

Report No.: FC191129E10

FCC ID: RRKC4000LG

Test Model: C4000LG

Received Date: Nov. 29, 2019

Test Date: Dec. 02 to 04, 2019

Issued Date: Dec. 30, 2019

Applicant: Alpha Networks Inc.

Address: No.8 Li-shing 7th Rd., Science-based Industrial Park, Hsinchu, Taiwan,

R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan

FCC Registration / 810758 / TW1085 for Test Location (1) / Designation Number: 960022 / TW1058 for Test Location (2)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	eleas	e Control Record	3
1	Ce	ertificate of Conformity	4
2	Su	ımmary of Test Results	5
	2.1 2.2	Measurement Uncertainty	
3	Ge	eneral Information	6
	3.1 3.2 3.3 3.4 3.5	Description of EUT Features of EUT Operating Modes of EUT and Determination of Worst Case Operating Mode Test Program Used and Operation Descriptions Primary Clock Frequencies of Internal Source	7 8 8
4	Co	onfiguration and Connections with EUT	9
	4.1 4.2	Connection Diagram of EUT and Peripheral Devices	
5	Co	onducted Emissions at Mains Ports	11
	5.1 5.2 5.3 5.4 5.5 5.6	Limits Test Instruments Test Arrangement Supplementary Information Test Results (Mode 1) Test Results (Mode 2)	11 12 13
6	Ra	diated Emissions up to 1 GHz	17
	6.1 6.2 6.3 6.4 6.5	Limits Test Instruments Test Arrangement Supplementary Information Test Results	18 19 19
7	Ra	diated Emissions above 1 GHz	22
	7.1 7.2 7.3 7.4 7.5	Limits Test Instruments Test Arrangement Supplementary Information Test Results	23 24 24
8		ctures of Test Arrangements	
Α	ppen	dix – Information of the Testing Laboratories	28

Release Control Record

Issue No.	Description	Date Issued
FC191129E10	Original release.	Dec. 30, 2019

Certificate of Conformity 1

Product: VDSL2 integrated access device (IAD)

Brand: CenturyLink

Test Model: C4000LG

Sample Status: ENGINEERING SAMPLE

Applicant: Alpha Networks Inc.

Test Date: Dec. 02 to 04, 2019

Standards: 47 CFR FCC Part 15:2018, Subpart B, Class B

ICES-003:2016 Issue 6, Class B

ANSI C63.4:2014

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Phoenix Huang / Specialist

Approved by:

Tony Cher Senior Porject Engineer

2 Summary of Test Results

47 CFR FCC Part 15:2018, Subpart B / ICES-003:2016 Issue 6, Class B

ANSI C63.4:2014

ANOIOUS	7/10/1 000:4:20 14								
FCC	FCC ICES-003 Test Item		Result/Remarks	Verdict					
Clause			resauremanes	Verdict					
15.107	6.1	AC Power Line Conducted Emissions	Minimum passing Class B margin is -11.18 dB at 0.36484 MHz	Pass					
15.109	6.2.1	Radiated Emissions up to 1 GHz	Minimum passing Class B margin is -3.41 dB at 129.11 MHz	Pass					
15.109	6.2.2	Radiated Emissions above 1 GHz	Minimum passing Class B margin is -5.96 dB at 1020.01 MHz	Pass					

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.0 dB
	1GHz ~ 6GHz	4.7 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.2 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 Description of EUT

Product	VDSL2 integrated access device (IAD)
Brand	CenturyLink
Test Model	C4000LG
Sample Status	ENGINEERING SAMPLE
Operating Software	NA
Power Supply Rating	12Vdc from power adapter
Accessory Device	NA
Data Cable Supplied	Refer to Note

Note:

1. Simultaneously transmission condition.

Condition	Technology				
1	WLAN (2.4GHz)	WLAN (5GHz)			

2. The antennas provided to the EUT, please refer to the following table:

Frequency Range (GHz)	Directional Antenna Gain (dBi)	Antenna Type	Antenna Connector
2.4 ~ 2.5	5.1		
5.15 ~ 5.25	6.3		
5.25 ~ 5.35	7.6	PCB	i-pex(MHF)
5.47 ~ 5.725	6.4		
5.725 ~ 5.85	7.1		

Note: More detailed information, please refer to antenna specification.

3. The EUT must be supplied with a power adapter as following table:

No.	Brand	Model No.	Spec.	Plug
1	Asian Power Devices Inc	WA-30P12FU	AC Input: 100-240Vac, 0.9A, 50-60Hz DC Output: 12V, 2.5A DC Output Cable: 1.83m, Unshielded	US
2	LEADER ELECTRONICS INC.	ML30B1120250-A1	AC Input: 100-120Vac, 0.8A, 50/60Hz DC Output: 12V, 2.5A DC Output Cable: 1.83m, Unshielded	US

4. The EUT contains following data cable.

Product	Brand	Color	Quantity	Remark
RJ45 Cable		Yellow	1	1.83M, unshielded
RJ45 Cable	Nien-Yi/Hunter	White	1	1.83M, unshielded
RJ14 Cable		Green	1	3.66M, unshielded

5. The EUT incorporates a MIMO function:

2.4GHz Band								
MODULATION MODE	MODULATION MODE TX & RX CONFIGURATION							
802.11b	1TX (Fixed Chain 0)	2RX						
802.11g	2TX	2RX						
802.11n (HT20)	2TX	2RX						
802.11n (HT40)	2TX	2RX						
VHT20	2TX	2RX						
VHT40	2TX	2RX						
802.11ax (HE20)	2TX	2RX						
802.11ax (HE40)	2TX	2RX						
	5GHz Band							
MODULATION MODE	TX & RX CON	IFIGURATION						
802.11a	2TX	2RX						
802.11n (HT20)	2TX	2RX						
802.11n (HT40)	2TX	2RX						
802.11ac (VHT20)	2TX	2RX						
802.11ac (VHT40)	2TX	2RX						
802.11ac (VHT80)	2TX	2RX						
802.11ax (HE20)	2TX	2RX						
802.11ax (HE40)	2TX	2RX						
802.11ax (HE80)	2TX	2RX						
Note: All of modulation mode support beamforming function except 802.11a/b/g modulation mode.								

3.2 Features of EUT

The tests reported herein were performed according to the method specified by Alpha Networks Inc., for detailed feature description, please refer to the manufacturer's specifications or user's manual.

3.3 Operating Modes of EUT and Determination of Worst Case Operating Mode

For Radiated emission test, the EUT has been pre-tested under following test modes, and test mode A was the worst case for final test.

the worst cas	the worst case for final test.							
Pre-test	St Test Condition							
Mode	Adapter Model	Ethernet	LAN/WAN	DSL	RJ45 Brand	RJ14 Brand	Arrangement	
Mode A	WA-30P12FU	1000Mbps	1000Mbps	Link	Nien-Yi (white)	Nien-Yi	Vertical Placement	
Mode B	WA-30P12FU	1000Mbps	1000Mbps	Link	Nien-Yi (yellow)	Nien-Yi	Vertical Placement	
Mode C	WA-30P12FU	1000Mbps	1000Mbps	Link	Hinter (white)	Hinter	Vertical Placement	
Mode D	WA-30P12FU	1000Mbps	1000Mbps	Link	Hinter (yellow)	Hinter	Vertical Placement	
Mode E	ML30B112025 0-A1	1000Mbps	1000Mbps	Link	Nien-Yi (white)	Nien-Yi	Vertical Placement	
Mode F	WA-30P12FU	100Mbps	100Mbps	Link	Nien-Yi (white)	Nien-Yi	Vertical Placement	
Mode G	WA-30P12FU	10Mbps	10Mbps	Link	Nien-Yi (white)	Nien-Yi	Vertical Placement	

Note: The test configurations are defined by the applicant requirement.

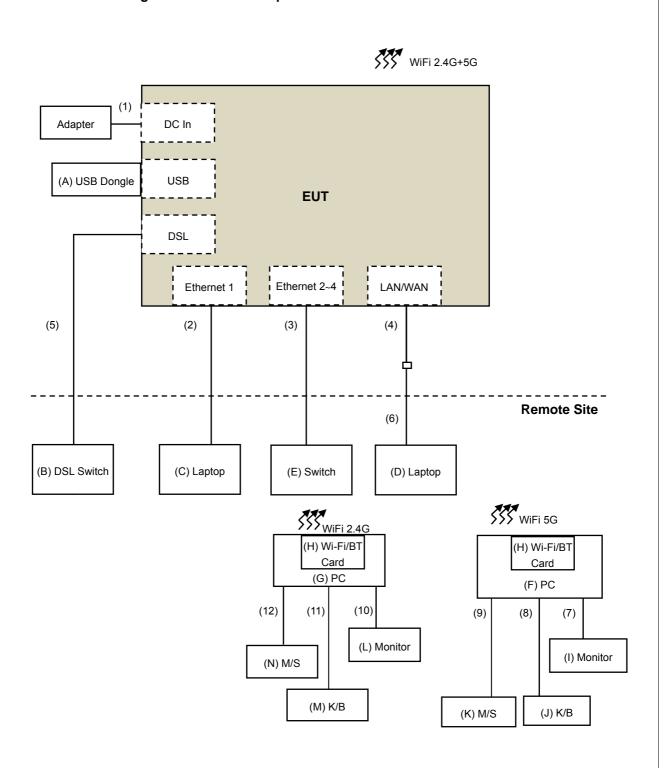
Test modes are presented in the report as below.

			ndition				
Test Mode	Conducted emission test						
	Adapter Model	Ethernet	LAN/WAN	DSL	RJ45 Brand	RJ14 Brand	Arrangement
Mode 1	WA-30P12FU	1000Mbps	1000Mbps	Link	Nien-Yi(white)	Nien-Yi	Vertical Placement
Mode 2	ML30B112025 0-A1	1000Mbps	1000Mbps	Link	Nien-Yi(white)	Nien-Yi	Vertical Placement
	Test Condition Radiated emission test						
Test Mode							
	Adapter Model	Ethernet	LAN/WAN	DSL	RJ45 Brand	RJ14 Brand	Arrangement
Mode 1	WA-30P12FU	1000Mbps	1000Mbps	Link	Nien-Yi (white)	Nien-Yi	Vertical Placement

3.4 Test Program Used and Operation Descriptions

- 1. Turn on the power of all equipment.
- 2. Support units C & D (Laptop) run "Ping.exe" program to communicate with EUT via UTP cables.
- 3. Support units F & G (PC) run "Ping.exe" program to communicate with EUT via wireless.
- 4. Support unit B (DSL Switch) link with EUT via RJ14 cable.
- 5. Support unit C (Laptop) reads and writes messages from support unit A (USB Dongle).

3.5 Primary Clock Frequencies of Internal Source


The EUT is provided by Alpha Networks Inc., for detailed internal source, please refer to the manufacturer's specifications.

 Report No.: FC191129E10
 Page No. 8 / 28
 Report Format Version: 6.1.2

4 Configuration and Connections with EUT

4.1 Connection Diagram of EUT and Peripheral Devices

4.2 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	USB Dongle	SanDisk	NA	NA	NA	Provided by Lab
B.	DSL Switch	D-LINK	DAS-3626	NA	NA	Supplied by client
C.	Laptop	DELL	PP27L	7YLB32S	FCC DoC	Provided by Lab
D.	Laptop	DELL	PP32LA	HSLB32S	FCC DoC	Provided by Lab
E.	Switch	AboCom	WR5525	WR96002928	FCC DoC	Provided by Lab
F.	PC	Dell	D16M	CN1C172	PPD-QCWB335	Provided by Lab
G.	PC	Dell	D16M	DP9RG62	PPD-QCWB335	Provided by Lab
Н.	2*2 802.11ax 160MHz Dual Band WIFI+BLUETOOTH 5 PCIe Card	AORUS	GC-WBAX200	NA	NA	Provided by Lab
I.	Monitor	DELL	E228WFPc	CN-OX765G-64180-86 Q-OJTL-AOO	FCC DoC	Provided by Lab
J.	K/B	DELL	SK-8115	MY-0DJ325-71619-99 B-0479	FCC DoC	Provided by Lab
K.	M/S	DELL	MOC5UO	I1401ML5	FCC DoC	Provided by Lab
L.	Monitor	DELL	E228WFPc	CN-OX765G-64180-86 Q-OJTL-AOO	FCC DoC	Provided by Lab
M.	K/B	DELL	SK-8115	MY-0DJ325-71619-99 B-0472	FCC DoC	Provided by Lab
N.	M/S	DELL	MOC5UO	I1401MMP	FCC DoC	Provided by Lab

Note:

^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.83	No	0	Supplied by client
2.	Cat.5e Cable	1	10	No	0	Provided by Lab
3.	Cat.5e Cable	3	10	No	0	Provided by Lab
4.	Cat.5e Cable	1	1.83	No	0	Supplied by client
5.	RJ14 Cable	1	3.66	No	0	Supplied by client
6.	Cat.5e Cable	1	10	No	0	Provided by Lab
7.	VGA Cable	1	1.8	Yes	0	Provided by Lab
8.	USB Cable	1	1.8	Yes	0	Provided by Lab
9.	USB Cable	1	1.8	Yes	0	Provided by Lab
10.	VGA Cable	1	1.8	Yes	0	Provided by Lab
11.	USB Cable	1	1.8	Yes	0	Provided by Lab
12.	USB Cable	1	1.8	Yes	0	Provided by Lab

5 Conducted Emissions at Mains Ports

5.1 Limits

Fraguency (MHz)	Class A	(dBuV)	Class B (dBuV)		
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

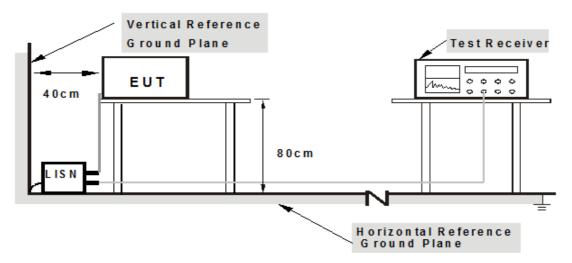
Notes: 1. The lower limit shall apply at the transition frequencies.

5.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	100375	May 15, 2019	May 14, 2020
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 04, 2019	Sep. 03, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV 216	100072	June 12, 2019	June 11, 2020
RF Cable	5D-FB	COACAB-001	Mar. 14, 2019	Mar. 13, 2020
10 dB PAD EMEC	STI02-2200-10	004	Mar. 14, 2019	Mar. 13, 2020
50 ohms Terminator	N/A	EMC-03	Sep. 25, 2019	Sep. 24, 2020
50 ohms Terminator	N/A	EMC-02	Sep. 25, 2019	Sep. 24, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conducted Room C
- 3 The VCCI Con C Registration No. is C-13611.
- 4 Tested Date: Dec. 02, 2019


^{2.} The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Test Arrangement

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1.Support units were connected to second LISN.

5.4 Supplementary Information

There is not any deviation from the test standards for the test method.

5.5 Test Results (Mode 1)

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	24℃, 64%RH
Tested by	Jason Huang		
Test Mode	Mode 1		

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.07	39.15	25.05	49.22	35.12	65.79	55.79	-16.57	-20.67	
2	0.19687	10.08	35.05	21.88	45.13	31.96	63.74	53.74	-18.61	-21.78	
3	0.22031	10.08	32.04	18.85	42.12	28.93	62.81	52.81	-20.69	-23.88	
4	0.23594	10.09	29.83	20.67	39.92	30.76	62.24	52.24	-22.32	-21.48	
5	0.28281	10.09	28.09	15.76	38.18	25.85	60.73	50.73	-22.55	-24.88	
6	18.78516	10.97	21.11	16.09	32.08	27.06	60.00	50.00	-27.92	-22.94	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	24℃, 64%RH
Tested by	Jason Huang		
Test Mode	Mode 1		

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15781	10.10	38.99	25.55	49.09	35.65	65.58	55.58	-16.49	-19.93	
2	0.18906	10.10	34.18	22.21	44.28	32.31	64.08	54.08	-19.80	-21.77	
3	0.21641	10.10	32.06	23.73	42.16	33.83	62.96	52.96	-20.80	-19.13	
4	0.23594	10.11	31.46	23.24	41.57	33.35	62.24	52.24	-20.67	-18.89	
5	0.28672	10.11	29.90	18.41	40.01	28.52	60.62	50.62	-20.61	-22.10	
6	0.34141	10.12	29.01	18.47	39.13	28.59	59.17	49.17	-20.04	-20.58	
7	18.30469	11.01	16.47	15.68	27.48	26.69	60.00	50.00	-32.52	-23.31	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5.6 Test Results (Mode 2)

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	24°C, 64%RH
Tested by	Jason Huang		
Test Mode	Mode 2		

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16172	10.07	34.34	20.92	44.41	30.99	65.38	55.38	-20.97	-24.39	
2	0.18516	10.08	32.20	25.57	42.28	35.65	64.25	54.25	-21.97	-18.60	
3	0.20859	10.08	31.11	21.53	41.19	31.61	63.26	53.26	-22.07	-21.65	
4	0.25547	10.09	29.27	24.75	39.36	34.84	61.58	51.58	-22.22	-16.74	
5	0.36094	10.10	28.20	25.74	38.30	35.84	58.71	48.71	-20.41	-12.87	
6	0.39219	10.11	25.99	20.28	36.10	30.39	58.02	48.02	-21.92	-17.63	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	24℃, 64%RH
Tested by	Jason Huang		
Test Mode	Mode 2		

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.10	37.53	28.81	47.63	38.91	66.00	56.00	-18.37	-17.09	
2	0.17344	10.10	33.58	23.25	43.68	33.35	64.79	54.79	-21.11	-21.44	
3	0.19687	10.10	30.82	18.29	40.92	28.39	63.74	53.74	-22.82	-25.35	
4	0.25938	10.11	30.07	23.15	40.18	33.26	61.45	51.45	-21.27	-18.19	
5	0.32969	10.12	28.28	24.52	38.40	34.64	59.46	49.46	-21.06	-14.82	
6	0.36484	10.12	29.22	27.32	39.34	37.44	58.62	48.62	-19.28	-11.18	
7	0.39219	10.13	25.71	16.76	35.84	26.89	58.02	48.02	-22.18	-21.13	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

6 Radiated Emissions up to 1 GHz

6.1 Limits

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

Tollowing.					
Radiated Emissions Limits at 10 meters (dBµV/m)					
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B	
30-88	39	29.5			
88-216	43.5	33.1	40	30	
216-230	46.4	35.6			
230-960	40.4	35.0	47	37	
960-1000	49.5	43.5	4/	37	

	Radiated Emissions Limits at 3 meters (dBµV/m)					
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B		
30-88	49.5	40				
88-216	54	43.5	50.5	40.5		
216-230	56.9	46				
230-960	50.9	40	57.5	47.5		
960-1000	60	54	57.5	47.5		

Notes: 1. The lower limit shall apply at the transition frequencies.

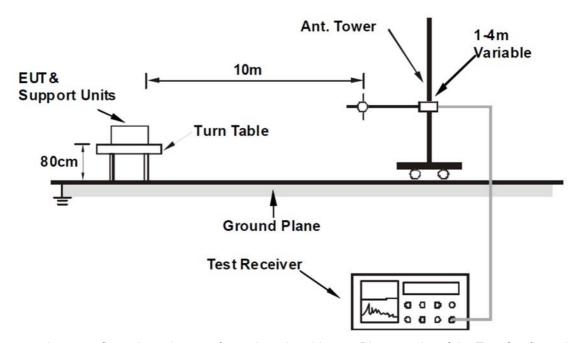
2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

3. QP detector shall be applied if not specified.

6.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY50010125	Apr. 11, 2019	Apr. 10, 2020
Test Receiver Agilent	N9038A	MY50010132	July 12, 2019	July 11, 2020
Pre-Amplifier	310N	352925	Aug. 26, 2019	Aug. 25, 2020
Sonoma	310N	352926	Aug. 26, 2019	Aug. 25, 2020
Trilog Broadband	VULB 9168	9168-359	Nov. 11, 2019	Nov. 10, 2020
Antenna SCHWARZBECK	VULB 9168	9168-358	Nov. 08, 2019	Nov. 07, 2020
Fixed attenuator	UNAT-5+	CHF-001	Sep. 04, 2019	Sep. 03, 2020
Mini-Circuits	UNAT-5+	CHF-002	Sep. 04, 2019	Sep. 03, 2020
DE Coble	8D-FB	CHFCAB-001-1 CHFCAB-001-3 CHFCAB-001-4	Sep. 16, 2019	Sep. 15, 2020
RF Cable	8D-FB	CHFCAB-002-1 CHFCAB-002-3 CHFCAB-002-4	Sep. 16, 2019	Sep. 15, 2020
Software BVADT	ADT_Radiated_V 8.7.08	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:


- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Chamber F room
- 3. The VCCI Site Registration No. is R-13252.
- 4. Tested Date: Dec. 04, 2019

6.3 Test Arrangement

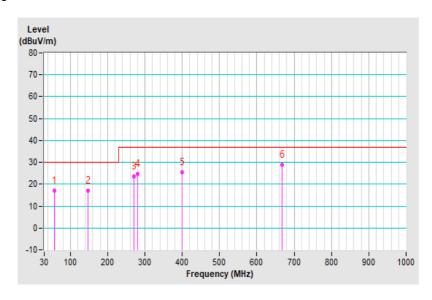
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz.

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

6.4 Supplementary Information

There is not any deviation from the test standards for the test method.

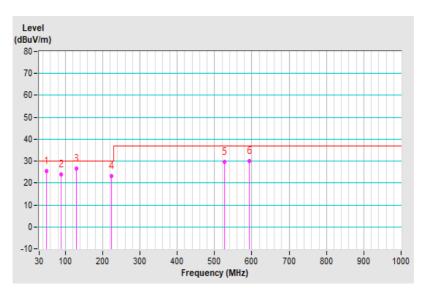


6.5 Test Results

Frequency Range	30MHz ~ 1GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120kHz
Input Power	120Vac, 60Hz	Environmental Conditions	23℃, 62%RH
Tested by	Darren Lin		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Horizontal at 10 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	57.31	17.22 QP	30.00	-12.78	4.00 H	210	30.38	-13.16
2	146.79	17.21 QP	30.00	-12.79	3.00 H	233	29.12	-11.91
3	271.51	23.50 QP	37.00	-13.50	3.00 H	41	35.32	-11.82
4	280.77	24.59 QP	37.00	-12.41	3.00 H	14	36.09	-11.50
5	398.72	25.45 QP	37.00	-11.55	2.00 H	130	33.85	-8.40
6	666.66	28.94 QP	37.00	-8.06	3.90 H	92	31.06	-2.12

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	30MHz ~ 1GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120kHz
Input Power	120Vac, 60Hz	Environmental Conditions	23℃, 62%RH
Tested by	Darren Lin		
Test Mode	Mode 1		

	Antenna Polarity & Test Distance : Vertical at 10 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	49.13	25.52 QP	30.00	-4.48	3.00 V	143	37.97	-12.45
2	89.02	24.01 QP	30.00	-5.99	2.00 V	8	42.17	-18.16
3	129.11	26.59 QP	30.00	-3.41	1.12 V	199	39.81	-13.22
4	223.08	23.22 QP	30.00	-6.78	1.00 V	142	38.24	-15.02
5	527.27	29.59 QP	37.00	-7.41	1.00 V	170	34.44	-4.85
6	594.01	30.07 QP	37.00	-6.93	3.00 V	279	33.13	-3.06

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

7 Radiated Emissions above 1 GHz

7.1 Limits

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

iono inig.					
Radiated Emissions Limits at 10 meters (dBµV/m)					
Frequencies	Frequencies FCC 15B / ICES-003, FCC 15B / ICES-003, CISPR 22, Class A CISPR 22, Class B				
(MHz)	Class A	Class B	CIOPR 22, Class A	CISPR 22, Class B	
1000-3000	Avg: 49.5	Avg: 43.5	Not defined	Not defined	
Above 3000	Peak: 69.5	Peak: 63.5	Not defined	Not defined	

Radiated Emissions Limits at 3 meters (dBµV/m)					
Frequencies (MHz)	FCC 15B / ICES-003, Class A Class B CISPR 22, Class A CISPR 22, Class B				
1000-3000	Avg: 60	Avg: 54	Avg: 56 Peak: 76	Avg: 50 Peak: 70	
Above 3000	Peak: 80	Peak: 74	Avg: 60 Peak: 80	Avg: 54 Peak: 74	

Notes: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

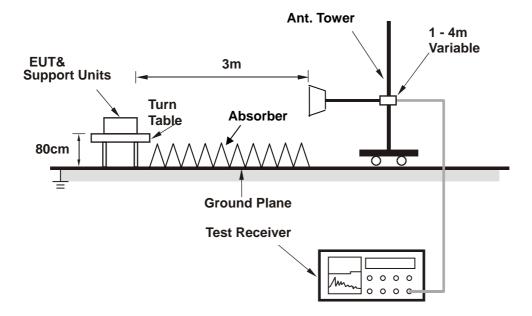
Frequency Range (For unintentional radiators)

Highest frequency generated or used in the device or		
on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)	
Below 1.705	30	
1.705-108	1000	
108-500	2000	
500-1000	5000	
Al 4000	5th harmonic of the highest frequency or 40GHz,	
Above 1000	whichever is lower	

7.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY50010125	Apr. 11, 2019	Apr. 10, 2020
Pre-Amplifier Agilent	8449B	3008A01975	Feb. 21, 2019	Feb. 20, 2020
Horn Antenna SCHWARZBECK	BBHA 9120D	D123	Nov. 24, 2019	Nov. 23, 2020
RF Coaxial Cable	EMC104-SM-SM -11000	170209	Mar. 05, 2019	Mar. 04, 2020
RF Coaxial Cable	EMC104-SM-SM -6000	170207	Mar. 05, 2019	Mar. 04, 2020
RF Coaxial Cable	EMC104-SM-SM -2500	170206	Mar. 05, 2019	Mar. 04, 2020
Spectrum Analyzer Agilent	E4446A	MY48250254	Nov. 20, 2019	Nov. 19, 2020
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Dec. 04, 2018	Dec. 03, 2019
Horn Antenna SCHWARZBECK	BBHA 9170	9170-424	Nov. 24, 2019	Nov. 23, 2020
RF Cable	SUCOFLEX 102	36432/2 36443/2	Jan. 10, 2019	Jan. 09, 2020
Software BVADT	ADT_Radiated_ V8.7.08	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA
Fix tool for Boresight antenna tower	BAF-01	5	NA	NA

Note:


- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Chamber F room
- 3. Tested Date: Dec. 03, 2019

7.3 Test Arrangement

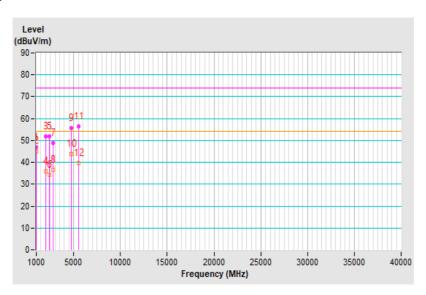
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.

The test arrangement is in accordance with ANSI 63.4:2014. For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.4 Supplementary Information

There is not any deviation from the test standards for the test method.

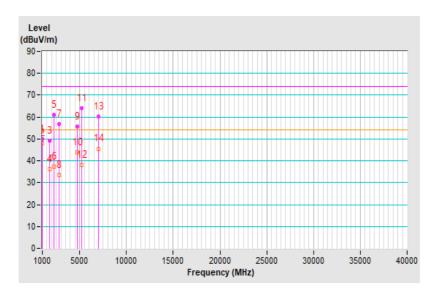


7.5 Test Results

Frequency Range	1GHz ~ 29.25GHz	Detector Function & Resolution Bandwidth	Peak (PK) / Average (AV), 1MHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 71%RH
Tested by	Jason Huang		
Test Mode	Mode 1		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1020.01	47.04 PK	74.00	-26.96	1.00 H	95	54.60	-7.56
2	1020.01	45.16 AV	54.00	-8.84	1.00 H	107	52.72	-7.56
3	2045.50	51.70 PK	74.00	-22.30	1.00 H	10	51.23	0.47
4	2045.50	35.66 AV	54.00	-18.34	1.00 H	15	35.19	0.47
5	2429.70	51.90 PK	74.00	-22.10	2.00 H	79	51.02	0.88
6	2429.70	34.17 AV	54.00	-19.83	2.00 H	80	33.29	0.88
7	2817.30	48.74 PK	74.00	-25.26	1.00 H	217	45.19	3.55
8	2817.30	36.70 AV	54.00	-17.30	1.00 H	222	33.15	3.55
9	4777.40	55.53 PK	74.00	-18.47	1.00 H	319	41.05	14.48
10	4777.40	43.82 AV	54.00	-10.18	1.00 H	321	29.34	14.48
11	5501.60	56.48 PK	74.00	-17.52	2.00 H	340	44.81	11.67
12	5501.60	39.69 AV	54.00	-14.31	2.00 H	345	28.02	11.67

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	1GHz ~ 29.25GHz	Detector Function & Resolution Bandwidth	Peak (PK) / Average (AV), 1MHz	
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 71%RH	
Tested by	Jason Huang			
Test Mode 1				

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1020.01	49.80 PK	74.00	-24.20	1.00 V	188	57.36	-7.56
2	1020.01	48.04 AV	54.00	-5.96	1.00 V	187	55.60	-7.56
3	1815.02	49.15 PK	74.00	-24.85	1.00 V	172	51.01	-1.86
4	1815.02	36.15 AV	54.00	-17.85	1.00 V	168	38.01	-1.86
5	2274.15	61.00 PK	74.00	-13.00	1.00 V	37	57.64	3.36
6	2274.15	37.23 AV	54.00	-16.77	1.00 V	35	33.87	3.36
7	2818.15	56.79 PK	74.00	-17.21	2.00 V	37	53.25	3.54
8	2818.15	33.65 AV	54.00	-20.35	2.00 V	45	30.11	3.54
9	4758.70	55.82 PK	74.00	-18.18	1.00 V	80	42.19	13.63
10	4758.70	43.69 AV	54.00	-10.31	1.00 V	82	30.06	13.63
11	5176.90	64.01 PK	74.00	-9.99	1.00 V	252	54.17	9.84
12	5176.90	38.02 AV	54.00	-15.98	1.00 V	253	28.18	9.84
13	7021.40	60.28 PK	74.00	-13.72	1.00 V	32	41.88	18.40
14	7021.40	45.55 AV	54.00	-8.45	1.00 V	36	27.15	18.40

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

8 Pictures of Test Arrangements					
Please refer to the attached file (Test Setup Photo).					

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---