

4	T	In Collaboration with		-	107
	11	CALIBRATION LABORATORY			ICI
		: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China +86-10-62304633-2117			
		ail: emf@caict.ac.cn http://www.caict.ac.cn			
10755	AAC	IEEE 802.11ax (160MHz, MCS0, 99pc dc)	WLAN	8.64	± 9.6 %
10756	AAC	IEEE 802.11ax (160MHz, MCS1, 99pc dc)	WLAN	8.77	±9.6 %
10757 10758	AAC	IEEE 802.11ax (160MHz, MCS2, 99pc dc)	WLAN	8.77	± 9.6 %
10759	AAC	IEEE 802.11ax (160MHz, MCS3, 99pc dc) IEEE 802.11ax (160MHz, MCS4, 99pc dc)	WLAN WLAN	8.69 8.58	± 9.6 % ± 9.6 %
10760	AAC	IEEE 802.11ax (160MHz, MCS5, 99pc dc)	WLAN	8.49	± 9.6 %
10761	AAC	IEEE 802.11ax (160MHz, MCS6, 99pc dc)	WLAN	8.58	± 9.6 %
10762	AAC	IEEE 802.11ax (160MHz, MCS7, 99pc dc)	WLAN	8.49	± 9.6 %
10763 10764	AAC	IEEE 802.11ax (160MHz, MCS8, 99pc dc) IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN WLAN	8.53 8.54	± 9.6 % ± 9.6 %
10765	AAC	IEEE 802.11ax (160MHz, MCS9, 99pc dc)	WLAN	8.54	± 9.6 %
10766	AAC	IEEE 802.11ax (160MHz, MCS11, 99pc dc)	WLAN	8.51	± 9.6 %
10767	AAC	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	± 9.6 %
10768	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01 8.01	± 9.6 %
10769 10770	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.02	± 9.6 % ± 9.6 %
10771	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	± 9.6 %
10772	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	± 9.6 %
10773	AAC	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	± 9.6 %
10774 10775	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.02 8.31	± 9.6 % ± 9.6 %
10776	AAC	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10778	AAC	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	± 9.6 %
10780 10781	AAC	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.38 8.38	± 9.6 % ± 9.6 %
10782	AAC	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	± 9.6 %
10783	AAC	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	± 9.6 %
10784	AAC	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	± 9.6 %
10785 10786	AAC	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.40 8.35	± 9.6 % ± 9.6 %
10787	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	8.44	± 9.6 %
10788	AAC	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10789	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10790 10791	AAC	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.39 7.83	± 9.6 % ± 9.6 %
10791	AAC	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	± 9.6 %
10793	AAC	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	± 9.6 %
10794	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	± 9.6 %
10795	AAC	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	± 9.6 %
10796 10797	AAC	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.82 8.01	± 9.6 % ± 9.6 %
10798	AAC	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10799	AAC	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6 %
10801	AAC	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	± 9.6 %
10802 10803	AAC	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.87	± 9.6 %
10805	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93 8.34	± 9.6 % ± 9.6 %
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	± 9.6 %
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6 %
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10812 10817	AAD	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.35 8.35	± 9.6 % ± 9.6 %
10818	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	± 9.6 %
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	± 9.6 %
10821	AAC	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.41	± 9.6 %

Certificate No:24J02Z000332

Page 19 of 22

-	TT	In Collaboration with		CA	IC
		CALIBRATION LABORATORY		-	
		No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China			
		+86-10-62304633-2117 ail: emf@caict.ac.cn http://www.caict.ac.cn			
		in onigeneration in the new calculation			
10823	AAC	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	± 9.6 %
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.42	±9.6%
10829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	8.43 8.40	± 9.6 %
10830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	± 9.6 %
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	± 9.6 %
10832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	± 9.6 %
10834	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.70	± 9.6 %
10835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	± 9.6 %
10837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	± 9.6 %
10839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	± 9.6 %
10840 10841	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.67	± 9.6 %
10843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	± 9.6 %
10844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.36 8.37	± 9.6 %
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	± 9.6 %
10858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	± 9.6 %
10859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	± 9.6 %
10860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.40 8.41	± 9.6 %
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	8.37	± 9.6 %
10865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	± 9.6 %
10866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
10868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	± 9.6 %
10869	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	5.75 5.86	± 9.6 %
10871	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	± 9.6 %
10872	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	± 9.6 %
10873	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10874	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	6.65 7.78	± 9.6 %
10875 10876	AAD AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz)	5G NR FR2 TDD	8.39	± 9.6 %
10877	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	± 9.6 %
10878	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10879	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	± 9.6 %
10880 10881	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.38 5.75	± 9.6 %
10882	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 KHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	± 9.6 %
10883	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	6.57	± 9.6 %
10884	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	± 9.6 %
10885	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	± 9.6 %
10886 10887	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	6.65 7.78	± 9.6 %
10888	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	± 9.6 %
10889	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	± 9.6 %
10890	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.40	± 9.6 %
10891	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	± 9.6 %
10892	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	± 9.6 %
10897 10898	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.66 5.67	± 9.6 %

1	TT	S P E A G		CA	IC
		CALIBRATION LABORATORY			
		No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China +86-10-62304633-2117			
		ail: emf@caict.ac.cn http://www.caict.ac.cn			
0899	AAD	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	± 9.6 %
0900	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0901	AAD	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.68 5.68	± 9.6 %
0903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0904	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0906 0907	AAD	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	± 9.6 %
0908	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.78 5.93	± 9.6 %
0909	AAD	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	± 9.6 %
0910	AAD	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
0911	AAD	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	± 9.6 %
)912)913	AAD	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.84 5.84	± 9.6 %
914	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	± 9.6 %
915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	± 9.6 %
916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
)918)919	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.86 5.86	± 9.6 %
920	AAD	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	± 9.6 %
921	AAD	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
)922	AAD	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	± 9.6 %
923	AAD	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
)924)925	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.84 5.95	± 9.6 %
0926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 %
927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 %
0928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 %
)929)930	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.52 5.52	± 9.6 %
931	AAD	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.51	± 9.6 %
932	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
933	AAA	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 %
0934	AAA	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.51 5.51	± 9.6 %
0936	AAA	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
0937	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 %
938	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 %
0939	AAB	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 %
)940)941	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.89 5.83	± 9.6 %
)942	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
943	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 %
)944	AAB	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 %
945	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 %
)946)947	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.83 5.87	± 9.6 %
948	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.94	± 9.6 %
949	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 %
0950	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 %
951	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 %
0952 0953	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.25 8.15	± 9.6 %
0954	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	5G NR FR1 FDD	8.23	± 9.6 %
0955	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	± 9.6 %
0956 0957	AAB AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	8.14 8.31	± 9.6 % ± 9.6 %

-	TT.	In Collaboration with		CA	IC
		CALIBRATION LABORATORY			-
		No 60 How War Dail David Haiding Distaint Dailing 100101 Ching			
		No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China +86-10-62304633-2117			
		ail: emf@caict.ac.cn http://www.caict.ac.cn			
10958	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	± 9.6 %
10959	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	± 9.6 %
0960	AAB	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	± 9.6 %
0961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	± 9.6 %
0962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40 9.55	± 9.6 %
10963 10964	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	9.35	± 9.6 %
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	± 9.6 %
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	± 9.6 %
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	± 9.6 %
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 %
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 %
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 %
10978	AAA	ULLA BDR	ULLA	1.16 8.58	± 9.6 %
10979	AAA	ULLA HDR4 ULLA HDR8	ULLA	10.32	± 9.6 %
10980	AAA	ULLA HDRp4	ULLA	3.19	± 9.6 %
10982	AAA	ULLA HDRp8	ULLA	3.43	± 9.6 %
10983	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	± 9.6 %
10984	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	± 9.6 %
0985	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	± 9.6 %
10986	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	± 9.6 %
10987	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	± 9.6 %
10988	AAB	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	± 9.6 %
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	± 9.6 %
10990	AAB	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz) 5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	9.52	± 9.6 %
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	10.24	± 9.6 %
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	± 9.6 %
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	± 9.6 %
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	± 9.6 %
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	± 9.6 %
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	± 9.6 %
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	± 9.6 %
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	± 9.6 %
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68 8.47	± 9.6 %
11013	AAB AAB	IEEE 802.11be (320MHz, MCS1, 99pc duty cycle) IEEE 802.11be (320MHz, MCS2, 99pc duty cycle)	WLAN WLAN	8.47	± 9.6 %
11014	AAB	IEEE 802.11be (320MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
11016	AAB	IEEE 802.11be (320MHz, MCS4, 99pc duty cycle)	WLAN	8.44	± 9.6 %
11017	AAB	IEEE 802.11be (320MHz, MCS5, 99pc duty cycle)	WLAN	8.41	± 9.6 %
11018	AAB	IEEE 802.11be (320MHz, MCS6, 99pc duty cycle)	WLAN	8.40	± 9.6 %
11019	AAB	IEEE 802.11be (320MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
11020	AAB	IEEE 802.11be (320MHz, MCS8, 99pc duty cycle)	WLAN	8.27	± 9.6 %
11021	AAB	IEEE 802.11be (320MHz, MCS9, 99pc duty cycle)	WLAN	8.46	± 9.6 %
11022	AAB	IEEE 802.11be (320MHz, MCS10, 99pc duty cycle)	WLAN	8.36	± 9.6 %
11023	AAB	IEEE 802.11be (320MHz, MCS11, 99pc duty cycle)	WLAN	8.09	± 9.6 %
11024	AAB	IEEE 802.11be (320MHz, MCS12, 99pc duty cycle)	WLAN	8.42	± 9.6 %
11025	AAB	IEEE 802.11be (320MHz, MCS13, 99pc duty cycle)	WLAN	8.37	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:24J02Z000332

Page 22 of 22

ANNEX H Dipole Calibration Certificate

750 MHz Dipole Calibration Certificate

eughaus ccredite he Swis	ering AG sstrasse 43, 8004 Zurich, d by the Swiss Accredita ss Accreditation Service ral Agreement for the re	tion Service (SAS) is one of the signato		Read Hold	S Swiss Calibration Service Accreditation No.: SCS 0108
lient	CTTL Beijing			Certificate No.	D750V3-1017_Jul24
CAL Object	IBRATION CEF	D750V3 - SN: 10	017		
Calibra	tion procedure(s)	QA CAL-05.v12 Calibration Proc		R Validation Sou	rces between 0.7 - 3 GHz
Calibra	tion date	July 9, 2024			
This ca The me All calib	libration certificate docun pasurements and the unc	nents the traceability to retrainties with confidence acted in the closed laboration of the clos	e probability are atory facility: envi	given on the following	hysical units of measurements (SI). pages and are part of the certificate. $(22 \pm 3)^{\circ}$ C and humidity < 70%.
This ca The me All calib Calibra	libration certificate docun pasurements and the unc prations have been condu tion Equipment used (M8	nents the traceability to retrainties with confidence acted in the closed laboration of the clos	e probability are atory facility: envi n)	given on the following ronment temperature	pages and are part of the certificate.
This ca The me All calibra Calibra Primary	libration certificate docun easurements and the unc prations have been condu	nents the traceability to ertainties with confidence acted in the closed labora TE critical for calibration	e probability are atory facility: envi n) Cal Date	given on the following	pages and are part of the certificate. (22±3)°C and humidity < 70%.
This ca The me All calit Calibra Primary Power S	libration certificate docum pasurements and the unc prations have been condu- tion Equipment used (M8 r Standards	nents the traceability to retrainties with confidence acted in the closed labor. TE critical for calibration ID	e probability are atory facility: envi n) Cal Date 967 28-Mar-24	given on the following ronment temperature Certificate No.)	pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. Scheduled Cal Mar-25
This ca The me All calit Calibra Primary Power S Power S	libration certificate docun pasurements and the unc prations have been condu tion Equipment used (M8 / Standards Sensor R&S NRP-33T	nents the traceability to in ertainties with confidence incred in the closed laboration TE critical for calibration ID SN: 1005	cal Date (28-Mar-24 2967 28-Mar-24 859 21-Mar-24	given on the following ronment temperature Certificate No.) (No. 217-04038)	pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. Scheduled Cal Mar-25 01) Mar-25
This ca The me All calit Calibra Primary Power S Power S Spectru	libration certificate docum pasurements and the unc prations have been condu- tion Equipment used (M8 r Standards Sensor R&S NRP-33T Sensor R&S NRP18A	ID SN: 1018 SN: 1018	ce probability are atory facility: environ n) Cal Date 967 28-Mar-24 859 21-Mar-24 832 25-Jan-24	given on the following ronment temperature Certificate No.) (No. 217-04038) (No. 4030A3150078)	pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. Scheduled Cal Mar-25 01) Mar-25

Mismatch, Short [54100] Attenuator [54423]	SIN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Secondary Standards ACAD Source Box	ID SN: 1000	Check Date (in house) 28-May-24 (No. 675-ACAD Source Box-240528)	Scheduled Check May-25

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technician	tento
Approved by	Sven Kühn	Technical Manager	S.Ca
This calibration certifica	ate shall not be reproduced except	in full without written approval of the lab	Issued: July 9, 2024 oratory.

Certificate No: D750V3-1017_Jul24

Page 1 of 6

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

Swiss Calibration Service

S

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF

N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- · IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- · KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017_Jul24

Page 2 of 6

July 9, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with spacer
Zoom Scan Resolution	dx, dy = 6mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	750MHz ±1MHz	

Head TSL parameters at 750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.890 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	42.5 ±6%	0.910 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.52 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	1.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.53 W/kg ±16.5% (k = 2)

Certificate No: D750V3-1017_Jul24

Page 3 of 6

July 9, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 750 MHz

Impedance	53.2 Ω – 0.7 jΩ
Return Loss	-30.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns	

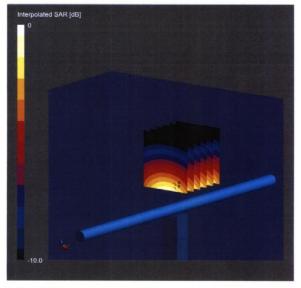
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D750V3-1017_Jul24

Page 4 of 6



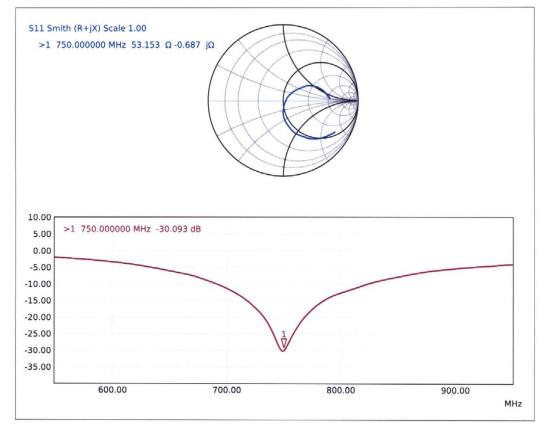
July 9, 2024

System Performance Check Report

Dipole				TSL	Power [dBm]			
D750V3 - SN1017				HSL	24			
Exposure Condition	s							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz]	, Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15		CW, 0	750, 0		9.9	0.91	42.5
Hardware Setup								
Phantom	TSL, Measured Date Probe, Calibration Date			DAE, O	Calibration Date			
Flat V4.9 mod	HSL, 2024-07-09 EX3DV4 - SN7349, 2024-06-03			DAE4	p Sn1836, 2024-01-10			
Scans Setup					Measuremer	nt Results		
				Zoom Scan				Zoom Scar
Grid Extents [mm]				30 x 30 x 30	Date	_		2024-07-09
Grid Steps [mm]	6.0 x 6.0 x 1.5			0 x 6.0 x 1.5	psSAR1g [W/K	sSAR1g [W/Kg]		
Sensor Surface (mm)				1.4	psSAR10g [W/	Kg]		1.39
Graded Grid				Yes	Power Drift [dB]		0.00	
Grading Ratio				1.5	Power Scaling			Disabled
MAIA				N/A	Scaling Factor	[dB]		
Surface Detection				VMS + 6p	TSL Correction	1		Positive / Negative

0 dB = 3.48 W/Kg

Certificate No: D750V3-1017_Jul24


Page 5 of 6

July 9, 2024

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1017_Jul24

Page 6 of 6

835 MHz Dipole Calibration Certificate

ent CTTL Beijing				
			Certificate No. D835V2-40	d069_Jul24
CALIBRATI	ON CERTIFICA	TE		
Dbject	D835V	2 - SN: 4d06	9	
Calibration procedu		L-05.v12 tion Procedu	re for SAR Validation Sources between	0.7 - 3 GHz
Calibration date	July 9,	2024		
Primary Standards Power Sensor R&S Power Sensor R&S		ID SN: 100967 SN: 101859	Cal Date (Certificate No.) 28-Mar-24 (No. 217-04038) 21-Mar-24 (No. 4030A315007801)	Scheduled Cal Mar-25 Mar-25
Spectrum Analyzer		SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
	188] Attenuator [S4423]		28-Mar-24 (No. 217-04050) 05-Oct-23 (No. OCP-DAK12-1016 Oct23)	Mar-25 Oct-24
DCP DAK-12 DCP DAK-3.5		SN: 1016 SN: 1249	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
Reference Probe E	X3DV4	SN: 7349	03-Jun-24 (No. EX3-7349 Jun24)	Jun-25
DAE4ip		SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25
Secondary Standar	ds	ID	Check Date (in house)	Scheduled Cheo
ACAD Source Box		SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R	&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
dismatch; SMA		SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25
	Name		Function Signature	
Calibrated by	Paulo Pir	a	Laboratory Technician	lat
Approved by	Sven Kül	าก	Technical Manager	\sim
This calibration cer	tificate shall not be repro	duced except in f	Issued: Ji full without written approval of the laboratory.	uly 9, 2024

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- · KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures
 stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with spacer
Zoom Scan Resolution	dx, dy = 6mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	835MHz ±1MHz	

Head TSL parameters at 835 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.900 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	42.3 ±6%	0.930 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 835 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.09 W/kg ±16.5% (k = 2)

Certificate No: D835V2-4d069_Jul24

Page 3 of 6

July 9, 2024

July 9, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 835 MHz

Impedance	51.1 Ω−4.5 jΩ
Return Loss	-26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
----------------------------------	----------

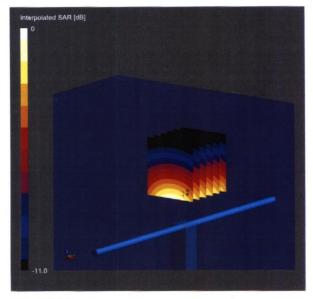
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d069_Jul24

Page 4 of 6



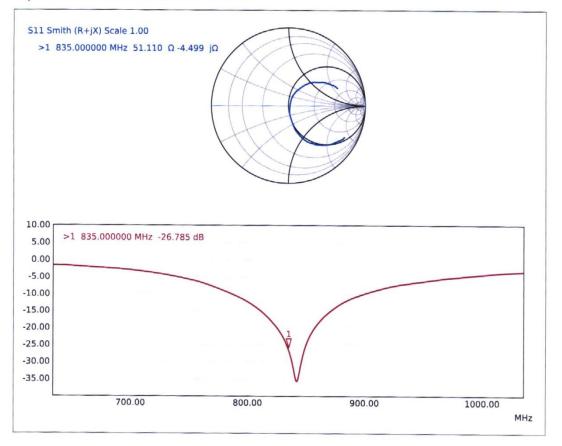
July 9, 2024

System Performance Check Report

Dipole	Frequency (MHz) 835		TSL	Power [dBm]			
D835V2 - SN4d069			HSL	24			
Exposure Condition	S						
Phantom Section, TSL	Test Distance [mm]	and Group, UID	Frequency [MHz],	Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15	CW, 0	835, 0		9.61	0.93	42.3
Hardware Setup							
Phantom	TSL, Measured Date Probe, Calibration Date				DAE, Calibration Date		
Flat V4.9 mod	HSL, 2024-07-09 EX3DV4 - 5N7349, 2024-06-03			DAE4ip Sn1836, 2024-01-10			
Scans Setup				Measureme	nt Results		
			Zoom Scan				Zoom Scar
Grid Extents (mm)			30 x 30 x 30	Date			2024-07-09
Grid Steps [mm]	6.0 × 6.0 × 1.5			psSAR1g [W/I	[W/Kg]		
Sensor Surface [mm]			1.4	psSAR10g [W/Kg]			1.53
Graded Grid			Yes	Power Drift [dB]		0.00	
Grading Ratio			1.5	Power Scaling	1		Disable
MAIA			N/A	Scaling Facto	r [d8]		
Surface Detection			VMS + 6p	TSL Correctio	n		Positive / Negative
Scan Method			Measured	-			

 $0 \, dB = 3.85 \, W/Kg$

Certificate No: D835V2-4d069_Jul24


Page 5 of 6

July 9, 2024

Certificate No: D835V2-4d069_Jul24

Page 6 of 6

1800 MHz Dipole Calibration Certificate

ent	Agreement for the	recountion c	A antibunation	to the EA	
	CTTL Beijing				2d145_Jul24
	BRATION CE	RTIFICA	TE		
Object		D1800\	/2 - SN: 2d1	45	
,		D1800V	2 - 511. 201	40	
Calibration procedure(s)		QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz			
Calibration date		July 11, 2024			
rimary St	andards		ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T			SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
	sor R&S NRP18A		SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40		SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25	
Mismatch; Short [S4188] Attenuator [S4423] OCP DAK-12		SN: 1152 SN: 1016	28-Mar-24 (No. 217-04050) 05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Mar-25 Oct-24	
DCP DAK-3.5		SN: 1249	05-Oct-23 (No. OCP-DAK12-1018_Oct23)	Oct-24 Oct-24	
Reference Probe EX3DV4		SN: 7349	03-Jun-24 (No. EX3-7349 Jun24)	Jun-25	
DAE4ip		SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25	
econdary	Standards		ID	Check Date (in house)	Scheduled Cheo
CAD Sou			SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
	nerator R&S SMB100	A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
lismatch;	SMA		SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25
		Name		Function Signature	
alibrated	by	Paulo Pina		Function Signature	in a d
				I.V. Afferled	
Approved by Sven Kühr			Technical Manager	~	

Certificate No: D1800V2-2d145_Jul24

Page 1 of 6

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- · KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d145_Jul24

Page 2 of 6

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108