Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant:	CQASZ20231001851E-01 Shenzhen Buzz Tech CO., LTD
Address of Applicant:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China
Equipment Under Test (E	EUT):
Product:	SMART WATCH
Model No.:	P101, P103, P106, P107, P109, P110, P112, S67, S68, S69, S70
Test Model No.:	P101
Brand Name:	ВҮМ
FCC ID:	2AGFWP101
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2023-10-12
Date of Test:	2023-10-12 to 2023-10-19
Date of Issue:	2023-10-23
Test Result :	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By:	Timo Loj
	(Timo Lei)
Approved By:	Jamos
	(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20231001851E-01	Rev.01	Initial report	2023-10-23

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	/	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15.207	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

	_
1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	Λ
4 GENERAL INFORMATION	5
4.1 Client Information	5
4.2 GENERAL DESCRIPTION OF EUT	5
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 20dB Occupied Bandwidth	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 Hopping Channel Number	
5.7 DWELL TIME	-
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.11.1 Radiated Emission below TGHZ 5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	64
6.1 RADIATED EMISSION	
6.2 Conducted Emission	65
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	66

4 General Information

4.1 Client Information

Applicant	Shenzhen Buzz Tech CO., LTD
Applicant:	
Address of Applicant:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Buzz Tech CO., LTD
Address of Manufacturer:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China
Factory:	Shenzhen Buzz Tech CO., LTD
Address of Factory:	10th Floor, Guang Chang Bldg, 74#,BaoMin 1st Rd, Bao An Shenzhen, Guangdong, China

4.2 General Description of EUT

Product Name:	SMART WATCH
Model No.:	P101, P103, P106, P107, P109, P110, P112, S67, S68, S69, S70
Test Model No.:	P101
Trade Mark:	ВҮМ
Software Version:	V1.01
Hardware Version:	T5170-V2.1
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.2
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK
Transfer Rate:	1Mbps/2Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	Mobile Portable
Test Software of EUT:	RTLBTAPP
Antenna Type:	FPC antenna
Antenna Gain:	-0.48dBi
Power Supply:	Li-ion battery: DC 3.7V 260mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

Operation F	- requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:			
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 		
EUT Power level:	(Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the low	est frequency, the middle frequency and	the highest frequency keep	
transmitting of the EUT.	1		
Mode	Channel	Frequency(MHz)	
	СН0	2402	
DH1/DH3/DH5	СН39	2441	
	CH78	2480	
	СН0	2402	
2DH1/2DH3/2DH5	СН39	2441	
	CH78	2480	

Run Software:

 ☑ Bluetooth RF Test Tool (RtlBluetoothMP.dll Version :5.3.1.80
 RTLBTAPP Version :5.2.3.14)
 □
 ×

 Mode
 About
 ×

No KeyWord 👻 Delay 1000ms 👻 🔀 Close	Hot Key
	HCI Reset
Link Mode Hopping LE Test	Test Mode
hannel 0 - FW Mode acket Type DH1 - Exec Stop Clear Report	Read BD Address
avload Type PRBS9 V x Packet Count 0 Value	
Whitening Enable It Target Ox000000c6967e TX Report RX Report	
	~
age add RtBluetoothMP.dll Success!!	

4.4 Test Environment

Operating Environment	
Temperature:	25 °C
Humidity:	54% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
Adapter	MI	1	1	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU26	CQA-038	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU40	CQA-075	2023/09/08	2024/09/07
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2023/09/08	2024/09/07
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2023/09/08	2024/09/07
Preamplifier	EMCI	EMC184055SE	CQA-089	2023/09/08	2024/09/07
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2023/09/08	2024/09/07
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2023/09/08	2024/09/07
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2023/09/08	2024/09/07
Antenna Connector	CQA	RFC-01	CQA-080	2023/09/08	2024/09/07
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2023/09/08	2024/09/07
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2023/09/08	2024/09/07
Power meter	R&S	NRVD	CQA-029	2023/09/08	2024/09/07
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2023/09/08	2024/09/07
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07
LISN	R&S	ENV216	CQA-003	2023/09/08	2024/09/07
Coaxial cable	CQA	N/A	CQA-C009	2023/09/08	2024/09/07
DC power	KEYSIGHT	E3631A	CQA-028	2023/09/08	2024/09/07

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

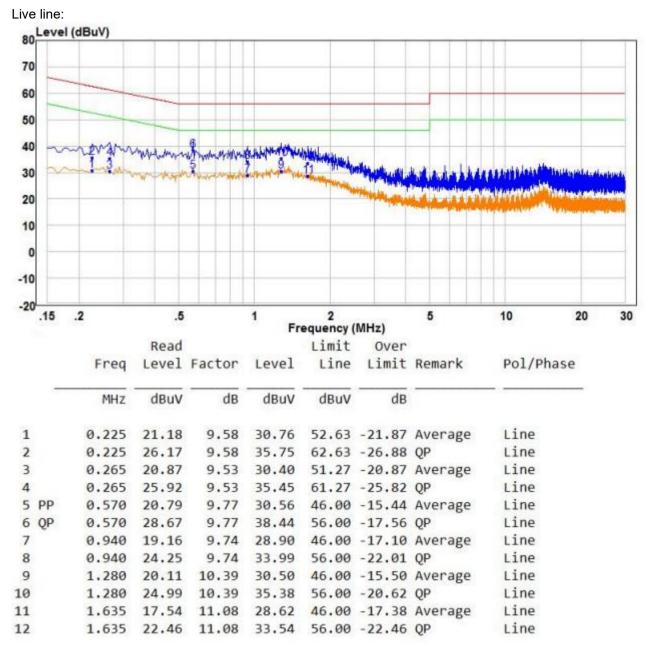
EUT Antenna:

The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

This is either permanently attachment or a unique coupling that satisfies the requirement.

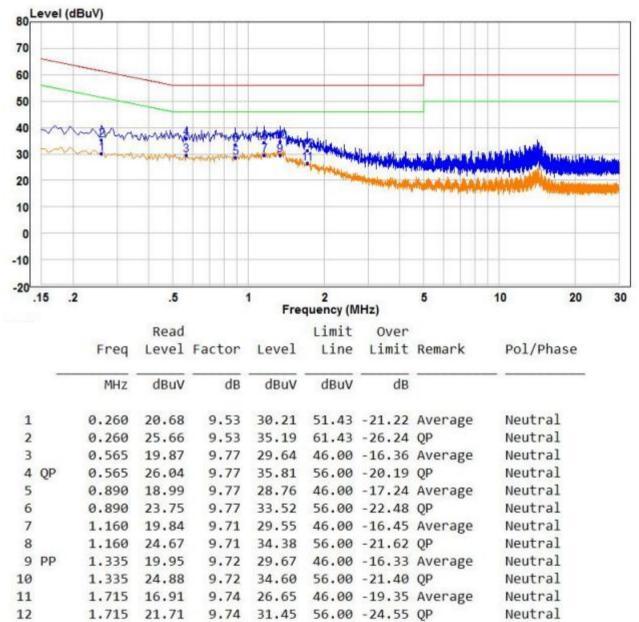
5.2 Conducted Emissions


 Conducted Emissio	olis			
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Limit:	L		_imit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm of the frequency.			
Test Procedure:			near ne was ar e ne	
Test Setup:	Shielding Room	AE UISN2 + AC Ma Ground Reference Plane	Test Receiver	

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of	
	data type at the lowest, middle, high channel.	
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.	
Test Voltage:	AC 120V/60Hz	
Test Results:	Pass	

Measurement Data

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

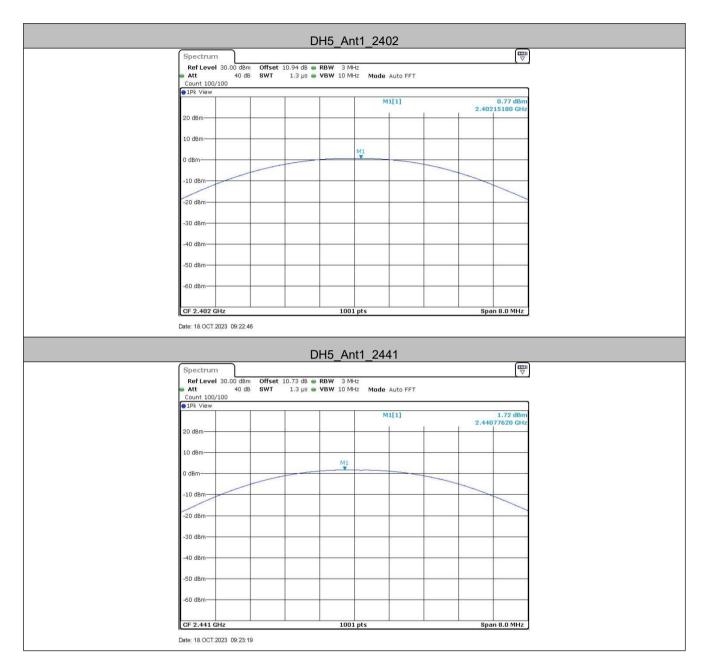
Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

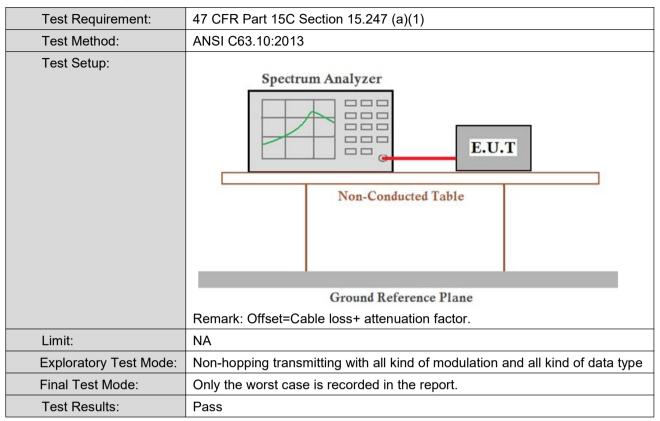
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Setup for Power meter measurement method		
	EUT Power Meter		
	Setup for Spectrum analyser measurement method		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset=Cable loss+ attenuation factor.		
Limit:	21dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		



Measurement Data

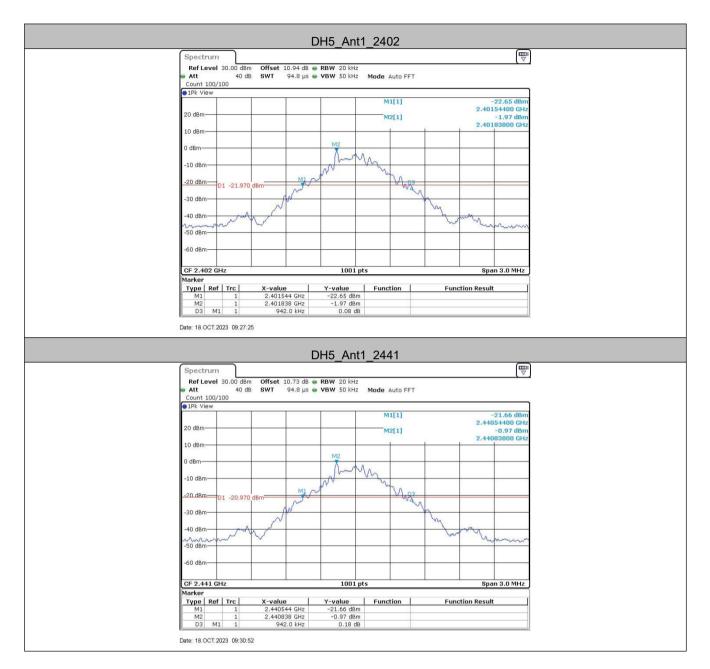
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.77	21.00	Pass		
Middle	1.72	21.00	Pass		
Highest	1.73	21.00	Pass		
	π/4DQPSK me	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.51	21.00	Pass		
Middle	1.63	21.00	Pass		
Highest	1.4	21.00	Pass		

Test plot as follows:



			2DH5_Ant	1 2441			
	Grant					(₩)	
	Ref Level 30.00 d	lam Officet 10 70 da				∇	
			 RBW 3 MHz VBW 10 MHz 	Mode Auto FFT			
	Count 100/100						
	●1Pk View			M1[1]		1.63 dBm	
					2.440	1.03 UBIN	
	20 dBm-						
	10 dBm		643				
	0 dBm		M1				
	o upin						
	-10 dBm						
	-20 dBm						
	-30 dBm						
	-40 dBm						
	-+U UDIII						
	-50 dBm						
	-60 dBm		_				
	CF 2.441 GHz		1001 pt:		Spa	n 8.0 MHz	
	Date: 18.0CT.2023 09:2	26:16	14				
		;	2DH5_Ant	1_2480			
	Ref Level 30.00 d						
1							
	Att 40			Mode Auto FFT			
	Att 40 Count 100/100		 RBW 3 MHz VBW 10 MHz 	Mode Auto FFT			
	Att 40					1 40 dBm	
	Att 40 Count 100/100 1Pk View			Mode Auto FFT	2.480	1.40 dBm 33570 GHz	
	Att 40 Count 100/100				2.480	1.40 dBm 33570 GHz	
	Att 40 Count 100/100 IPk View 20 dBm				2.480	1.40 dBm 33570 GHz	
	Att 40 Count 100/100 1Pk View		• VBW 10 MHz	M1[1]	2.48(1.40 dBm 133570 GHz	
	Att 40 Count 100/100 P1Pk View 20 dBm 10 dBm		• VBW 10 MHz		2.48(1.40 dBm 33570 GHz	
	Att 40 Count 100/100 IPk View 20 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 133570 GHz	
	Att 40 Count 100/100 P1Pk View 20 dBm 10 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 33570 GHz	
	Att 40 Count 100/100 P1k View 20 dBm 10 dBm 0 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 P1k View 20 dBm 10 dBm 0 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 CHz	
	Att 40 Count 100/100 ● 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -2		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 PIPk View 20 dBm 10 dBm 0 dBm -10 dB		• VBW 10 MHz	M1[1]	2.486	1.40 dBm 33570 GHz	
	Att 40 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 ● 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -2		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 ● 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 P1k View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm		• VBW 10 MHz	M1[1]	2.480	1.40 dBm 335570 GHz	
	Att 40 Count 100/100 ● 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40		• VBW 10 MHz	M1[1]	2.486	1.40 dBm 33570 GHz	
	Att 40 Count 100/100 ● 1Pk View 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -6		• VBW 10 MHz	M1[1]		93570 GHz	
	Att 40 Count 100/100 P1k View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	dB SWT 1.3 µs	• VBW 10 MHz	M1[1]		1.40 dBm 33570 GHz	

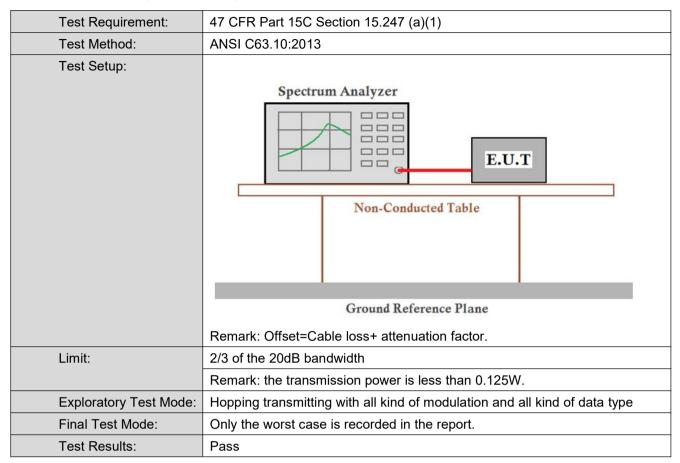
5.4 20dB Occupied Bandwidth



Measurement Data

Test channel	20dB Occupy Bandwidth (MHz)		
rest channel	GFSK	π/4DQPSK	
Lowest	0.94	1.21	
Middle	0.94	1.21	
Highest	0.94	1.21	

Test plot as follows:



5.5 Carrier Frequencies Separation

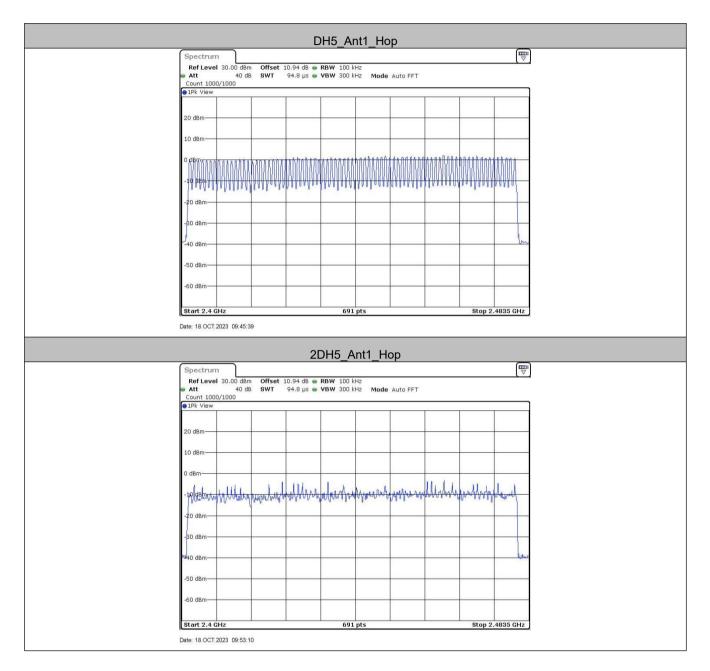
Measurement Data

TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	1.003	≥0.627	PASS
2DH5	Нор	1.009	≥0.807	PASS

Mode	20dB bandwidth (MHz)	Limit (MHz)
Mode	(worse case)	(Carrier Frequencies Separation)
GFSK	0.94	≥0.627
π/4DQPSK	1.21	≥0.807

Test plot as follows:

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Limit:	At least 15 channels
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

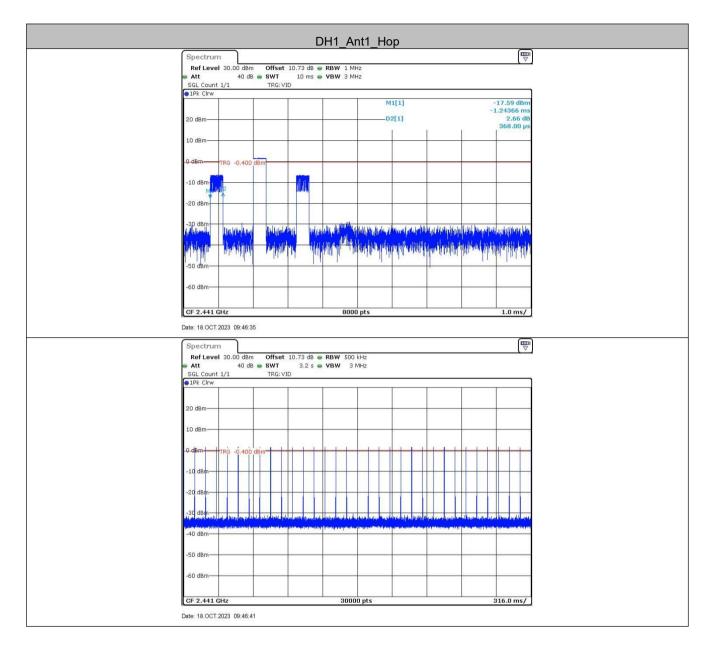
Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15

Test plot as follows:

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

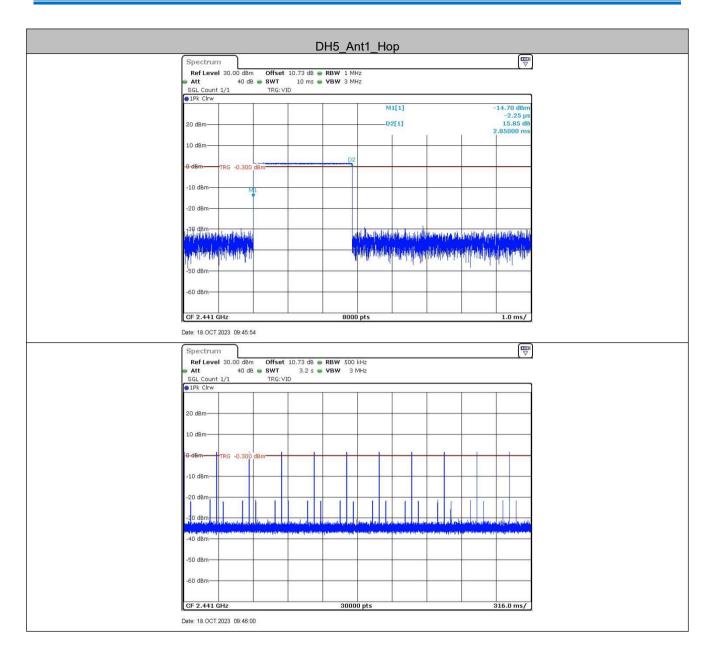
Measurement Data


TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.368	320	0.118	≤0.4	PASS
DH3	Нор	1.609	160	0.257	≤0.4	PASS
DH5	Нор	2.850	110	0.314	≤0.4	PASS
2DH1	Нор	0.376	320	0.12	≤0.4	PASS
2DH3	Нор	1.621	160	0.259	≤0.4	PASS
2DH5	Нор	2.862	110	0.315	≤0.4	PASS

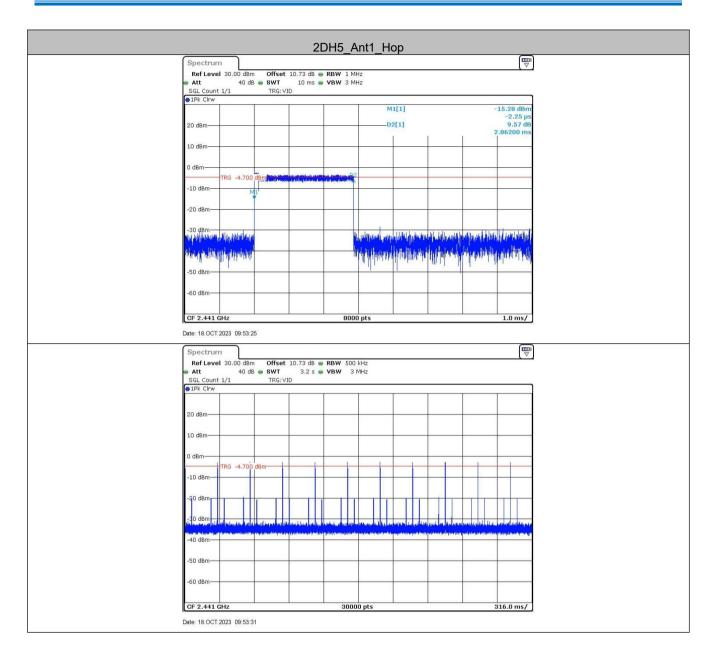
Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test plot as follows:



				DH3_A	Ant1_Ho	р			
Spectru	m	Offerst	10.70 dB	RBW 1	Mile:				E
👄 Att	40 d	B 👄 SWT	10 ms	• VBW 3					
SGL Cou 9 1Pk Clrv		TRG: VI	D						
					M	11[1]			-8.56 dBm -1.00 µs
20 dBm—					D	2[1]		-	5.43 dB 1.60900 ms
10 dBm-				-	-				
0 dBm			D2						
-10 dBm-	TRG -4.506	NdBm							
-20 dBm-									
-30 dBm-	I walled	v.	UT!	day of Hyber	AL UNIQUE A LAN	lath why	a langestel white	Mallilla atte	hall dhalledy
https://witeks	THE PARTY AND	1		halper the		uie en teres		Alpendin a	A seal of the s
-50 dBm-									<u> </u>
-60 dBm-									
CF 2.441	GHz			80	00 pts				1.0 ms/
	T.2023 09:47:	34							
	T.2023 09:47:	34							Ē
Spectru	m		10.73 dB	RBW 50	10 kHz				
Spectru Ref Lev Att	m el 30.00 dBr 40 d	m Offset B e SWT	3.2 s	 RBW 50 VBW 					V
Spectru Ref Lev	m el 30.00 dBr 40 d	n Offset	3.2 s						₹
Spectru RefLue Att SGL Cou	m el 30.00 dBr 40 d	m Offset B e SWT	3.2 s						
Spectru Reflue Att SGL Cou	m el 30.00 dBr 40 d	m Offset B e SWT	3.2 s						₩
Spectru Ref Lev Att SGL Cou ● 1Pk Cirv	m el 30.00 dBr 40 d	m Offset B e SWT	3.2 s						
Spectru Ref Lev Att SGL Cou @1Pk Cirv 20 dBm 10 dBm	m el 30.00 dBr 40 d	m Offset B e SWT	3.2 s						
Spectru Ref Lev SGL Cou PPk Cirv 20 dBm-	m el 30.00 dBr 40 d	m Offset B SWT TRG: VI	3.2 s						
Spectru Ref Lev Att SGL Cou @1Pk Cirv 20 dBm 10 dBm	m el 30.00 dBr 40 d nt 1/1	m Offset B SWT TRG: VI	3.2 s						₩ ▼
Spectru Ref Lev Att SGL Cou 91Pk Cirv 20 dBm- 10 dBm- -10 dBm-	m el 30.00 dBr 40 d nt 1/1	m Offset B SWT TRG: VI	3.2 s						
Spectru Ref Lev Att SGL Cou @ 1Pk Cirv 20 dBm— 10 dBm— 0 dBm—	m el 30.00 dBr 40 d nt 1/1	m Offset B SWT TRG: VI	3.2 s						
Spectru Ref Lev Att SGL Cou @1Pk Cirv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm-	m el 30.00 dBr 40 d tt 1/1	n Offset B SWT TRG:VI	3.2 s	• VBW	3 MHz				
Spectru Ref Lev Att SGL Cou @1Pk Cirv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm-	m el 30.00 dBr 40 d tt 1/1	n Offset B SWT TRG:VI	3.2 s	• VBW					
Spectru Ref Lav Att SGL Cou D dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	m el 30.00 dBr 40 d tt 1/1	n Offset B SWT TRG:VI	3.2 s	• VBW					
Spectru Ref Lev Att SGL Cou @1Pk Cirv 20 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm-	m el 30.00 dBr 40 d tt 1/1	n Offset B SWT TRG:VI	3.2 s	• VBW					
Spectru Ref Lev Att SGL Cou @ 1Pk Clrv 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm-	m el 30.00 dBr 40 d tt 1/1	n Offset B SWT TRG:VI	3.2 s	• VBW					
Spectru Ref Lat SGL Cou ● 1Pk Cirv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm- -20 dBm- -20 dBm- -50 dBm -50 dBm	m	n Offset B SWT TRG:VI	3.2 s						
Spectru Ref Lev Att SGL Cou ● IPk Cirv 20 dBm- 0 dBm- -20 dBm- -20 dBm- -20 dBm- -50 dBm- -50 dBm-	m	n Offset B SWT TRG:VI	3.2 s						(↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

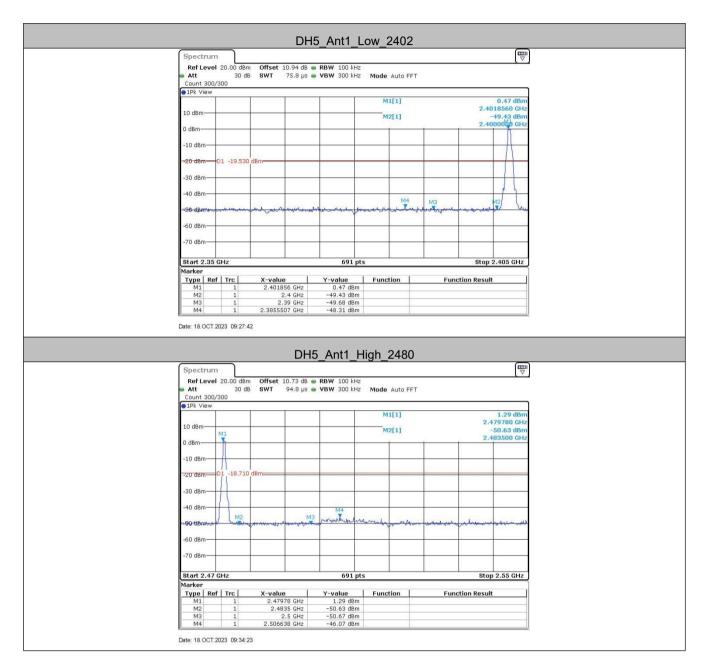


Spectrum With an and a start with a s										
Ref Level 30.00 dbm Offset 10.73 db @ RBW 1 MHz 90.6 SWT 10 ms 90.7 Count 1/1 -9.02 dbm 90.6 SWT 10 ms 90.6 SWT 10 ms <tr< td=""><td></td><td></td><td></td><td>2</td><td>DH3_A</td><td>.nt1_H</td><td>р</td><td></td><td></td><td></td></tr<>				2	DH3_A	.nt1_H	р			
• Att • 4 db • \$WT 10 ms • VBW 3 MHz • SGL Court 1/1 • FG VID • FFR Chw • M[1] • 9.02 dbm • 10 dbm • 0 211 • 3.00 dbm • 10 dbm • 0 210 • 0.02 dbm • 0 dbm • 0 211 • 0.02 dbm • 0 dbm • 0 211 • 0.02 dbm • 0 dbm • 0 210 • 0.02 dbm • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 dbm • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40 • 0 40		10. The second sec	Offset	10 73 dB	RBW 1 M	47				
	👄 Att	40 dE	SWT	10 ms 🖷						
20 dem			TRG: VI							
10 dBm 3.62100 ms 0 dBm 0 dBm -10 dBm 0 dBm -20 dBm 0 dBm -30 dBm 0 dBm -20 dBm 0 dBm -30 dBm 0 dBm -40 dBm 0 dBm -50 dBm 0 dBm -60 dBm 0 dBm -70 dBm 0 dBm										-1.00 µs
0 d8m 10 d8m	20 dBm—					D	2[1]		1	3.50 dB
TRG 4.600 dBm 000 dBm	10 dBm					75	*			
1000000000000000000000000000000000000	0 dBm	TRG -4.600	dBm MW dam	autoup?						
-30 dBm	-10 dBm-	-		1					-	
International of the second	-20 dBm—				-		-			
In the second	-30 dβm	at heaters				all a			19	
-50 dBm -60 dBm	The second s	Und Driver all		(J)A	alle der hilbelt	Aprending (Participation of the participa	atter far let.
-60 dBm		Anthumburk	3	M	da helentera be	un hulbber	Well-Man	tada but tad	Mediatela	the standard
CF 2.441 GHz B000 pts 1.0 ms/ Date: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Ref Level 30.00 dbm Offset 10.73 db @ RBW 500 kHz Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:04:10 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:04:10 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:04:10 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:55:31 Image: 18.0CT.2023.09:55:31	-50 dBm—						1			11
CF 2.441 GHz B000 pts 1.0 ms/ Date: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Ref Level 30.00 dbm Offset 10.73 db @ RBW 500 kHz Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:04 Image: 18.0CT.2023.09:54:31 Image: 18.0CT.2023.09:54:	-60 dBm-									
Date: 18.0CT.2023 09:54:31 Ref Level 30.00 dbm Offset 10.73 db @ RBW 500 kHz Att 40 db @ SWT 3.2 s @ VBW 3 MHz SGL Count 1/1 TRG: VID @1Pk Clrw										
Spectrum Image: spectrum Ref Level 30.00 dbm Offset 10.73 db RBW 500 kHz Att 40 db SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG: VID Image: spectrum Image: spectrum Image: spectrum Image: spectrum	CF 2.441	GHz			8000) pts				1.0 ms/
Ref Level 30.00 dbm Offset 10.73 db RBW 500 kHz Att 40 db SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG:VID TRG:VID Image: VID Image: VID IPK Chw Image: VID Image: VID Image: VID Image: VID Image: VID 20 dBm Image: VID Image:	Date: 18.0C	F.2023 09:54:3	1							
Ref Level 30.00 dbm Offset 10.73 db R RbW 500 kHz Att 40 db SWT 3.2 5 VBW 3 MHz SGL Count 1/1 TRG:VID IPK Chw 10 dbm 10 dbm 10 dbm -10 dbm 10 dbm -20 dbm 10 dbm -50 dbm 10 dbm -50 dbm 10 dbm	Spectru	m								₽
SGL Count 1/1 TRG: VID IPk Chw		el 30.00 dBm	Offset							
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm		40 dr	- CUUT			AL Im				
10 dBm		t 1/1			VBW 3	ИНZ				
10 dBm		t 1/1			VBW 3	MHz		1		
D dBm TRG 44.600 dBm	●1Pk Clrw	t 1/1				инz				
TRG 4.600 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm -20 dBm	● 1Pk Cinw 20 dBm—	t 1/1				MHz				
-10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	● 1Pk Cinw 20 dBm—	t 1/1				MHz				
-30 dBm	● 1Pk Cirw 20 dBm 10 dBm	t 1/1	TRG: VI		VBW 3	MHz				
-30 (B2h) -40 dBm -50 dBm -60 dBm	1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	t 1/1	TRG: VI			MHz				
-40 dBm	1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	t 1/1	TRG: VI							
-40 dBm	● 1Pk Cirv 20 dBm 10 dBm -10 dBm	t 1/1	TRG: VI							
-50 dBm	● 1Pk Cirv 20 dBm 10 dBm -10 dBm	t 1/1	TRG: VI							
-60 dBm	● 1Pk Cirv 20 dBm— 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	- TRG -4.600	TRG: VI							
	● 1Pk Cirv 20 dBm— 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	- TRG -4.600	TRG: VI							
	● 1Pk Cirv 20 dBm 10 dBm -10 dBm -10 dBm- -30 dBm- -40 dBm-	- TRG -4.600	TRG: VI							
	● 1Pk Cirv 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	- TRG -4.600	TRG: VI							
CF 2.441 GHz 30000 pts 316.0 ms/	● 1Pk Cirw 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -50 dBm—	- TRG -4.600	TRG: VI							
Date: 18.OCT.2023 09:54:36	PPk Cirw 20 dBm 10 dBm 0 dBm10 dBm30 dBm30 dBm30 dBm50 dBm50 dBm50 dBm50 dBm		TRG: VI							216.0 ms/

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Only the worst case is recorded in the report.			
Test Results:	Pass			

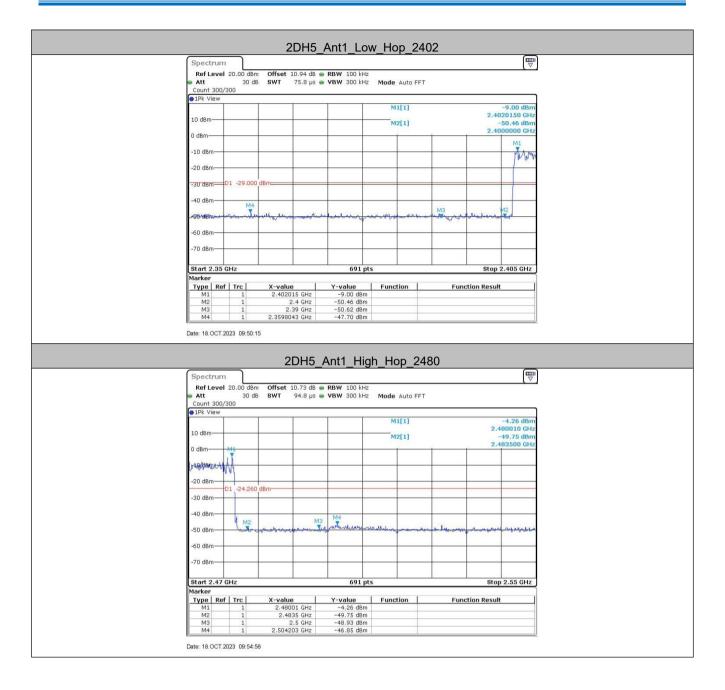
Shenzhen Huaxia Testing Technology Co., Ltd.

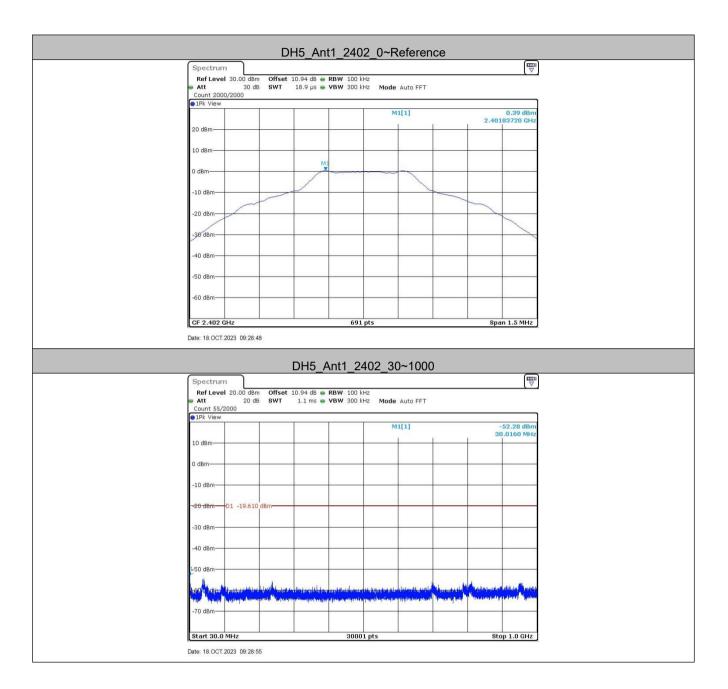

Report No.: CQASZ20231001851E-01

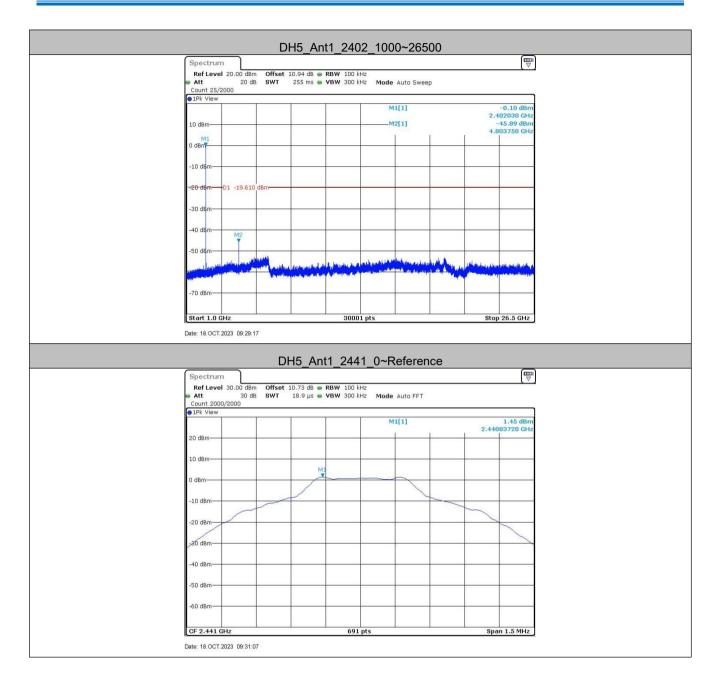
Measurement Data

TestMode	ChName	Freq(MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	Low	2402	0.47	-48.31	≤-19.53	PASS
	High	2480	1.29	-46.07	≤-18.71	PASS
DH5	DH5 Low	Hop_2402	-0.31	-48.05	≤-20.31	PASS
	High		-3.36	-46.94	≤-23.36	PASS
	Low	2402	0.09	-46.54	≤-19.91	PASS
	High	2480	0.45	-46.37	≤-19.55	PASS
2DH5	2DH5 Low	Hop_2402	-9.00	-47.7	≤-29	PASS
	High	Hop_2480	-4.26	-46.85	≤-24.26	PASS

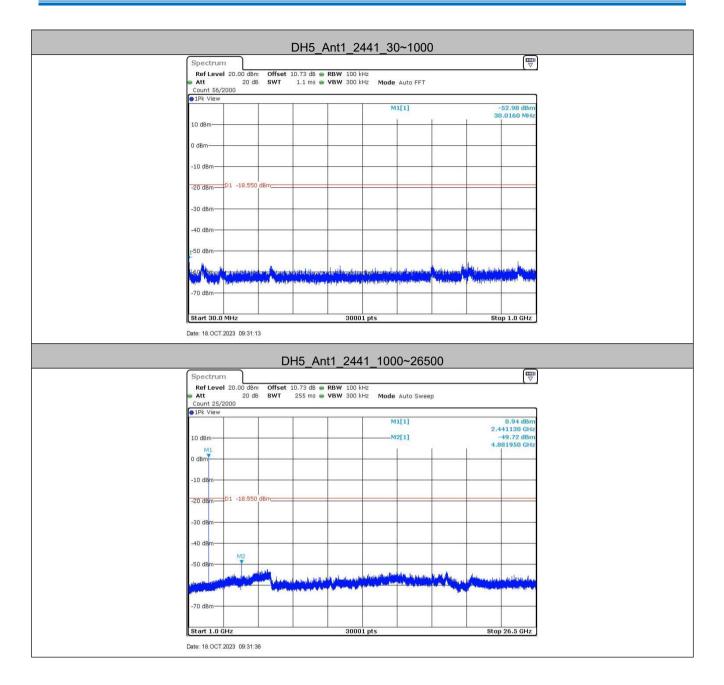

Test plot as follows:

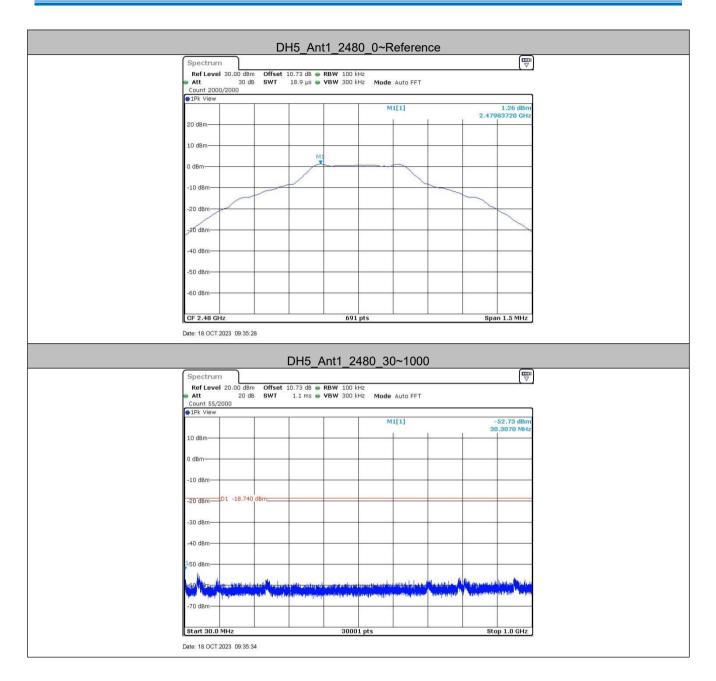


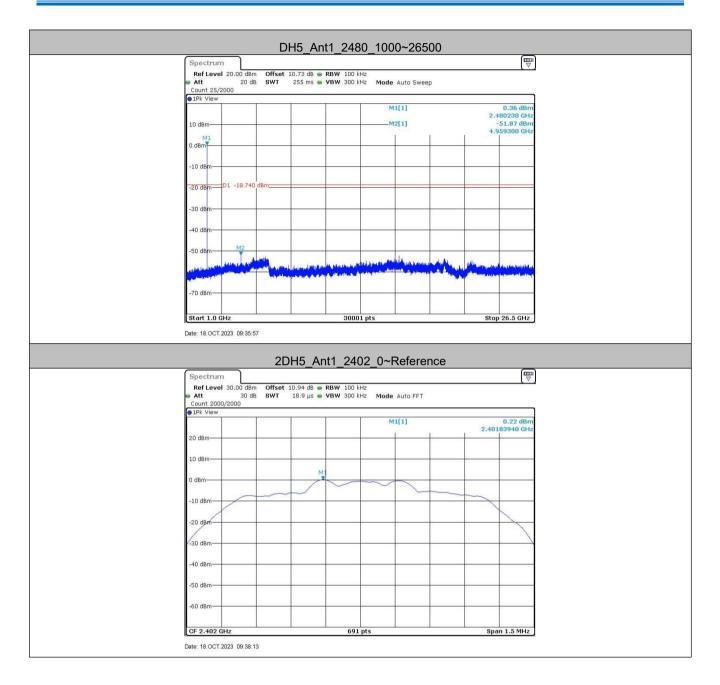


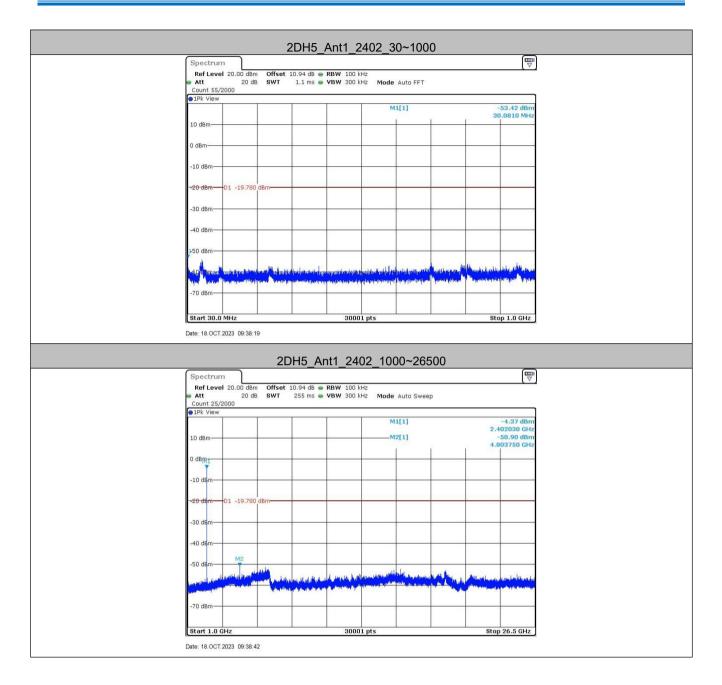

5.9 Spurious RF Conducted Emissions

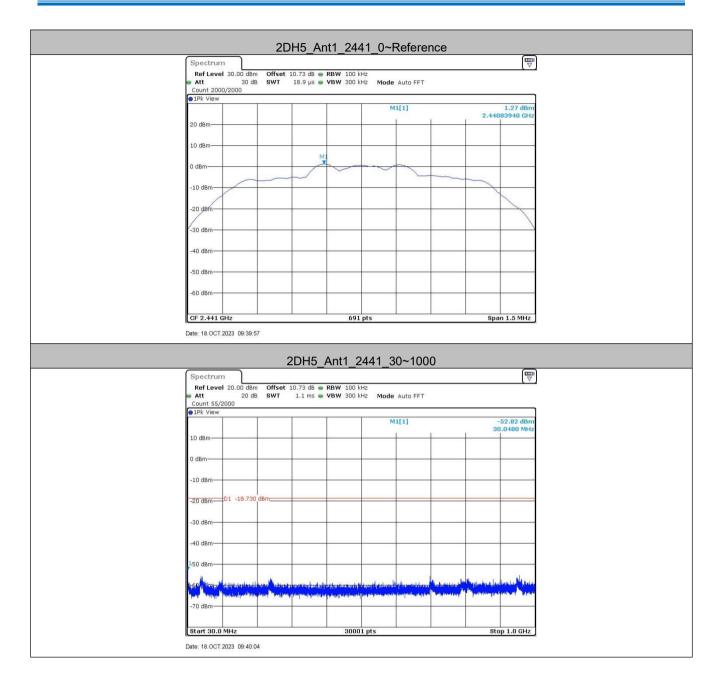
Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
	Remark: Offset=cable loss+ attenuation factor.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			
Test Results:	Pass			

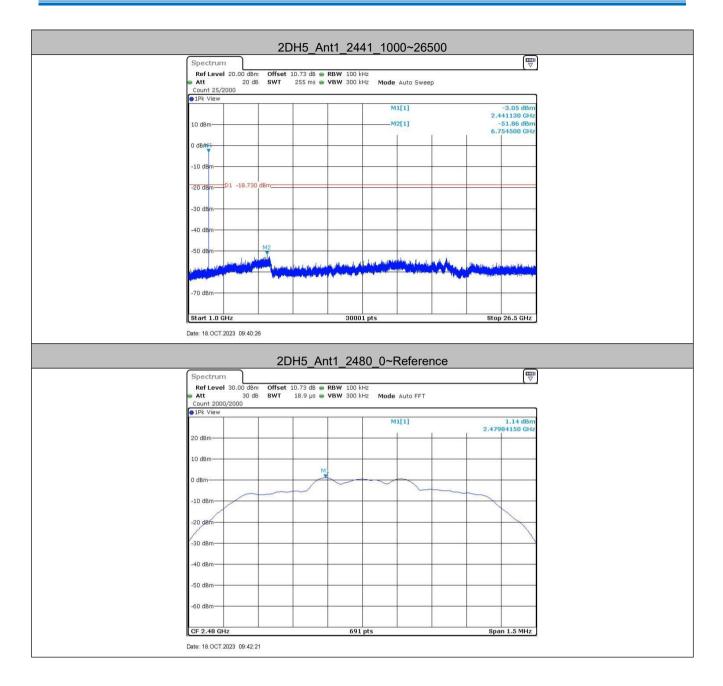


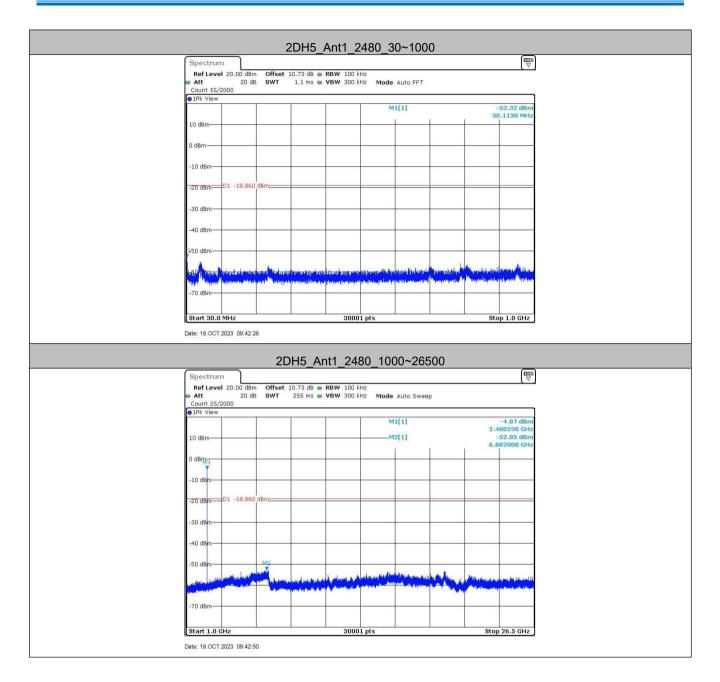












Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

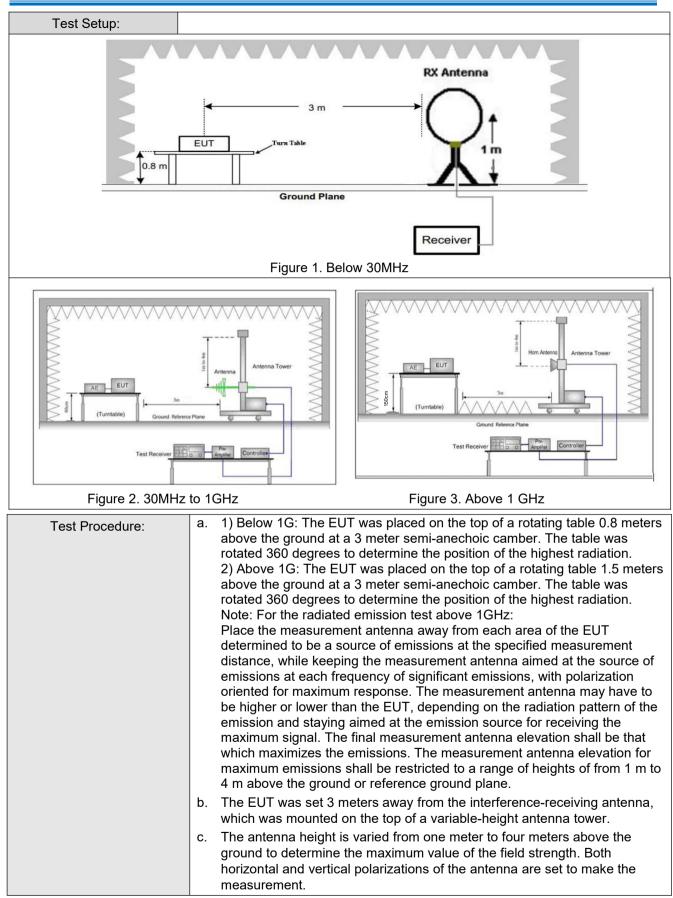
5.10Other requirements Frequency Hopping Spread Spectrum System

•	
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:
rate from a Pseudorandom o on the average by each trans	nnel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
channels during each transm receiver, must be designed t transmitter be presented with employing short transmission	spectrum systems are not required to employ all available hopping hission. However, the system, consisting of both the transmitter and the o comply with all of the regulations in this section should the n a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system nissions over the minimum number of hopping channels specified in
the system to recognize othe independently chooses and The coordination of frequenc	nce within a frequency hopping spread spectrum system that permits er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. by hopping systems in any other manner for the express purpose of ccupancy of individual hopping frequencies by multiple transmitters is
Compliance for section 15.	247(a)(1)
	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: 2 ⁹ -1 = 511 bits
Linear Feedback Sl	hift Register for Generation of the PRBS sequence
An example of Pseudorandol 20 62 46 77	m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1
Each frequency used equally	v on the average by each transmitter.
According to Bluetooth Core bandwidths that match the	e Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.
Compliance for section 15.	247(g)
pseudorandom hopping freq	re Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the insmitted under the frequency hopping system with the pseudorandom

Compliance for section 15.247(h)

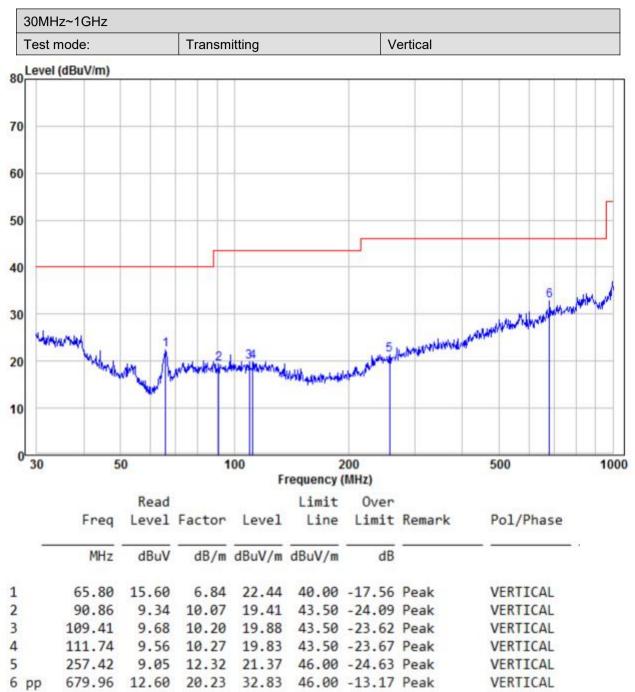
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark]
	0.009MHz-0.090MH	z	Peak 10k		z 30kHz	Peak	1
	0.009MHz-0.090MH	z	Average 10kH		z 30kHz	Average	1
	0.090MHz-0.110MH	z	Quasi-peak 10kHz		z 30kHz	Quasi-peak	1
	0.110MHz-0.490MH	z	Peak			Peak	1
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average	1
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	1
	30MHz-1GHz		Peak	120 kH	z 300kHz	Peak	1
			Peak	1MHz	3MHz	Peak]
	Above 1GHz		Peak 1M		10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n	
	0.009MHz-0.490MHz	2400/F(kHz)		-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)		-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz	100		40.0	Quasi-peak	3	
	88MHz-216MHz	150		43.5	Quasi-peak	3	
	216MHz-960MHz		200	46.0	Quasi-peak	3	
	960MHz-1GHz	500		54.0 Quasi-peak		3	
	Above 1GHz		500	54.0	Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						



	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.