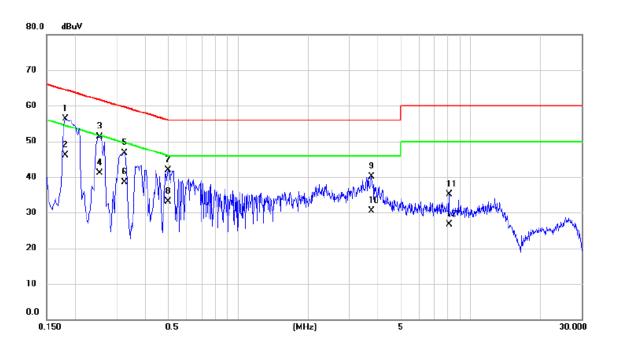
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	47.25	10.49	57.74	66.00	-8.26	QP	
2	*	0.1500	37.51	10.49	48.00	56.00	-8.00	AVG	
3		0.2130	42.99	10.47	53.46	63.09	-9.63	QP	
4		0.2130	34.40	10.47	44.87	53.09	-8.22	AVG	
5		0.2760	41.98	10.48	52.46	60.94	-8.48	QP	
6		0.2760	30.68	10.48	41.16	50.94	-9.78	AVG	
7		0.6180	34.91	10.52	45.43	56.00	-10.57	QP	
8		0.6180	25.67	10.52	36.19	46.00	-9.81	AVG	
9		5.8290	26.90	10.81	37.71	60.00	-22.29	QP	
10		5.8290	16.87	10.81	27.68	50.00	-22.32	AVG	
11		17.2545	22.35	11.01	33.36	60.00	-26.64	QP	
12		17.2545	13.45	11.01	24.46	50.00	-25.54	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am				
Temperature	25°C	Relative Humidity	53%				
Test Voltage	AC 120V/60Hz	Phase	Neutral				
Test Mode	Mode 2						
Test Engineer	Jason Yang						



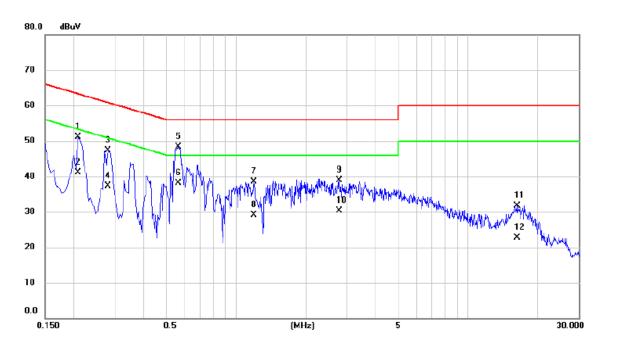
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	48.33	10.43	58.76	66.00	-7.24	QP	
2		0.1500	35.14	10.43	45.57	56.00	-10.43	AVG	
3		0.1815	41.25	10.44	51.69	64.42	-12.73	QP	
4		0.1815	31.25	10.44	41.69	54.42	-12.73	AVG	
5		0.2130	40.35	10.45	50.80	63.09	-12.29	QP	
6		0.2130	30.58	10.45	41.03	53.09	-12.06	AVG	
7		0.2850	42.92	10.46	53.38	60.67	-7.29	QP	
8		0.2850	30.58	10.46	41.04	50.67	-9.63	AVG	
9		0.3570	38.91	10.46	49.37	58.80	-9.43	QP	
10		0.3570	29.54	10.46	40.00	48.80	-8.80	AVG	
11		2.2965	29.76	10.61	40.37	56.00	-15.63	QP	
12		2.2965	19.54	10.61	30.15	46.00	-15.85	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am					
Temperature	25°C	Relative Humidity	53%					
Test Voltage	AC 120V/60Hz	Phase	Line					
Test Mode	Mode 3							
Test Engineer	Jason Yang							



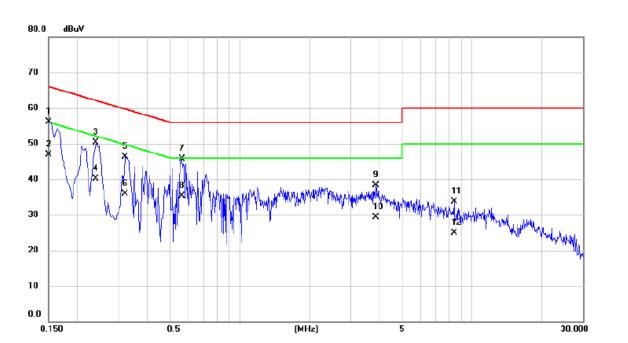
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1815	45.24	10.47	55.71	64.42	-8.71	QP	
2	*	0.1815	36.41	10.47	46.88	54.42	-7.54	AVG	
3		0.2400	40.82	10.47	51.29	62.10	-10.81	QP	
4		0.2400	30.55	10.47	41.02	52.10	-11.08	AVG	
5		0.3120	37.23	10.49	47.72	59.92	-12.20	QP	
6		0.3120	27.68	10.49	38.17	49.92	-11.75	AVG	
7		0.5505	32.18	10.52	42.70	56.00	-13.30	QP	
8		0.5505	23.69	10.52	34.21	46.00	-11.79	AVG	
9		2.4000	28.87	10.66	39.53	56.00	-16.47	QP	
10		2.4000	19.98	10.66	30.64	46.00	-15.36	AVG	
11		13.6320	28.97	10.97	39.94	60.00	-20.06	QP	
12		13.6320	19.54	10.97	30.51	50.00	-19.49	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am					
Temperature	25°C	Relative Humidity	53%					
Test Voltage	AC 120V/60Hz	Phase	Neutral					
Test Mode	Mode 3							
Test Engineer	Jason Yang							



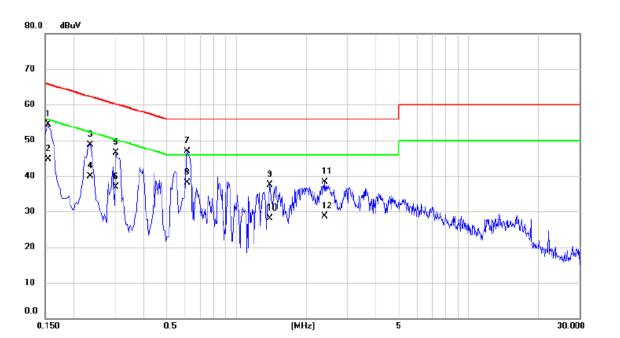
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1815	45.95	10.44	56.39	64.42	-8.03	QP	
2		0.1815	35.74	10.44	46.18	54.42	-8.24	AVG	
3		0.2535	40.88	10.47	51.35	61.64	-10.29	QP	
4		0.2535	30.57	10.47	41.04	51.64	-10.60	AVG	
5		0.3255	36.32	10.46	46.78	59.57	-12.79	QP	
6		0.3255	27.98	10.46	38.44	49.57	-11.13	AVG	
7		0.5010	31.40	10.49	41.89	56.00	-14.11	QP	
8		0.5010	22.54	10.49	33.03	46.00	-12.97	AVG	
9		3.7545	29.35	10.69	40.04	56.00	-15.96	QP	
10		3.7545	19.74	10.69	30.43	46.00	-15.57	AVG	
11		8.0745	24.30	10.83	35.13	60.00	-24.87	QP	
12		8.0745	15.89	10.83	26.72	50.00	-23.28	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am						
Temperature	25°C	Relative Humidity	53%						
Test Voltage	AC 120V/60Hz	Phase	Line						
Test Mode	Mode 6								
Test Engineer	Jason Yang								



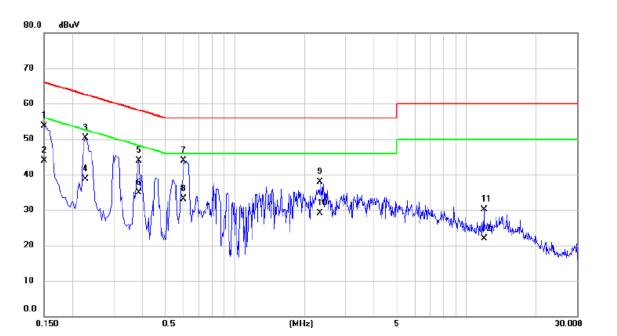
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2085	40.63	10.48	51.11	63.26	-12.15	QP	
2		0.2085	30.54	10.48	41.02	53.26	-12.24	AVG	
3		0.2805	36.91	10.48	47.39	60.80	-13.41	QP	
4		0.2805	26.88	10.48	37.36	50.80	-13.44	AVG	
5	*	0.5640	37.69	10.52	48.21	56.00	-7.79	QP	
6		0.5640	27.62	10.52	38.14	46.00	-7.86	AVG	
7		1.1894	27.95	10.59	38.54	56.00	-17.46	QP	
8		1.1894	18.43	10.59	29.02	46.00	-16.98	AVG	
9		2.7825	28.22	10.68	38.90	56.00	-17.10	QP	
10		2.7825	19.67	10.68	30.35	46.00	-15.65	AVG	
11		16.2870	20.74	11.00	31.74	60.00	-28.26	QP	
12		16.2870	11.74	11.00	22.74	50.00	-27.26	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am					
Temperature	25°C	Relative Humidity	53%					
Test Voltage	AC 120V/60Hz	Phase	Neutral					
Test Mode	Mode 6							
Test Engineer	Jason Yang							



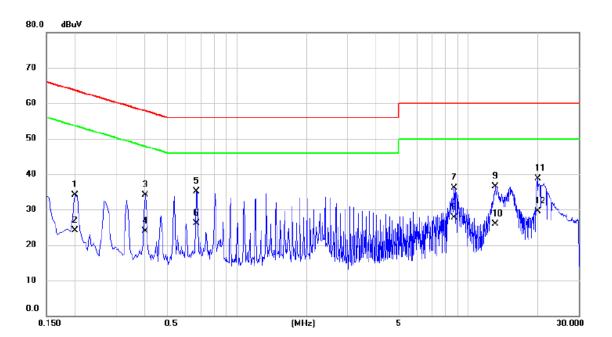
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	45.64	10.43	56.07	66.00	-9.93	QP	
2	*	0.1500	36.52	10.43	46.95	56.00	-9.05	AVG	
3		0.2400	39.80	10.47	50.27	62.10	-11.83	QP	
4		0.2400	29.63	10.47	40.10	52.10	-12.00	AVG	
5		0.3210	35.90	10.46	46.36	59.68	-13.32	QP	
6		0.3210	25.47	10.46	35.93	49.68	-13.75	AVG	
7		0.5640	35.25	10.49	45.74	56.00	-10.26	QP	
8		0.5640	24.72	10.49	35.21	46.00	-10.79	AVG	
9		3.8400	27.56	10.69	38.25	56.00	-17.75	QP	
10		3.8400	18.62	10.69	29.31	46.00	-16.69	AVG	
11		8.3535	22.96	10.84	33.80	60.00	-26.20	QP	
12		8.3535	13.98	10.84	24.82	50.00	-25.18	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am					
Temperature	25°C	Relative Humidity	53%					
Test Voltage	AC 120V/60Hz	Phase	Line					
Test Mode	Mode 10							
Test Engineer	Jason Yang							



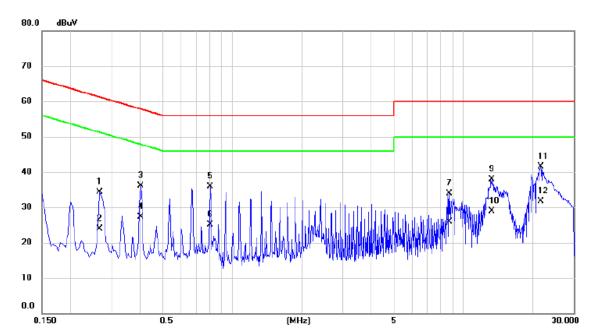
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	44.09	10.49	54.58	65.75	-11.17	QP	
2		0.1545	34.20	10.49	44.69	55.75	-11.06	AVG	
3		0.2355	38.27	10.47	48.74	62.25	-13.51	QP	
4		0.2355	29.52	10.47	39.99	52.25	-12.26	AVG	
5		0.3030	36.10	10.49	46.59	60.16	-13.57	QP	
6		0.3030	26.41	10.49	36.90	50.16	-13.26	AVG	
7		0.6134	36.46	10.52	46.98	56.00	-9.02	QP	
8	*	0.6134	27.63	10.52	38.15	46.00	-7.85	AVG	
9		1.3965	26.93	10.60	37.53	56.00	-18.47	QP	
10		1.3965	17.52	10.60	28.12	46.00	-17.88	AVG	
11		2.4045	27.60	10.66	38.26	56.00	-17.74	QP	
12		2.4045	18.10	10.66	28.76	46.00	-17.24	AVG	

	1						
EUT	Smart Phone	Model Name	MAR-LX3Am				
Temperature	25°C	Relative Humidity	53%				
Test Voltage	AC 120V/60Hz	Phase	Neutral				
Test Mode	Mode 10						
Test Engineer	Jason Yang						



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	43.22	10.43	53.65	66.00	-12.35	QP	
2		0.1500	33.52	10.43	43.95	56.00	-12.05	AVG	
3		0.2265	39.87	10.46	50.33	62.58	-12.25	QP	
4		0.2265	28.22	10.46	38.68	52.58	-13.90	AVG	
5		0.3840	33.45	10.46	43.91	58.19	-14.28	QP	
6		0.3840	24.52	10.46	34.98	48.19	-13.21	AVG	
7	*	0.6000	33.49	10.49	43.98	56.00	-12.02	QP	
8		0.6000	22.67	10.49	33.16	46.00	-12.84	AVG	
9		2.3370	27.27	10.62	37.89	56.00	-18.11	QP	
10		2.3370	18.53	10.62	29.15	46.00	-16.85	AVG	
11		11.9040	19.18	10.94	30.12	60.00	-29.88	QP	
12		11.9040	10.89	10.94	21.83	50.00	-28.17	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	53%
Test Voltage	AC 120V/60Hz	Phase	Line
Test Mode	Mode 11		
Test Engineer	Jason Yang		



		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1995	23.69	10.48	34.17	63.63	-29.46	QP	
2		0.1995	13.57	10.48	24.05	53.63	-29.58	AVG	
3		0.4020	23.53	10.49	34.02	57.81	-23.79	QP	
4		0.4020	13.47	10.49	23.96	47.81	-23.85	AVG	
5		0.6675	24.56	10.52	35.08	56.00	-20.92	QP	
6	*	0.6675	15.63	10.52	26.15	46.00	-19.85	AVG	
7		8.7000	25.12	10.90	36.02	60.00	-23.98	QP	
8		8.7000	16.87	10.90	27.77	50.00	-22.23	AVG	
9		13.1190	25.44	10.97	36.41	60.00	-23.59	QP	
10		13.1190	14.97	10.97	25.94	50.00	-24.06	AVG	
11		19.9455	27.77	11.03	38.80	60.00	-21.20	QP	
12		19.9455	18.52	11.03	29.55	50.00	-20.45	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	53%
Test Voltage	AC 120V/60Hz	Phase	Neutral
Test Mode	Mode 11		
Test Engineer	Jason Yang		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2670	23.78	10.46	34.24	61.21	-26.97	QP	
2		0.2670	13.51	10.46	23.97	51.21	-27.24	AVG	
3		0.4020	25.65	10.47	36.12	57.81	-21.69	QP	
4		0.4020	16.85	10.47	27.32	47.81	-20.49	AVG	
5		0.8025	25.38	10.50	35.88	56.00	-20.12	QP	
6		0.8025	14.52	10.50	25.02	46.00	-20.98	AVG	
7		8.7000	23.01	10.86	33.87	60.00	-26.13	QP	
8		8.7000	14.96	10.86	25.82	50.00	-24.18	AVG	
9		13.2495	26.89	10.95	37.84	60.00	-22.16	QP	
10		13.2495	17.95	10.95	28.90	50.00	-21.10	AVG	
11		21.5475	30.44	11.02	41.46	60.00	-18.54	QP	
12	*	21.5475	20.77	11.02	31.79	50.00	-18.21	AVG	

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

_	Class B	(at 3m)
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Fraguanay	Clas	ss B		
Frequency (MHz)	(dBuV/m) (at 3m)			
	Peak	Average		
Above 1000	74	54		

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

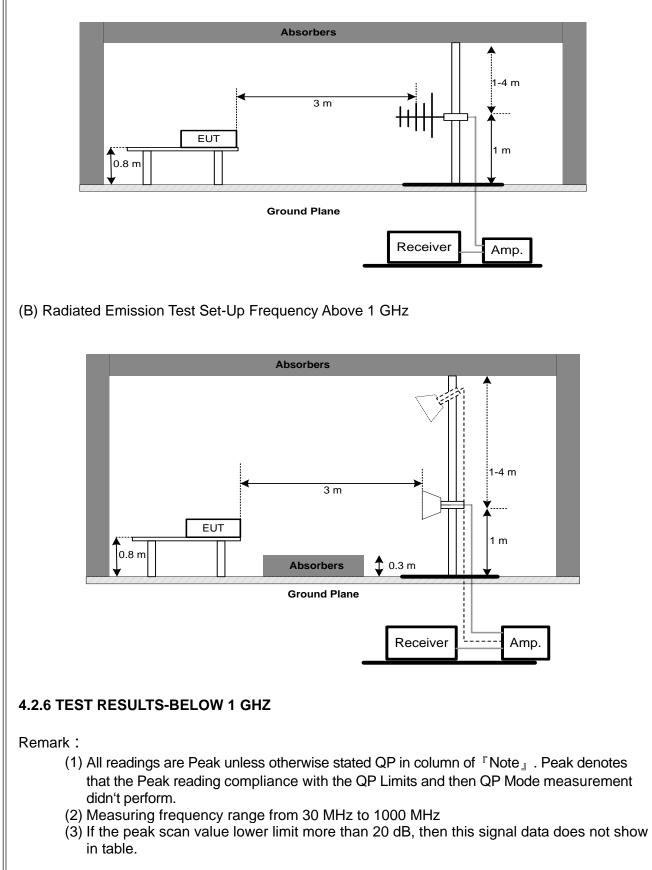
Below 1GHz & Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 09, 2020
2	Double Ridged Horn Antenna	ARA	DRG-118A	16554	Mar. 09, 2020
3	Amplifier	Agilent	8449B	3008A02274	Mar. 10, 2020
4	Amplifier	HP	8447D	1937A02847	Mar. 10, 2020
5	Cable	emci	LMR-400(30MHz-1GHz)(10m+2.5m)	N/A	Jun. 20, 2019
6	Cable	mitron	B10-01-01-12M	18072743	Jul. 30, 2019
7	Controller	СТ	SC100	N/A	N/A
8	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
9	EMI Test Receiver	Keysight	N9038A	MY56400060	Mar. 10, 2020

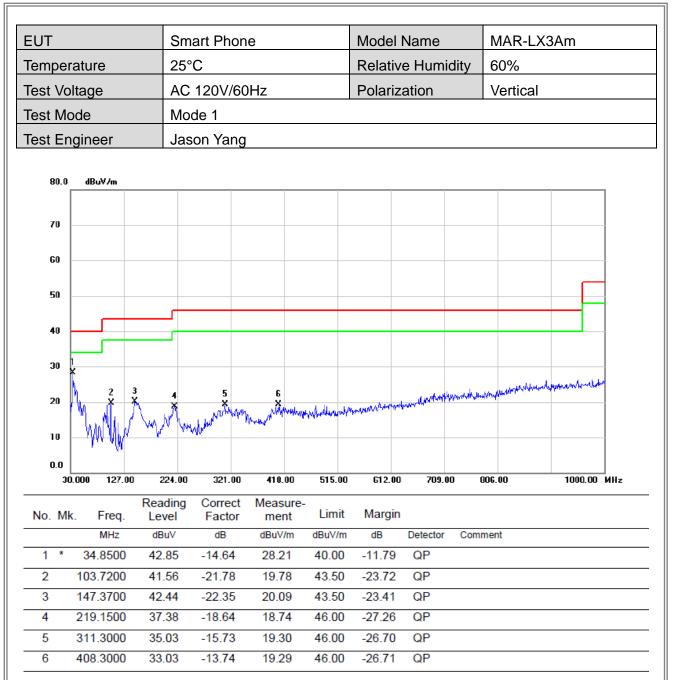
Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.2.3 TEST PROCEDURE

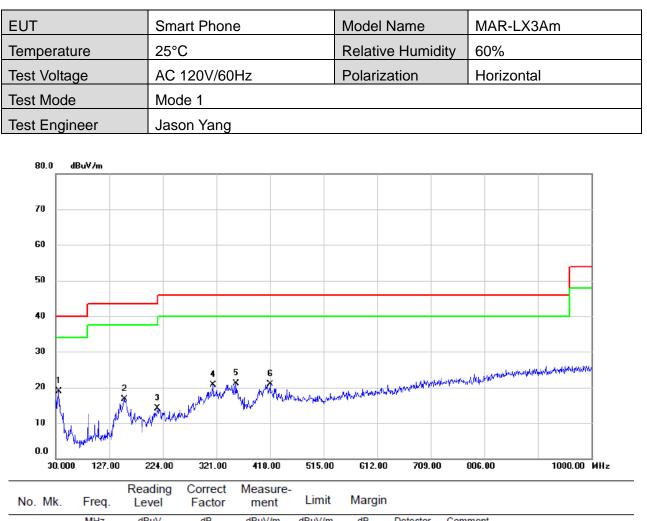
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.4).

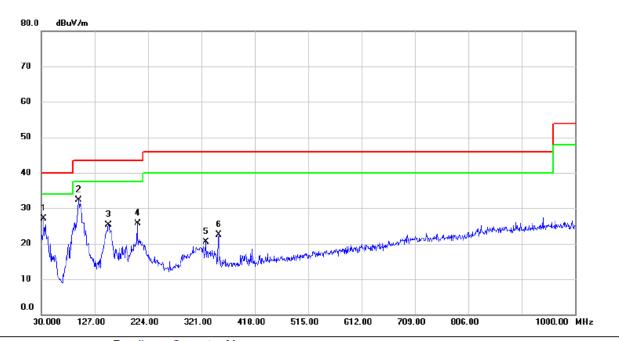

4.2.4 DEVIATION FROM TEST STANDARD

No deviation


4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz





110.		. rieq.	LUVUI	racior	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	35.8200	33.98	-15.07	18.91	40.00	-21.09	QP	
2		154.1600	38.68	-22.04	16.64	43.50	-26.86	QP	
3		214.3000	33.12	-18.92	14.20	43.50	-29.30	QP	
4		315.1800	36.29	-15.60	20.69	46.00	-25.31	QP	
5		356.8900	35.44	-14.35	21.09	46.00	-24.91	QP	
6		418.0000	34.46	-13.58	20.88	46.00	-25.12	QP	


EUT	Smart Phone	Model Name	MAR-LX3Am	
Temperature 2	25°C	Relative Humidity	60%	
Test Voltage A	AC 120V/60Hz	Polarization	Vertical	
Test Mode	Mode 2			
Test Engineer	Jason Yang			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		34.8500	41.78	-14.64	27.14	40.00	-12.86	QP	
2	*	97.9000	54.26	-21.91	32.35	43.50	-11.15	QP	
3		152.2200	47.44	-22.10	25.34	43.50	-18.16	QP	
4		204.6000	45.21	-19.49	25.72	43.50	-17.78	QP	
5		328.7600	35.81	-15.24	20.57	46.00	-25.43	QP	
6		352.0400	36.98	-14.56	22.42	46.00	-23.58	QP	

No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	37.7600	35.58	-16.36	19.22	40.00	-20.78	QP	
2		100.8100	42.69	-21.75	20.94	43.50	-22.56	QP	
3		213.3300	34.91	-18.96	15.95	43.50	-27.55	QP	
4		326.8200	37.98	-15.28	22.70	46.00	-23.30	QP	
5		357.8600	39.24	-14.31	24.93	46.00	-21.07	QP	
6		406.3600	37.33	-13.77	23.56	46.00	-22.44	QP	

EUT				Smart Phone				Model Name			MAR-LX3Am			
Temperature				25°C				Relative Humidity			60%			
Test Voltage				AC 120V/60Hz				Polarization			Vertical			
Test Mode			Mode 3											
Test Engineer			Jason Yang											
						0								
8	0.0	dBuV/m												I
7	0 -													
G	0													
5	0 -			-										
4	o -													
	-													
3	0		3 X			5			6 X			e un elabor	al a more restricted	
2	o	2 X	\mathbb{A}		معلين و	5 X				monthe	youralayand for the	hart was a second	erst man man and the second	
		M. M.	/ WW	My	Vhy War	Wardt	w.hvorm14	hN/MAYYA	Address to					
1	U	Mir W	V											
0.	.0 20	000 127.	00 2	24.00	321.0	00 419	00	515.00	612.0	10 709.0	10 90	6.00	1000.00	WI1 -
	50.		Rea		Correc			515.00	012.0	105.0		0.00	1000.00	
No.	Mk	Freq.			Facto			Limit	Margi	n				
		MHz	dB		dB	dBuV		iBuV/m	dB	Detector	Comm	ent		
1	*	36.7900			-15.69			40.00	-16.27					
2		110.5100			-21.91			43.50	-23.89					
3		153.1900) 47.	11	-22.07	25.0)4 4	43.50	-18.46	QP				

200.7200

341.3700

561.5600

39.40

36.70

35.14

-19.75

-15.03

-10.55

19.65

21.67

24.59

43.50

46.00

46.00

-23.85

-24.33

-21.41

QP

QP

QP

4

5

6

- UT		Cree		_		Madal P			V0 A	
EUT			art Phone	3		Model I		MAR-L	ASAIII	
Temper		25°					e Humid		60%	
Test Vo	ltage	AC	120V/60	Hz		Polarization Horizontal				
Test Mo	ode	Mod	de 3							
Test En	gineer	Jas	on Yang							
80.0	dBu∀/m									
70										
60										
50										
40										
30			E							
20			4 ×	6				in the second second second	maniphingstates	
20 1	2 X	3	1 March W	4 werd and have not	minune	and the services	Add - Add - Contraction			
10	h id t	3 X manth	wordowed W							
0.0	Manhaman	110								
30	0.000 127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz	
No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
NO. IVIN	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	30.0000	28.70	-12.40	16.30	40.00	-23.70	QP			
2	88.2000	36.12	-22.73	13.39	43.50	-30.11	QP			
3	155.1300	33.32	-22.01	11.31	43.50	-32.19	QP			
4	321.0000	37.08	-15.42	21.66	46.00	-24.34	QP			
5 *	350.1000	37.88	-14.65	23.23	46.00	-22.77	QP			

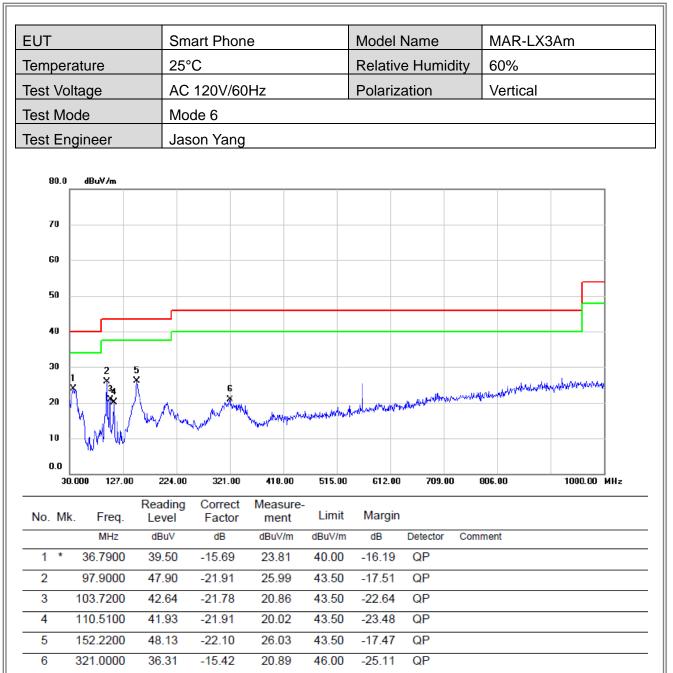
402.4800

33.94

-13.84

20.10

46.00


-25.90

QP

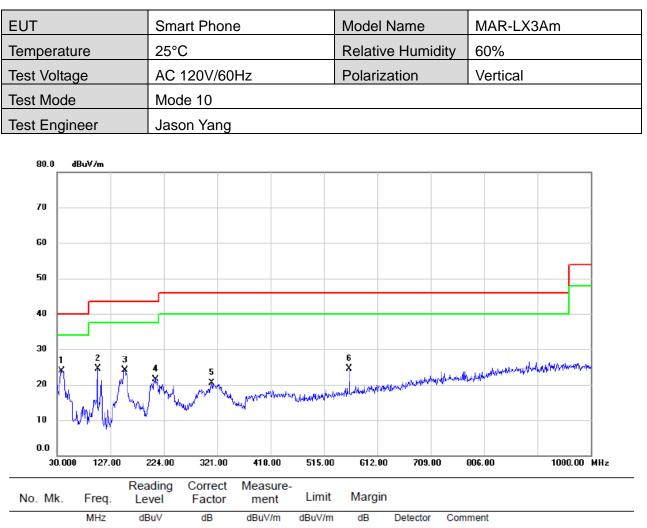
6

	Creart Dhana	Madal	Marra			
	Smart Phone	Model		MAR-LX3Am		
Temperature	25°C	Relativ	e Humidity	60%		
Test Voltage	AC 120V/60Hz	Polariz	Polarization Horizontal			
Test Mode	Mode 6			_		
Test Engineer	Jason Yang					
80.0 dBuV/m						
70						
60						
50						
40						
40						
30						
1 3	e X		. Marchalland	where the destruction of the state of the st		
	5 W W www.hw	Arrived Altragon man place about	nut and a particular sequences of			
10	Stray water March March March					
0.0						
	224.00 321.00 419.0	0 515.00 612.00	0 709.00 8	BOG.00 1000.00 MHz		
	ding Correct Measu	1 T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			
No. Mk. Freq. Lev MHz dB	vel Factor men BuV dB dBuV/r		Detector Com	mont		
	.41 -12.87 18.54		QP	nent		
	.23 -22.73 12.50					
	.11 -21.91 19.20		QP			
4 157.0700 33	.94 -21.94 12.00	43.50 -31.50	QP			

6

349.1300

37.99


-14.68

23.31

46.00 -22.69 QP

	MHZ	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	38.7300	40.78	-16.81	23.97	40.00	-16.03	QP	
2	103.7200	46.19	-21.78	24.41	43.50	-19.09	QP	
3	153.1900	46.26	-22.07	24.19	43.50	-19.31	QP	
4	208.4800	40.68	-19.24	21.44	43.50	-22.06	QP	
5	311.3000	36.25	-15.73	20.52	46.00	-25.48	QP	
6	561.5600	35.15	-10.55	24.60	46.00	-21.40	QP	

EUT			Smart Pl	hone		Mode	l Name	Ν	MAR-LX3Am	
Tempe	erature		25°C			Relat	ive Humi	idity 6	60%	
Test V	oltage		AC 120\	//60Hz		Polar	ization	ŀ	Horizontal	
Test M	lode		Mode 10)						
Test E	ngineer		Jason Ya	ang						
80.1	- 0 dBuV/m									
70										
60										
50										
40			1]
30				Б 6						Shara Arte
20	* 2 * X	3) X /	From up in an all work		llenen trappeter	ant to a march and	the and the second	halinganashi	han ng kang di dan Ang	alanana ta
10 0.0	Marin Walnu	~ W*								
	30.000 127.0				0.00 515	.00 612.	00 709.0)0 806	.00 100	DO.OO MHz
No. N	lk. Freq.	Read Lev				nit Marg	in			
	MHz	dBu					Detector	Comme	nt	
1 *	00.0000									
2	88.2000									
3	150.2800									
4	207.5100	33.4	40 -19.3	30 14.1	10 43.5	50 -29.4	D QP			

5

6

317.1200

346.2200

36.95

37.41

-15.55

-14.81

21.40

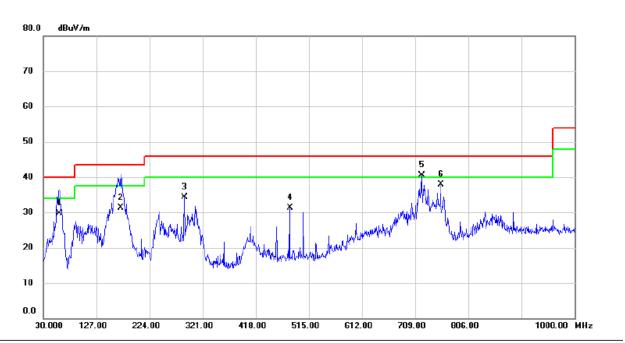
22.60

46.00

46.00

-24.60

-23.40


QP

QP

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Mode 11		
Test Engineer	Jason Yang		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		59.1000	52.33	-22.72	29.61	40.00	-10.39	QP	
2		171.6200	52.60	-21.22	31.38	43.50	-12.12	QP	
3	:	288.0200	50.69	-16.41	34.28	46.00	-11.72	QP	
4		480.0800	43.59	-12.29	31.30	46.00	-14.70	QP	
5	*	720.6400	47.70	-7.10	40.60	46.00	-5.40	QP	
6		755.5600	44.68	-6.77	37.91	46.00	-8.09	QP	

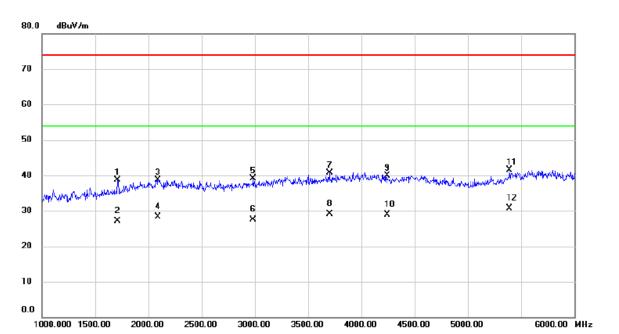
EUT	Smart Phone	Model Name	MAR-LX3Am			
Temperature	25°C	Relative Humidity	60%			
Test Voltage	AC 120V/60Hz	20V/60Hz Polarization Horizontal				
Test Mode	Mode 11					
Test Engineer	Jason Yang					
80.0 dBu∀/m						
70						
60						
50						
40	3 X 4 X	5 ×	6			
30	With the second	approved and the she and the second	showing wouddard			
20	within the second when the second second	ANA CARACTER CONTRACT				
10						
0.0						

No.	Mk	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		59.1000	56.01	-22.72	33.29	40.00	-6.71	QP	
2		171.6200	54.20	-21.22	32.98	43.50	-10.52	QP	
3		239.5200	56.01	-17.62	38.39	46.00	-7.61	QP	
4		288.0200	51.44	-16.41	35.03	46.00	-10.97	QP	
5		720.6400	45.69	-7.10	38.59	46.00	-7.41	QP	
6	*	800.1800	45.79	-6.29	39.50	46.00	-6.50	QP	

4.2.7 TEST RESULTS-ABOVE 1 GHZ

Remark :

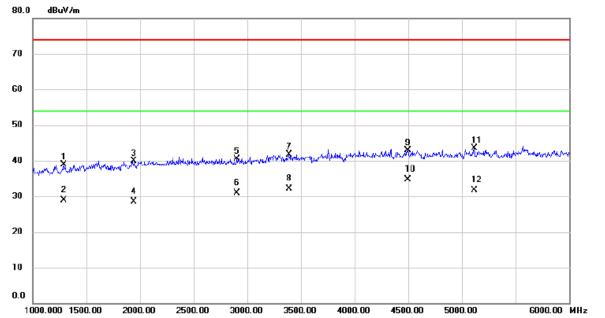
- (1) All readings are Peak unless otherwise stated QP in column of ^rNote ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Mode 1		
Test Engineer	Jason Yang		
80.0 dBuV/m			
70			
70			
60			
50			
		7	
40 1 nadery Anonwarder	A when the way was a star and the second star and t		11 11 11 11 11 11 11 11 11 11 11 11 11
30 2	4 G	8 10 × ×	12
X			
20			
10			
10			
0.0	2000.00 2500.00 3000.00 3500.00) 4000.00 4500.0D	5000.00 6000.00 MHz
Rea	ading Correct Measure-		
No. Mk. Freq. Le	evel Factor ment Limit	Margin	
	BuV dB dBuV/m dBuV/m		ment
	3.00-14.7938.2174.00.90-14.7927.1154.00	-35.79 peak -26.89 AVG	
	0.27 -10.12 40.15 74.00	-33.85 peak	
	0.23 -10.12 30.11 54.00	-23.89 AVG	
	3.31 -8.36 39.95 74.00	-34.05 peak	
6 3485.000 37	.74 -8.36 29.38 54.00	-24.62 AVG	
7 4120.000 48	3.12 -6.57 41.55 74.00	-32.45 peak	
	0.96 -6.57 30.39 54.00	-23.61 AVG	
	5.48 -5.54 39.94 74.00	-34.06 peak	
	5.48 -5.54 29.94 54.00 5.48 -4.40 44.45 74.00	-24.06 AVG	
	5.34-4.1941.1574.005.61-4.1931.4254.00	-32.85 peak -22.58 AVG	
12 0000.000 35	0.01 -4.18 31.42 34.00	-22.00 AVG	

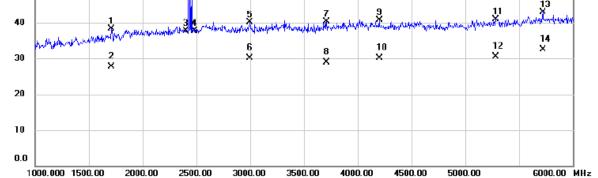
EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Mode 1		
Test Engineer	Jason Yang		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1710.000	52.67	-14.00	38.67	74.00	-35.33	peak	
2		1710.000	41.15	-14.00	27.15	54.00	-26.85	AVG	
3		2090.000	50.36	-11.70	38.66	74.00	-35.34	peak	
4		2090.000	40.08	-11.70	28.38	54.00	-25.62	AVG	
5		2985.000	48.61	-9.53	39.08	74.00	-34.92	peak	
6		2985.000	36.96	-9.53	27.43	54.00	-26.57	AVG	
7		3700.000	48.46	-7.72	40.74	74.00	-33.26	peak	
8		3700.000	36.74	-7.72	29.02	54.00	-24.98	AVG	
9		4245.000	46.18	-6.30	39.88	74.00	-34.12	peak	
10		4245.000	35.25	-6.30	28.95	54.00	-25.05	AVG	
11		5390.000	46.24	-4.81	41.43	74.00	-32.57	peak	
12	*	5390.000	35.46	-4.81	30.65	54.00	-23.35	AVG	



									(0.)
EUT			art Phone	e		Model N		MAR-L>	K3Am
Temper	ature	25°C	2			Relative	e Humidity	60%	
Test Vo	ltage	AC ²	120V/60	Hz		Polariza	ation	Vertical	
Test Mo	ode	Mod	le 2						
Test En	gineer	Jaso	on Yang						
80.0	dBuV/m								
70									
70									
60									
50									
50						_			11
40	1	L. J. Iv. and Michael	Lun Vallenam	Mr. Mary Mark	Madduson	, and the second	-mandal produces	www.weekerwane	with many property with which
30	annon martin	Angeling a start and	4	6		8	10 X		12
30	2 X		×	×		×	^		
20									
10									
10									
0.0	00.000.1500.00) 2000.00	2500.00	3000 00	3500.00	4000 00) 4500.00	5000.00	5000 00 MHz
0.0	000.000 1500.00		2500.00	3000.00 Measure	3500.00	4000.00) 4500.00	5000.00	6000.00 MHz
0.0		2000.00 Reading Level	2500.00 Correct Factor	3000.00 Measure- ment	3500.00 Limit	4000.00 Margin) 4500.00	5000.00	6000.00 MIIz
0.0 11 No. MI	k. Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Margin dB		5000.00	G000.00 MHz
0.0 11 No. MI	k. Freq. MHz 1535.000	Reading Level dBuV 51.47	Correct Factor dB -15.25	Measure- ment dBuV/m 36.22	Limit dBuV/m 74.00	Margin dB -37.78	Detector Con peak		6000.00 MHz
0.0 10 No. MI 1 2	k. Freq. MHz 1535.000 1535.000	Reading Level dBuV 51.47 40.56	Correct Factor dB -15.25 -15.25	Measure- ment dBuV/m 36.22 25.31	Limit dBuV/m 74.00 54.00	Margin dB -37.78 -28.69	Detector Con peak AVG		6000.00 MIIz
0.0 11 No. MI 1 2 3	k. Freq. MHz 1535.000 1535.000 2375.000	Reading Level dBuV 51.47 40.56 49.90	Correct Factor dB -15.25 -15.25 -10.98	Measure- ment dBuV/m 36.22 25.31 38.92	Limit dBuV/m 74.00 54.00 74.00	Margin dB -37.78 -28.69 -35.08	Detector Con peak AVG peak		G000.00 MHz
0.0 10 No. MI 1 2 3 4	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000	Reading Level dBuV 51.47 40.56 49.90 39.33	Correct Factor dB -15.25 -15.25 -10.98 -10.98	Measure- ment dBuV/m 36.22 25.31 38.92 28.35	Limit dBuV/m 74.00 54.00 74.00 54.00	Margin dB -37.78 -28.69 -35.08 -25.65	Detector Con peak AVG peak AVG		G000.00 MHz
0.0 11 No. Mi 1 2 3 4 5	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000 3115.000	Reading Level dBuV 51.47 40.56 49.90 39.33 48.65	Correct Factor dB -15.25 -15.25 -10.98 -10.98 -9.23	Measure- ment dBuV/m 36.22 25.31 38.92 28.35 39.42	Limit dBuV/m 74.00 54.00 74.00 54.00 74.00	Margin dB -37.78 -28.69 -35.08 -25.65 -34.58	Detector Con peak AVG peak AVG AVG		6000.00 MHz
0.0 10 No. MI 1 2 3 4	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000	Reading Level dBuV 51.47 40.56 49.90 39.33	Correct Factor dB -15.25 -15.25 -10.98 -10.98	Measure- ment dBuV/m 36.22 25.31 38.92 28.35	Limit dBuV/m 74.00 54.00 74.00 54.00	Margin dB -37.78 -28.69 -35.08 -25.65	Detector Con peak AVG peak AVG		G000.00 MHz
0.0 10 No. MI 1 2 3 4 5 6	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000 3115.000	Reading Level dBuV 51.47 40.56 49.90 39.33 48.65 36.87	Correct Factor dB -15.25 -15.25 -10.98 -10.98 -9.23 -9.23	Measure- ment dBuV/m 36.22 25.31 38.92 28.35 39.42 27.64	Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00	Margin dB -37.78 -28.69 -35.08 -25.65 -34.58 -26.36	Detector Con peak AVG peak AVG peak AVG		6000.00 MHz
0.0 11 No. MI 1 2 3 4 5 6 7	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000 3115.000 3115.000 3790.000	Reading Level dBuV 51.47 40.56 49.90 39.33 48.65 36.87 48.13	Correct Factor dB -15.25 -15.25 -10.98 -10.98 -9.23 -9.23 -9.23	Measure- ment dBuV/m 36.22 25.31 38.92 28.35 39.42 27.64 40.67	Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin dB -37.78 -28.69 -35.08 -25.65 -34.58 -26.36 -33.33	Detector Con peak AVG peak AVG peak AVG peak		6000.00 MHz
0.0 10 No. MI 1 2 3 4 5 6 7 8	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000 3115.000 3115.000 3790.000	Reading Level dBuV 51.47 40.56 49.90 39.33 48.65 36.87 48.13 36.75	Correct Factor dB -15.25 -15.25 -10.98 -10.98 -9.23 -9.23 -9.23 -7.46	Measure- ment dBuV/m 36.22 25.31 38.92 28.35 39.42 27.64 40.67 29.29	Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	Margin dB -37.78 -28.69 -35.08 -25.65 -34.58 -26.36 -33.33 -24.71	Detector Con peak AVG peak AVG peak AVG peak AVG		G000.00 MHz
0.0 10 No. MI 1 2 3 4 5 6 7 8 9	k. Freq. MHz 1535.000 1535.000 2375.000 2375.000 3115.000 3115.000 3790.000 4495.000	Reading Level dBuV 51.47 40.56 49.90 39.33 48.65 36.87 48.13 36.75 46.65	Correct Factor dB -15.25 -15.25 -10.98 -10.98 -9.23 -9.23 -9.23 -7.46 -7.46 -5.76	Measure- ment dBuV/m 36.22 25.31 38.92 28.35 39.42 27.64 40.67 29.29 40.89	Limit dBuV/m 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Margin dB -37.78 -28.69 -35.08 -25.65 -34.58 -26.36 -33.33 -24.71 -33.11	Detector Con peak AVG Peak AVG Peak AVG Peak AVG AVG		6000.00 MIIz

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Mode 2		
Test Engineer	Jason Yang		



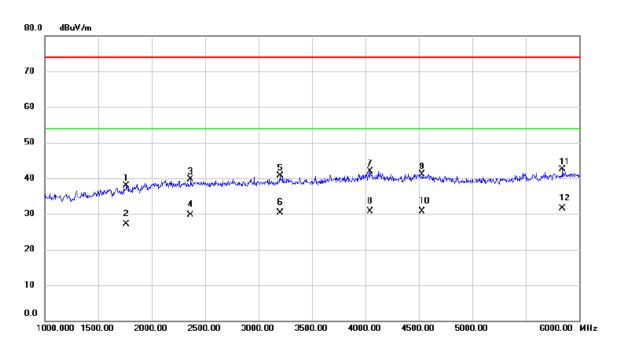
MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 1290.000 55.20 -16.22 38.98 74.00 -35.02 peak 2 1290.000 45.21 -16.22 28.99 54.00 -25.01 AVG 3 1945.000 52.27 -12.32 39.95 74.00 -34.05 peak 4 1945.000 40.89 -12.32 28.57 54.00 -25.43 AVG 5 2905.000 50.21 -9.72 40.49 74.00 -33.51 peak 6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 10 <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure- ment</th> <th>Limit</th> <th>Margin</th> <th></th> <th></th>	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2 1290.000 45.21 -16.22 28.99 54.00 -25.01 AVG 3 1945.000 52.27 -12.32 39.95 74.00 -34.05 peak 4 1945.000 40.89 -12.32 28.57 54.00 -25.43 AVG 5 2905.000 50.21 -9.72 40.49 74.00 -33.51 peak 6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 48.63 -5.20 43.43 74.00 -30.57 peak			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
3 1945.000 52.27 -12.32 39.95 74.00 -34.05 peak 4 1945.000 40.89 -12.32 28.57 54.00 -25.43 AVG 5 2905.000 50.21 -9.72 40.49 74.00 -33.51 peak 6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10<*	1		1290.000	55.20	-16.22	38.98	74.00	-35.02	peak	
4 1945.000 40.89 -12.32 28.57 54.00 -25.43 AVG 5 2905.000 50.21 -9.72 40.49 74.00 -33.51 peak 6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	2		1290.000	45.21	-16.22	28.99	54.00	-25.01	AVG	
5 2905.000 50.21 -9.72 40.49 74.00 -33.51 peak 6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10<*	3		1945.000	52.27	-12.32	39.95	74.00	-34.05	peak	
6 2905.000 40.62 -9.72 30.90 54.00 -23.10 AVG 7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	4		1945.000	40.89	-12.32	28.57	54.00	-25.43	AVG	
7 3390.000 50.38 -8.58 41.80 74.00 -32.20 peak 8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	5		2905.000	50.21	-9.72	40.49	74.00	-33.51	peak	
8 3390.000 40.78 -8.58 32.20 54.00 -21.80 AVG 9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	6	:	2905.000	40.62	-9.72	30.90	54.00	-23.10	AVG	
9 4495.000 48.62 -5.76 42.86 74.00 -31.14 peak 10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	7		3390.000	50.38	-8.58	41.80	74.00	-32.20	peak	
10 * 4495.000 40.52 -5.76 34.76 54.00 -19.24 AVG 11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	8		3390.000	40.78	-8.58	32.20	54.00	-21.80	AVG	
11 5115.000 48.63 -5.20 43.43 74.00 -30.57 peak	9		4495.000	48.62	-5.76	42.86	74.00	-31.14	peak	
	10	*	4495.000	40.52	-5.76	34.76	54.00	-19.24	AVG	
12 5115.000 36.93 -5.20 31.73 54.00 -22.27 AVG	11		5115.000	48.63	-5.20	43.43	74.00	-30.57	peak	
	12		5115.000	36.93	-5.20	31.73	54.00	-22.27	AVG	

EUT	Smart Phone	Model Name	MAR-LX3Am			
Temperature	25°C					
Test Voltage	AC 120V/60Hz	Polarization	Vertical			
Test Mode	Mode 3					
	Jason Yang					
Test Engineer	eacon lang					
80.0 dBuV/m						
80.0 dBuV/m						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1710.000	52.30	-14.00	38.30	74.00	-35.70	peak	
2		1710.000	41.80	-14.00	27.80	54.00	-26.20	AVG	
3		2400.000	48.68	-10.92	37.76	74.00	-36.24	peak	
4	1	2483.500	48.33	-10.72	37.61	74.00	-36.39	peak	
5		2995.000	49.62	-9.51	40.11	74.00	-33.89	peak	
6		2995.000	39.62	-9.51	30.11	54.00	-23.89	AVG	
7		3710.000	47.94	-7.69	40.25	74.00	-33.75	peak	
8		3710.000	36.57	-7.69	28.88	54.00	-25.12	AVG	
9		4200.000	47.12	-6.40	40.72	74.00	-33.28	peak	
10		4200.000	36.47	-6.40	30.07	54.00	-23.93	AVG	
11		5280.000	45.95	-4.96	40.99	74.00	-33.01	peak	
12		5280.000	35.52	-4.96	30.56	54.00	-23.44	AVG	
13		5720.000	46.94	-4.03	42.91	74.00	-31.09	peak	
14	*	5720.000	36.57	-4.03	32.54	54.00	-21.46	AVG	

EUT			Sma	art Phone	e		Model	Name		MAR	-LX3A	m	
Temper	ature		25°0	0			Relative Humidity			60%			
Test Vol	ltage		AC ²	120V/60	Hz		Polarization Horizontal						
Test Mo	ode		Mod	le 3									
Test En	aineer		Jaso	on Yang									
	J		1	<u></u>									
80.0	dBuV/m												1
70													
60													
50													{
40					5		7 X) Altertations and the	11 X	_	13 X	kyan katalan kat	
	had another	A Marriaght	they whatever	un and the second	hundheind hund 6	entrelated for		10 10		M-superson	ייייער איז	official and the second]
30		2 X			×			<	12 X		×		
20		×											
10													1
0.0	00.000 150	0.00	2000.00	2500.00	3000.00	3500.00) 4000	.00 4500	1.00 !	5000. OD		6000.00	MHz
			ading	Correct	Measure-								
No. Mk	. Freq		evel	Factor	ment	Limit	Margi	n					
	MHz		lBuV	dB	dBuV/m	dBuV/m	dB	Detector	Com	ment			
1	1610.000		0.88	-14.71	36.17	74.00	-37.83						
2	1610.000		0.41 8.27	-14.71 -10.92	25.70 37.35	54.00 74.00	-28.30						
4	2400.000		7.57	-10.32	36.85	74.00	-37.15	-					
5	2990.000		9.08	-9.52	39.56	74.00	-34.44						
6	2990.000		9.26	-9.52	29.74	54.00	-24.26						
7	3665.000		8.34	-7.83	40.51	74.00	-33.49						
8	3665.000) 36	6.77	-7.83	28.94	54.00	-25.06	AVG					
9	4045.000) 48	8.00	-6.73	41.27	74.00	-32.73	peak					
10 *	4045.000) 37	7.45	-6.73	30.72	54.00	-23.28	AVG					
11	4585.000) 46	6.26	-5.69	40.57	74.00	-33.43	peak					
12	4585.000) 35	5.70	-5.69	30.01	54.00	-23.99	AVG					
13	5480.000		5.19	-4.68	40.51 30.56	74.00	-33.49) peak					
14	5480.000		5.24	-4.68		54.00	-23.44	AVG					

EUT		Sm	art Phon	е		Model	Name	MA	MAR-LX3Am		
Temper	rature	25°	С			Relative Humidity 6			60%		
Test Vo	ltage	AC	120V/60	Hz		Polarization Vertical					
Test Mo	ode	Мо	de 6								
Test En	ngineer	Jas	on Yang								
	-	·									
80.0	dBuV/m									1	
70										-	
70										1	
60										{	
										-	
50										1	
40		1 Xuuruuluitta	3 Murmundus	5 William martin	diteran and the second	Winner Lot	w Viden of the history	to at the second second	and the stand and the	-	
30	manutation	CANAGE .	4	6		8	10 X	T	12 X		
30		2 X	x	×		x				1	
20										-	
10											
10										1	
0.0	00.000 1500.00	2000.00	2500.00	3000.00	3500.00) 4000.0	0 4500.00	5000.00	6000.00	MHz	
		Reading	Correct	Measure-							
No. Mk	. Freq.	Level	Factor	ment	Limit	Margir					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		Comment			
1	1780.000 1780.000	50.62 40.27	-13.50 -13.50	37.12	74.00 54.00	-36.88	peak AVG				
3	2215.000	40.27 50.71	-13.50	39.33	74.00	-27.23	peak				
4	2215.000	40.51	-11.38	29.13	54.00	-24.87					
5	2825.000	49.56	-9.90	39.66	74.00	-34.34	peak				
6	2825.000	39.26	-9.90	29.36	54.00	-24.64	AVG				
7	3710.000	47.97	-7.69	40.28	74.00	-33.72	peak				
8	3710.000	36.38	-7.69	28.69	54.00	-25.31	AVG				
9	4520.000	47.03	-5.73	41.30	74.00	-32.70	peak				
10	4520.000	36.25	-5.73	30.52	54.00	-23.48	AVG				
11	5440.000	45.55	-4.74	40.81	74.00	-33.19	peak				
12 *	5440.000	35.40	-4.74	30.66	54.00	-23.34	AVG				



EUT		Sm	art Phon	e		Model N	Name	MAR-LX	3Am
Tempe	erature	25°	С			Relative	e Humidity	60%	
Test V	oltage	AC	120V/60	al					
Test N	lode	Mode 6							
Test E	ngineer	Jas	on Yang						
80.0) dBuV/m								
70									
70									
60									
50									
40	maluard monormations of	3	man had have	Nandenmann	an manual	mount of the states	with more and the second	un un un and and and	all with propher and the
30		4		6	8 X		10 X	12 ×	
	2 X	×		x	×				
20									
10									
0.0									
	000.000 1500.00	2000.00	2500.00	3000.00	3500.00	4000.00	4500.00	5000.00	6000.00 MHz
No. M		Reading	Correct	Measure-	Limit	Margin			
No. M	Ik. Freq. MHz	Level dBuV	Factor	ment dBuV/m	dBuV/m	dB	Detector Com	iment	
1	1525.000	50.76	-15.32	35.44	74.00	-38.56	peak		
2	1525.000	40.51	-15.32	25.19	54.00	-28.81	AVG		
3	2105.000	49.88	-11.66	38.22	74.00	-35.78	peak		
4	2105.000	39.38	-11.66	27.72	54.00	-26.28	AVG		
5	2870.000	48.02	-9.80	38.22	74.00	-35.78	peak		
6	2870.000 3610.000	36.79 47.23	-9.80 -7.99	26.99 39.24	54.00 74.00	-27.01 -34.76	AVG peak		
7			-1.00	00.24	14.00		-		
7 8				28.45	54.00	-25.55	AVG		
	3610.000 4480.000	36.44 46.05	-7.99 -5.80	28.45 40.25	54.00 74.00	-25.55 -33.75	AVG peak		
8	3610.000	36.44	-7.99						
8 9	3610.000 4480.000	36.44 46.05	-7.99 -5.80	40.25	74.00	-33.75	peak		

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	Mode 10		
Test Engineer	Jason Yang		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1765.000	51.45	-13.61	37.84	74.00	-36.16	peak	
2		1765.000	40.69	-13.61	27.08	54.00	-26.92	AVG	
3		2365.000	50.66	-11.01	39.65	74.00	-34.35	peak	
4		2365.000	40.62	-11.01	29.61	54.00	-24.39	AVG	
5		3200.000	49.80	-9.03	40.77	74.00	-33.23	peak	
6		3200.000	39.37	-9.03	30.34	54.00	-23.66	AVG	
7		4045.000	48.65	-6.73	41.92	74.00	-32.08	peak	
8		4045.000	37.44	-6.73	30.71	54.00	-23.29	AVG	
9		4530.000	46.79	-5.73	41.06	74.00	-32.94	peak	
10		4530.000	36.52	-5.73	30.79	54.00	-23.21	AVG	
11		5845.000	46.17	-3.67	42.50	74.00	-31.50	peak	
12	*	5845.000	35.13	-3.67	31.46	54.00	-22.54	AVG	

EUT		Sma	art Phone	9		Model	Name	MAR-LX	3Am	
Temper	rature	25°0	2			Relativ	e Humidity	60%		
Test Vo	ltage	AC	120V/60	Hz		Polariz	ation	Horizonta	al	
Test Mo	ode	Moc	le 10							
Test Er	ngineer	Jaso	on Yang							
80.0	dBuV/m									
70										
60										
50										
						7	9 11			
40	warman	the combatty	3 Mulleluernelmu	5 Annal Managara	herman	Z Antonio Arth	9 Manufan Makan	www.rate.org.anterior.org.anterior	the spectrum bearing	
30	how when he was here the state of the	2	4 X	6 X			10 12 X X			
		2 X	^							
20										
10										
0.0 10	000.000 1500.00) 2000.00	2500.00	3000.00	3500.00) 4000.0	10 4500.00	5000.00	6000.00 MHz	
		Reading	Correct	Measure-						
No. M	k. Freq. MHz	Level	Factor	ment	Limit	Margin dB				
1	1685.000	dBuV 51,44	dB -14.18	dBuV/m 37.26	dBuV/m 74.00	-36.74	Detector Com	iment		
2	1685.000	40.65	-14.18	26.47	54.00	-27.53	AVG			
3	2215.000	50.46	-11.38	39.08	74.00	-34.92	peak			
4	2215.000	40.28	-11.38	28.90	54.00	-25.10	AVG			
5	2915.000	49.08	-9.70	39.38	74.00	-34.62	peak			
6	2915.000	39.37	-9.70	29.67	54.00	-24.33	AVG			
7	3660.000	48.66	-7.84	40.82	74.00	-33.18	peak			
8 *	3660.000	37.68	-7.84	29.84	54.00	-24.16	AVG			
9 10	4120.000 4120.000	47.63 35.79	-6.57 -6.57	41.06 29.22	74.00 54.00	-32.94 -24.78	peak AVG			
11	4120.000	46.39	-5.66	40.73	74.00	-24.78	peak			
12	4610.000	35.42	-5.66	29.76	54.00	-24.24	AVG			

5

6

7

8 9

10

11

12 *

2425.000

2425.000

3000.000

3000.000

4130.000

4130.000

5805.000

5805.000

53.16

41.79

57.70

45.63

48.63

39.62

52.19

40.80

-10.85

-10.85

-9.50

-9.50

-6.55

-6.55

-3.78

-3.78

EUT		Sm	art Phone	e		Model	Name	MAR-LX	(3Am		
Tempe	erature	25°	C			Relativ	e Humidity	60%	60%		
Test V	oltage	AC	120V/60	Hz		Polariz	ation	Vertical			
Test M	lode	Mo	de 11								
Test E	ngineer	Jas	on Yang								
80.1											
70											
60											
50	1 X	3	5	ž			9		11 X		
40	Manner	Apply Anna	5 	un henden hade	manterie	NY MARKAN	10	munacohinada	un dela completanet X		
30		×	X				×				
20											
10											
0.0											
1	1000.000 1500.	00 2000.00	2500.00	3000.00	3500.00	4000.0	0 4500.00	5000.00	6000.00 MHz		
No. N		Reading Level	Correct Factor	Measure- ment	Limit	Margin					
4	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		omment			
1	1200.000 1200.000	64.62 52.96	-16.53 -16.53	48.09	74.00 54.00	-25.91 -17.57	peak AVG				
3	1680.000	56.75	-10.55	42.54	74.00	-31.46	peak				
4	1680.000	45.38	-14.21	31.17	54.00	-22.83	AVG				

42.31

30.94

48.20

36.13

42.08

33.07

48.41

37.02

74.00

54.00

74.00

54.00

74.00

54.00

74.00

54.00

peak

AVG

peak

AVG

peak

AVG

peak

AVG

-31.69

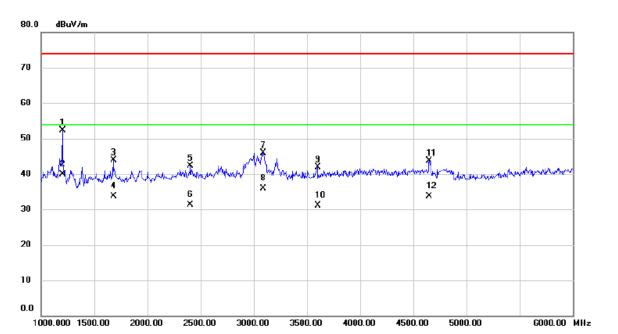
-23.06

-25.80

-17.87

-31.92

-20.93


-25.59

-16.98

EUT	Smart Phone	Model Name	MAR-LX3Am
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	Mode 11		
Test Engineer	Jason Yang		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1200.000	68.88	-16.53	52.35	74.00	-21.65	peak	
2	*	1200.000	56.36	-16.53	39.83	54.00	-14.17	AVG	
3		1680.000	58.14	-14.21	43.93	74.00	-30.07	peak	
4		1680.000	47.82	-14.21	33.61	54.00	-20.39	AVG	
5		2405.000	53.12	-10.90	42.22	74.00	-31.78	peak	
6		2405.000	42.27	-10.90	31.37	54.00	-22.63	AVG	
7		3090.000	55.21	-9.29	45.92	74.00	-28.08	peak	
8		3090.000	45.16	-9.29	35.87	54.00	-18.13	AVG	
9		3600.000	49.83	-8.02	41.81	74.00	-32.19	peak	
10		3600.000	39.16	-8.02	31.14	54.00	-22.86	AVG	
11		4650.000	49.43	-5.64	43.79	74.00	-30.21	peak	
12		4650.000	39.32	-5.64	33.68	54.00	-20.32	AVG	

								1			
EUT		Sma	Smart Phone				Name	MAR-LX3Am			
Temper	ature	25°0	25°C				e Humidity	60%			
Test Vol	ltage	AC	AC 120V/60Hz				ation	Vertical			
Test Mo	de	Mod	Mode 3								
Test En	gineer	Jaso	Jason Yang								
80.0	dBuV/m										
70											
60											
50											
	1	3	5	man and the state	and the second second	muchanter	Municipal and Market	My an	Mun Mary		
40	Mungh month was	1000 WWW	6	8	an a		10	Manufactor - and	12		
30	×	×	×	×			×		×		
20											
10											
0.0 60	00.000 6700.00	7400.00	81 00. 00	8800.00	9500.00) 10200.0	00 10900.00	11600.00	13000.00 MHz		
		Reading	Correct	Measure-							
No. Mk	MHz	Level dBuV	Factor	ment dBuV/m	Limit dBuV/m	Margin dB	Detector Com	ment			
1	6735.000	45.64	-2.33	43.31	74.00	-30.69	Detector Com peak	imeni			
2	6735.000	35.26	-2.33	32.93	54.00	-21.07	AVG				
3	7477.000	45.84	-1.28	44.56	74.00	-29.44	peak				
4	7477.000	35.17	-1.28	33.89	54.00	-20.11	AVG				
5	8282.000	45.16	-0.58	44.58	74.00	-29.42	peak				
6	8282.000	35.23	-0.58	34.65	54.00	-19.35	AVG				
7	8996.000	44.54	0.36	44.90	74.00	-29.10 -19.95	peak				
8	8996.000 11264.00	33.69 40.78	0.36 5.25	34.05 46.03	54.00 74.00	-19.95	AVG peak				
	11264.00	30.41	5.25	35.66	54.00	-18.34	AVG				
10 ^											
10 * 11	12601.00	36.73	8.50	45.23	74.00	-28.77	peak				

EUT		Sma	Smart Phone				Name	MAR-LX3Am		
Temperature		25°	0			Relativ	e Humidity	60%		
Test Vo	ltage	AC	AC 120V/60Hz				ation	Horizont	al	
Test Mo	ode	Mod	Mode 3							
Test En	gineer	Jas	on Yang							
	~									
80.0	dBuV/m		ĺ							
70										
60										
50										
		1 X		take water		de anter abben	m to my work	9	11	
40	hanstiller frihader of a second second		Malando Jada Jana Malan	4	6 X	in fettelin norm been	8	10	12	
30		2 X		×	Ŷ		×	x	×	
20										
10										
0.0 60	00.000 6700.00	7400.00	81 00.00	8800.00	9500.00	10200.	00 10900.00 ⁻	11600.00	13000.00 MHz	
		Reading	Correct	Measure-		Maraia				
No. Mk	MHz	Level dBuV	Factor dB	ment dBuV/m	Limit dBuV/m	Margin dB	Detector Com	ment		
1	7029.000	45.84	-1.89	43.95	74.00	-30.05	peak	incin		
2	7029.000	35.64	-1.89	33.75	54.00	-20.25	AVG			
3	8814.000	45.43	0.01	45.44	74.00	-28.56	peak			
4	8814.000	35.28	0.01	35.29	54.00	-18.71	AVG			
5	9458.000	43.11	2.42	45.53	74.00	-28.47	peak			
6 *	9458.000	33.67	2.42	36.09	54.00	-17.91	AVG			
7	10655.00	41.15	4.16	45.31	74.00	-28.69	peak			
8	10655.00 11852.00	30.90 38.24	4.16 7.15	35.06 45.39	54.00 74.00	-18.94 -28.61	AVG peak			
10	11852.00	28.14	7.15	35.29	54.00	-28.01	AVG			
11	12622.00	37.26	8.49	45.75	74.00	-28.25	peak			
12	12622.00	26.55	8.49	35.04	54.00	-18.96	AVG			
	<u>^</u>									