

Test Report - FCC PART 1.1310 / MPE Applicant: Fiplex Communications Inc.

Approved for Release By:

Signature:	Brund Claurer		
Name & Title:	Bruno Clavier, General Manager		
Date of Signature	5/12/2022		

This test report shall not be reproduced except in full without the written and signed permission of Timco Engineering Inc. (IIA). This test report relates only to the items tested as identified and is not valid for any subsequent changes or modifications made to the equipment under test.

Table of Contents

1.	CUSTOMER	R INFORMATION	3
2.		I OF TESTING	
		BORATORY	
3.	TEST SAMP	PLE(S) (EUT/DUT)	5
	3.1 DESCRIPT	TION OF THE EUT	5
4.	TEST METH	HODS & APPLICABLE REGULATORY LIMITS	6
	4.1.1 FO	THODS/STANDARDS/GUIDANCE:	6
5.	RF EXPOSU	JRE RESULTS	8
6.		DF TEST REPORT CHANGES	

1. Customer Information

Applicant: Fiplex Communications Inc.
Address: 2101 NW 79th Avenue

Miami Florida, 33122, United States

2. Location of Testing

2.1 Test Laboratory

Timco Engineering Inc. is a subsidiary of Industrial Inspection & Analysis, Inc. ("IIA"). Testing was performed at Timco's permanent laboratory located at 849 NW State Road 45, Newberry, Florida 32669

FCC test firm # 578780

FCC Designation # US1070

FCC site registration is under A2LA certificate # 0955.01

ISED Canada test site registration # 2056A

EU Notified Body # 1177

For all designations see A2LA scope # 0955.01

2.2 Testing was performed, reviewed by

Dates of Testing: 4/5/2022 - 5/11/2022

Signature:	Sr. EMC Engineer EMC-003838-NE	
Name & Title:	Tim Royer, EMC Engineer	
Date of Signature	5/12/2022	
	W = 0	
Signature:	Derri allen	
Name & Title:	Terri Allen, Lab Assistant	
Date of Signature	5/12/2022	

3. Test Sample(s) (EUT/DUT)

The test sample was received: 4/4/2022

3.1 Description of the EUT

A description as well as unambiguous identification of the EUT(s) tested. Where more than one sample is required for technical reasons (such as the use of connected units for the purpose of conducted output power testing where the product units will have integral antennas), each specific test shall identify which unit was tested.

Identification	
FCC ID:	P3TDH437-3X
Brief Description	Digital Signal Booster
Type of Modular	n/a
Model(s) #	DH437
Firmware version	3.01-00
Software version	1.02
Serial Number	20101178FU

Technical Characteristics					
Technology	Bi-Directional Industrial Signal Booster				
Frequency Range	410 – 415 MHz- Uplink/ Downlink				
	417 – 422 MHz- Uplink/ Downlink				
	425 - 430 MHz- Uplink/ Downlink				
RF O/P Power (Max.)	UL: 23.85 dBm (0.24 W)				
	DL: 37.96 dBm (6.25 W)				
Modulation	n/a				
Bandwidth & Emission Class	11K3F3E, 8K10F1D, 8K10F1E, 8K10F1W, 9K80F1D, 9K80F1E,				
	9K80D7W				
Number of Channels	Variable				
Duty Cycle	100%				
Antenna Connector	N Type				
Voltage Rating (AC or Batt.)	28 V DC (internally)				

Antenna Characteristics						
Frequency Range	Mode / BW	Antenna Gain				
410 – 430 MHz	n/a	3 dBi				

Page 5 of 10

4. Test methods & Applicable Regulatory Limits

4.1 Test methods/Standards/Guidance:

The following guidance FCC KDB 447498 D01 General RF Exposure Guidance v06 was used for RF exposure evaluation as per FCC Part 1.1310 and FCC Part 2.1091 and part 2.1093. Full test results are available in this report.

4.1.1 FCC Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz) Electric field strength (V/m)		Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging Time (minutes)					
A Limits for Occupational/Controlled Exposure									
0.3-3.0	614	1.63	*(100)	≤6					
3.0-30	1842/f	4.89/f	*(900/f²)	<6					
30-300	61.4	0.163	1.0	<6					
300-1,500			f/300	<6					
1,500-100,000			5	<6					
B Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	<30					
1.34-30	824/f	2.19/f	*(180/f²)	<30					
30-300	27.5	0.073	0.2	<30					
300-1,500			f/1500	<30					
1,500-100,000			1.0	<30					

4.2 Equations

POWER DENSITY

E(V/m) = SQRT (30 * P * G) / d $Pd(W/m^2) = E^2 / 377$

 $S = EIRP / (4 * Pi * D^2v)$

Where:

S = Power density, in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power, in mW D = Separation distance in cm

Power density is converted from units of <u>mW/cm^2</u> to units of <u>W/m^2</u> by multiplying by 10.

DISTANCE

D = SQRT (EIRP / (4 * Pi * S))

Where:

D = Separation distance in cm

EIRP = Equivalent Isotropic Radiated Power, in mW

S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE (When applicable (for example, multi-slot mobile phone applications) A duty cycle factor may be applied.)

Source-based time-average EIRP = (DC / 100) * EIRP

Where:

DC = Duty Cycle in % as applicable. EIRP = Equivalent Isotropic radiated Power, in mW

5. RF Exposure Results

Downlink Separation Distance: 75.91 cm

MPE									
Frequency Band	Evaluation Distance (cm)	Max Power + Tolerance (dBm)	Antenna Gain (dBi)	Duty Cycle (%)	EIRP (W)	Power Density	Limit for Uncontrolled Exposure	Limit for Controlled Exposure	Distance Required to meet Uncontrolled Exposure Limt (cm)
410-430 MHz	20	42.96	3.00	100%	19.77	3.933 mW/cm2	0.273 mW/cm2	1.367 mW/cm2	75.91

RESULT: Pass at DISTANCE 75.91 cm

6. History of Test Report Changes

Test Report #	Revision #	Description	Date of Issue
TR_1654-22_Downlink_FCC PT 1.1310/ MPE_	1	Initial release	5/11/2022

END OF TEST REPORT