Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.60 | 0.69 | 0.62 | ±10.0% | | DCP(mV) ^B | 100.0 | 100.5 | 101.7 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dB√uV | С | D
dB | VR
mV | Unc ^E (<i>k</i> =2) | |-----|------------------------------|---|---------|------------|-----|---------|----------|---------------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 202.1 | ±2.7% | | | | Y | 0.0 | 0.0 | 1.0 | | 212.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 205.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(<i>k</i> =2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------| | 750 | 41.9 | 0.89 | 10.17 | 10.17 | 10.17 | 0.40 | 0.75 | ±12.1% | | 900 | 41.5 | 0.97 | 9.73 | 9.73 | 9.73 | 0.17 | 1.29 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.60 | 8.60 | 8.60 | 0.22 | 1.00 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.24 | 8.24 | 8.24 | 0.25 | 1.06 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.85 | 7.85 | 7.85 | 0.29 | 0.99 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.00 | 8.00 | 8.00 | 0.23 | 1.14 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.61 | 7.61 | 7.61 | 0.62 | 0.67 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.40 | 7.40 | 7.40 | 0.55 | 0.72 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.17 | 7.17 | 7.17 | 0.61 | 0.68 | ±12.1% | | 3300 | 38.2 | 2.71 | 6.80 | 6.80 | 6.80 | 0.41 | 0.96 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.75 | 6.75 | 6.75 | 0.45 | 0.90 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.50 | 6.50 | 6.50 | 0.44 | 0.97 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.40 | 6.40 | 6.40 | 0.40 | 1.15 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.32 | 6.32 | 6.32 | 0.35 | 1.30 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.25 | 6.25 | 6.25 | 0.35 | 1.25 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.11 | 6.11 | 6.11 | 0.35 | 1.23 | ±13.3% | | 4600 | 36.7 | 4.04 | 5.99 | 5.99 | 5.99 | 0.40 | 1.30 | ±13.3% | | 4800 | 36.4 | 4.25 | 5.94 | 5.94 | 5.94 | 0.40 | 1.35 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.81 | 5.81 | 5.81 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.08 | 5.08 | 5.08 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.70 | 4.70 | 4.70 | 0.45 | 1.42 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.77 | 4.77 | 4.77 | 0.45 | 1.40 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60201 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60201 Page 5 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2) Certificate No:Z20-60201 Page 6 of 9 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Page 7 of 9 Certificate No:Z20-60201 #### **Conversion Factor Assessment** #### f=750 MHz,WGLS R9(H_convF) #### f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60201 Page 8 of 9 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 150.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60201 Page 9 of 9 # **ANNEX H** Dipole Calibration Certificate #### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D835V2-4d069_Jul20 | CALIBRATION C | LATITICATE | | | | |--|---|--|---|--| | Object | D835V2 - SN:4de | 069 | | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | | | | | | | | | | Calibration date: | July 24, 2020 | | | | | The measurements and the uncert | tainties with confidence p | ional standards, which realize the physical un
robability are given on the following pages ar | nd are part of the certificate. | | | All calibrations have been conduct Calibration Equipment used (M&TE | | ry facility: environment temperature $(22 \pm 3)^{\circ 6}$ | C and humidity < 70%. | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | | ower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | | ype-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | ID# | Check Date (in house) | Scheduled Check | | | Secondary Standards | 100 11 | | | | | | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | | Power meter E4419B
Power sensor HP 8481A | | 30-Oct-14 (in house check Feb-19)
07-Oct-15 (in house check Oct-18) | | | | Power meter E4419B
Power sensor HP 8481A | SN: GB39512475 | | In house check: Oct-20 | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20
In house check: Oct-20 | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783
SN: MY41092317 | 07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | | Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 07-Oct-15 (in house check Oct-18)
07-Oct-15 (in house check Oct-18)
15-Jun-15 (in house check Oct-18) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
Signature | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function | In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20
Signature | | Certificate No: D835V2-4d069_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d069_Jul20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.60 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 W/kg ± 16.5 % (k=2) | Body TSL parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.4 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.49 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.74 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.39 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d069_Jul20 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5 Ω - 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 33.0 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.1 Ω - 5.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.392 ns | |----------------------------------|----------| | , (| 11002110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | | |-----------------------|--| |-----------------------|--| Certificate No: D835V2-4d069_Jul20 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 24.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ϵ_r = 42.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.14 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.65 W/kg #### SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 3.26 W/kg 0 dB = 3.26 W/kg = 5.13 dBW/kg Certificate No: D835V2-4d069_Jul20 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d069_Jul20 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 22.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.00$ S/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.65, 9.65, 9.65) @ 835 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.60 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.63 W/kg Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 3.30 W/kg 0 dB = 3.30 W/kg = 5.19 dBW/kg Certificate No: D835V2-4d069_Jul20 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: D835V2-4d069_Jul20 #### 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - S Schweizerischer Kalibrierdienst Service suisse d'étalonnage - Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D1900V2-5d101_Jul20 | Object | D1900V2 - SN:5d101 | | | |---|---|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 28, 2020 | | | | Jailbration date: | July 26, 2020 | | | | The measurements and the uncerta | ainties with confidence po | onal standards, which realize the physical unrobability are given on the following pages an ry facility: environment temperature $(22\pm3)^{\circ}0$ | d are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | 1010101100 00 00 11011 | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Type-N mismatch combination | 611 7646 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | | SN: 7349 | 29-Juli-20 (No. EX5-7549_Juli20) | 0011 2 1 | | Reference Probe EX3DV4 | SN: 7349
SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | 0.1 | | Dec-20
Scheduled Check | | Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) | Dec-20 Scheduled Check In house check: Oct-20 | | Reference Probe EX3DV4
DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 601
ID #
SN: GB39512475 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Dec-20 Scheduled Check In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function | Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D1900V2-5d101_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Service suisse d étalorimage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d101_Jul20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | the following parameters and ediculations were app. | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.0 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.73 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d101_Jul20 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $50.4~\Omega + 5.6~\mathrm{j}\Omega$ | | |--------------------------------------|--------------------------------------|--| | Return Loss | - 25.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.4 Ω + 5.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.3 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| | Licotrical Bolay (erro arrown) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | SPEAG | | | |-------|--|--| | | | | Certificate No: D1900V2-5d101_Jul20 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 28.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 41.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.80 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 15.2 W/kg 0 dB = 15.2 W/kg = 11.82 dBW/kg Certificate No: D1900V2-5d101_Jul20 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101_Jul20 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 24.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.21, 8.21, 8.21) @ 1900 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.4 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.16 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 59.5% Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: D1900V2-5d101_Jul20 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d101_Jul20 Page 8 of 8 #### 2450 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D2450V2-853_Jul20 | CALIBRATION C | ENTIFICATE | | | | |---|--|--|---------------------------------|--| | Object | D2450V2 - SN:853 | | | | | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | | | | Calibration date: | July 21, 2020 | | | | | The measurements and the uncert | ainties with confidence p | ional standards, which realize the physical upprobability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^{\circ}$ | nd are part of the certificate. | | | Calibration Equipment used (M&TE
Primary Standards | E critical for calibration) | 0-10-1-10-17-1-1-1 | | | | Power meter NRP | SN: 104778 | Cal Date (Certificate No.) | Scheduled Calibration | | | Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | | Power sensor NRP-Z91 | | 01-Apr-20 (No. 217-03100) | Apr-21 | | | Reference 20 dB Attenuator | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | | Type-N mismatch combination | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | | Reference Probe EX3DV4 | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | | DAE4 | SN: 7349
SN: 601 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | | DAL4 | SN. 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | | Name | Function | Signature | | | 0 17 1 11 | Jeffrey Katzman | Laboratory Technician | 1. Lufan | | | Calibrated by: | | | | | | Approved by: | Katja Pokovic | Technical Manager | May | | Certificate No: D2450V2-853_Jul20 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-853_Jul20 Page 2 of 8