1.7. D1900V2 Dipole Calibration Certificate Client GTI Certificate No: Z18-60133 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d115 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 26, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRVD | 102083 | 22-Sep-17 (CTTL, No.J16X06809) | Sep-18 | | Power sensor NRV-Z5 | 100595 | 22-Sep-17 (CTTL, No.J16X06809) | Sep-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE4 | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 500 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林为 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | Issued: August 30, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 $\ {\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.16 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 mW /g ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.1 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.3 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 $\ cm^3$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.30 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 mW /g ± 18.7 % (k=2) | Page 3 of 8 # Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.2Ω+ 6.65jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.7Ω+ 8.08jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.309 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z18-60133 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d115 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.413$ S/m; $\epsilon r = 39.85$; $\rho = 1000$ kg/m3 Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2018; Date: 08.26.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.78 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.16 W/kg Maximum value of SAR (measured) = 15.8 W/kg 0 dB = 15.8 W/kg = 11.99 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 08.26.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d115 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\varepsilon_r = 53.55$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2018; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.01 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.3 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg # Impedance Measurement Plot for Body TSL Page 8 of 8 # 1.8. D2450V2 Dipole Calibration Certificate Http://www.chinattl.cn E-mail: cttl@chinattl.com GTI Client Certificate No: Z18-60198 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 928 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 12, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J16X04777) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J16X04777) | Jun-18 | | Reference Probe ES3DV3 | SN 3149 | 15-Apr-17(CTTL-SPEAG,No.J16-97035) | Apr-18 | | DAE4 | SN 777 | 22-Aug-17(CTTL-SPEAG,No.Z16-97138) | Aug-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-17 (CTTL, No.J16X00893) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 26-Jan-17 (CTTL, No.J16X00894) | Jan-18 | | | | | | Calibrated by: Name Function Zhao Jing **SAR Test Engineer** Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Liu Wei Deputy Director of SEM Department Issued: October 14, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60198 Page 1 of 8 #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60198 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.78 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 51.9 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.08 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 mW /g ± 20.4 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.92 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.96 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 mW /g ± 20.4 % (k=2) | # **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5Ω+ 4.52jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.9dB | | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 51.1Ω+ 5.39jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.3dB | | # **General Antenna Parameters and Design** | Flectrical Delay (one direction) | 1.263 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.203 118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 928 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.777$ S/m; $\epsilon r = 39.03$; $\rho = 1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: ES3DV3 SN3149; ConvF(4.51, 4.51, 4.51); Calibrated: 4/15/2018; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/22/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 10.12.2018 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 16.9 W/kg 0 dB = 16.9 W/kg = 12.28 dBW/kg Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: Z18-60198 Page 6 of 8 # **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 928 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.923$ S/m; $\epsilon_r = 52.91$; $\rho = 1000$ kg/m³ Phantom section: Left Section DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.23, 4.23, 4.23); Calibrated: 4/15/2018; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/22/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 10.12.2018 **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.26 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 24.6 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.96 W/kg Maximum value of SAR (measured) = 16.6 W/kg 0 dB = 16.6 W/kg = 12.20 dBW/kg Certificate No: Z18-60198 Page 7 of 8 # Impedance Measurement Plot for Body TSL # 1.9. D2600V2 Dipole Calibration Certificate Client GTI Certificate No: Z18-60135 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1126 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 29, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRVD | 102083 | 22-Sep-17 (CTTL, No.J16X06809) | Sep-18 | | Power sensor NRV-Z5 | 100595 | 22-Sep-17 (CTTL, No.J16X06809) | Sep-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE4 | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是 1 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林地 | | Approved by: | Qi Dianyuan | SAR Project Leader | 38 | Issued: September 2, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. In Collaboration with S D E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.1.1476 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.97 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 57.4 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.51 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 26.0 mW /g ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 2.17 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.5 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 53.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 $\ cm^3$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.99 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 mW /g ± 18.7 % (k=2) | # Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.3Ω- 5.20jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.1dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.6Ω- 4.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.0dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.256 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Date: 08.29.2018 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1126 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.968$ S/m; $\varepsilon = 38.68$; $\rho = 1000$ kg/m3 Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.3, 7.3, 7.3); Calibrated: 1/23/2018; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.4 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.51 W/kg Maximum value of SAR (measured) = 24.6 W/kg 0 dB = 24.6 W/kg = 13.91 dBW/kg # Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1126 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.166$ S/m; $\varepsilon_r = 51.94$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN3617; ConvF(7.48, 7.48, 7.48); Calibrated: 1/23/2018; Date: 08.29.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2018 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 76.81 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 23.5 W/kg 0 dB = 23.5 W/kg = 13.71 dBW/kg # Impedance Measurement Plot for Body TSL