G4B(www.g4b.go.kr)진위확인코드: lz/h5v9zhD8=

TEST REPORT

Greventer	9	page : (1) / Total (42)					
	네 번호 ort No.	ICRT-TR-E231964-0A					
신청자	기관명 Name	Healingsound co.,Itd					
Client	주 소 Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea					
	상품목 ct name	Healingstone					
	넬명 name	HS-01					
	격 ings	DC 3.7 V					
	장소 of test	■ 고정시험(Inside test)					
	기간 of test	21. Jul. 2023 ~ 01. Aug. 2023					
시험방 ^I Test Met	법/항목 hod/Item	FCC Part 15 Subpart C					
	결과 Results	Refer to 3. Test Summary					
확 인 Affirmation		작성자 Tested by 기술책임자 Technical Manager 성명 Si-Yeon, Hwang (서명) Name Si-Yeon, Hwang (서명) (Signature)					
□ 위 성적서는	고객이 제공현	/ / /					
The above	test report is	certified that the above mentioned products have been tested for the sample.					
🗆 위 성적서는	KS Q ISO/IE	: 17025 및 한국인정기구(KOLAS)인정과 관련이 없습니다.					
The above	test report is	not related to accreditation by KS Q ISO/IEC 17025 and Korea Laboratory Accreditation scheme.					
🗆 위 성적서는	주식회사 아이	씨알의 승인 없이는 일부 복제에 대해 금지됩니다.					
The test rep	port is prohib	ited for some reproduction without the approval of the ICR.					
		2023. 08. 10 주식회사 아이씨알 대표이 사표하다 The head of INTERNATIONAL CERTIFICATION REGISTRA					
		본 성적서의 진위 확인은 G4B 혹은 ICR 홈페이지에서 가능합니다.					
		The authenticity of the test report can be checked on the G4B or ICR website.					
	경기도 김포시 양촌읍 황금3로7번길 112 / Tel: 02-6351-9001 ~ 6						

112, Hwanggeum3-ro 7beon-gil, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea / Tel: 02-6351-9001 ~ 6

Report no. ICRT-TR-E231964-0A

ICRT-QPA-17-03 Rev.2

page : (2) / Total (42)

Contents

1. Applicant & Manufacturer & Test Laboratory Information	<u>4</u>
2. Equipment under Test(EUT) Information	<u>5</u>
3. Test Summary	<u>6</u>
4. Test Result (Earphone Right)	<u>8</u>
5. Test Result (Earphone Left)	<u>24</u>
6. Used equipment	<u>42</u>

ICRT-QPA-17-03 Rev.2

page : (3) / Total (42)

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
ICRT-TR-E231964-0A	2023. 08. 10	Initial Issue	All

ICRT-QPA-17-03 Rev.2

page : (4) / Total (42)

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant information

ĺ	Applicant	Healingsound co.,Itd
	Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea

1.2 Manufacturer Information

Applicant	Healingsound co.,Itd
Address	217, Yeoksam-ro, Gangnam-gu, Seoul, Republic of Korea

1.3 Test Laboratory Information

Laboratory	ICR Co., Ltd.
Address	112, Hwanggeum 3-ro 7beon-gil, Hagun-ri, Yangchon-eup, Gimpo-si, Gyeonggi-do, Korea
Telephone No.	+82-2-6351-9002
Fax No.	+82-2-6351-9007
KOLAS No.	KT652
KC & FCC	KR0165

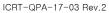
1.4 Measurement Uncertainty

Parameter	Uncertainty	Limit	
Occupied Channel Bandwidth	2.75%	±5 %	
RF output power, conducted	1.39 dB	±1.5 dB	
Power Spectral Density, conducted	1.65 dB	±3 dB	
Unwanted Emissions, conducted	1.82 dB	±3 dB	
Supply voltages	0.06%	±3 %	
Time	1.17%	±5 %	
All emissions, radiated (Under the 1 GHz)	3.22 dB	±6 dB	
All emissions, radiated (Above the 1 Hz)	3.67 dB	±6 dB	

page : (5) / Total (42)

2. Equipment under Test(EUT) Information

2.1 General Information


Product Name	Healingstone
Model Name	HS-01
Additional Model Name	COZYSTONE, CS-01
FCC ID	2BCI5-HW-HS-01
Power Supply	DC 3.7 V

2.2 Additional Information

Equipment Class	DTS-Digital Transmission System			
Device Type	Stand-alone			
Temperature Range	-20 °C ~ 55 °C			
Adaptive/Non-Adaptive	Non-Adaptive Equipment			
Operating Frequency	Bluetooth LE 2 402 ₩z ~ 2 480 ₩z			
RF Output Power	Bluetooth LE (Earphone Right)	4.64 dBm		
KF Oulput Fower	Bluetooth LE (Earphone Left)	3.18 dBm		
Number of Channel	Bluetooth LE 40			
Modulation Type	GFSK			
Antenna Type	Chip Antenna			
Antenna Gain	Antenna Gain 4.34 dBi			

2.3 Reason of Additional Model Name

NO	Family Model Name	Difference
1	COZYSTONE, CS-01	Model name change

page: (6) / Total (42)

3. Test Summary

3.1 Test standards and results

FCC Part 15 Subpart C						
Clause	Clause Test items					
§15.247 (a) (2)	6 dB Bandwidth		PASS			
§15.247 (b) (3)	Maximum Conducted Output Power		PASS			
§15.247 (e)	15.247 (e) Power Spectral Density					
§15.247 (d)	Conducted Spurious Emission & band Edge		PASS			
§15.247 (d) & §15.209 & §15.205	Radiated Spurious Emission		PASS			
§15.207	Power Line Conducted Emission		PASS			

3.2 Test Methodology

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.3 Configuration of Test System

- Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

3.3.1 Radiated emission test

- Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions. Final radiated emission tests were conducted at 3 m Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

ICRT-QPA-17-03 Rev.2

page: (7) / Total (42)

3.5 Antenna requirement

- According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Result: Pass

The transmitter has a Chip Antenna. The directional gain of the antenna is 4.34dBi.

page : (8) / Total (42)

4. Test Result (Earphone Right)

4.1.6 dB Bandwidth

4.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

4.1.2 Limit

§15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.3 Test data

Result : Pass

ICRT-QPA-17-03 Rev.2

page : (9) / Total (42)

Mid ch_6 dB Bandwidth ew 📑 Sp.um × Sp.m2 × Sp.m4 × Sp.m7 × Sp.m9 × Sp.m3 × Sp.m5 × Sp.m6 × Sp.m8
 Ref Level
 20.00 dBm
 ● RBW
 100 kHz

 Att
 30 dB
 SWT
 41.71 µs (~7.6 ms)
 ● VBW
 300 kHz
 Mode
 Auto FFT

 TDF "RFC-001.TDF"
 1
 Frequency Sweep
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1< 01Pk Max 1.27 dBm 2.440 236 80 GHz 1001 pts CF 2.44 GHz 300.0 kHz/ Span 3.0 MHz 2 Marker Table Function Result Trc Function Туре Ref X-Value 2.440 236 8 GHz Y-Value 1.27 dBm ndB ndB down BW Q Factor 752.20 kHz 2.4396104 2.4403626 High ch_6 dB Bandwidth ulti¥iew 📑 Sp.um × Sp.m2 X Sp.m3 X Sp.m4 X Sp.m5 X Sp.m6 X Sp.m7 × Sp.m8 × Sp.m9 ×
 Ref Level
 20.00 dBm
 ■ RBW 100 kHz

 Att
 30 dB
 SWT 41.71 μs (~7.6 ms)
 ■ VBW 300 kHz
 Mode Auto FFT

 TDF "RFC-001.TDF"
 1 Frequency Sweep
 ■
 ■
 ■
 ■
 ●1Pk Max M1[1] 0.02 dBm 2.479 925 10 GHz CF 2.48 GHz 1001 pts 300.0 kHz/ Span 3.0 MHz 2 Marker Table Type Ref X-Value 2.479 925 1 GHz 2.479 616 4 GHz 2.480 3596 GHz Туре Trc Function Function Result Y-Value 0.02 dBm ndB ndB down BW Q Factor 6.0 dB 743.30 kHz 3 336.6 -5.96 dBm -5.93 dBm

ICRT-QPA-17-03 Rev.2

page : (10) / Total (42)

4.2 Maximum Conducted Output Power

4.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

4.2.2 Limit

§15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

4.2.3 Test data

Result : Pass

Mode	Frequenc (MHz)	су	Mea	sured Valu (dBm)	a	Lim (dBi	
	2 402	2 402		4.64			
Bluetooth LE 1M	2 440			3.46		30)
	2 480		2.00				
	Low ch_Ma	ximum Co	nducted O	utput Pow	er		
MultiView 📰 Sp.um 🗙 Sp.m2	X Sp.m3 X Sp.m4	× Sp.m5	X Sp.m6	X Sp.m7	X Sp.m8	X Sp.m9	× ·
Ref Level 20.00 dBm	• RBW 1 MHz						
TDF "RFC-001.TDF"	ms●VBW/3MHz Mode	Auto Sweep					●1Pk Max
1 Frequency Sweep						M1[1] 2	4.64 dBm 402 152 80 GHz
10 dBm-			M1				
0 dBm							
-10 dBar							
-20 dBm							
-30 dBm							
-40 dBm-							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GHz	1001 pt	S	30	0.0 kHz/			Span 3.0 MHz

ICRT-QPA-17-03 Rev.2

page : (11) / Total (42)

		ľ	Mid ch_Ma	ximum Coi	nducted O	utput Powe	ər		
Multi¥iew 📑 Sp.um	X Sp.m2	X Sp.m3	× Sp.m4	× Sp.m5	× Sp.m6	× Sp.m7	X Sp.m8	× Sp.m9	× ·
Ref Level 20.00 Att 3	30 dB 🗢 SWT 1	 RBW 1.01 ms VBW 	1 MHz 3 MHz Mode	Auto Sweep					
TDF "RFC-001.TDF 1 Frequency Swi									• 1Pk Max
								M1[1]	
10 dBm									120 50 6112
		_			M1 V				
-10 dBm									
- August - A									
-50 dBm									
-60 dBm									
-70 dBm									
TO GOM									
CF 2.44 GHz			1001 pts		30	10.0 kHz/			Span 3.0 MHz
				<u>.</u>	30	10.0 KHZ/			apan alo Minz
		F		aximum Co			er		apan 3.0 Minz
Multi¥iew So.um	¥ \$0.m2		ligh ch_Ma	aximum Co	nducted O	utput Pow		X 50.009	
Malti¥iew 📑 Sp.am Ref Level 20.00		Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5			er × sp.m8	X Sp.m9	
Ref Level 20.00 Att	dBm 30 dB = SWT	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		Sp.m9	×
Ref Level 20.00	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow			• 1Pk Max
Ref Level 20.00 Att C TDF "RFC-001.TDF 1 Frequency Sw	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	×
Ref Level 20.00 Att C	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att C TDF "RFC-001.TDF 1 Frequency Sw	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20,00 Att TDF "RFC-001.TDF 1 Frequency Sw 10 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 5 TDF "RFC-001.TDF 1 Frequency Sw 10 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20,00 Att TDF "RFC-001.TDF 1 Frequency Sw 10 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 70 TDF "BFC-001.TDF I Frequency Sw 10 dBm -10 dBm -20 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 TDF "PFC-001.TDF I Frequency Sw 10 dBm -10 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.000 Att 707 "RFC-001.TD I Frequency Sw 10 dBm -10 dBm -20 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 TDF "BFC-001.TDF 20.00 I Frequency Sw 20.00 0 dBm 20.00 -20 dBm -30.00	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 TDF "BFC-001.TDF 20.00 I Frequency Sw 20.00 0 dBm 20.00 -20 dBm -30.00	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 Tot "SPC-00.1TD" 1 Frequency Sw 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.000 Att 20.001 TDF "RFC-001.TDF 10 I Frequency Sw 0 0 dBm 0 -0 dBm -0 -30 dBm -0 -40 dBm -0	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 Tot "SPC-00.1TD" 1 Frequency Sw 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 2.00 dBm
Ref Level 20.00 Att 20.00 Att 20.00 Tor "BF-C-0.01 Trp" 1 I frequency Sw 10 10 dBm 0 -20 dBm	dBm 30 dB = SWT	Sp.m3 • RBW	High ch_Ma	Auto Sweep	Nducted O Spanie M1 M1 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	utput Pow		M1[1]	• 1Pk Max 2.00 dBm

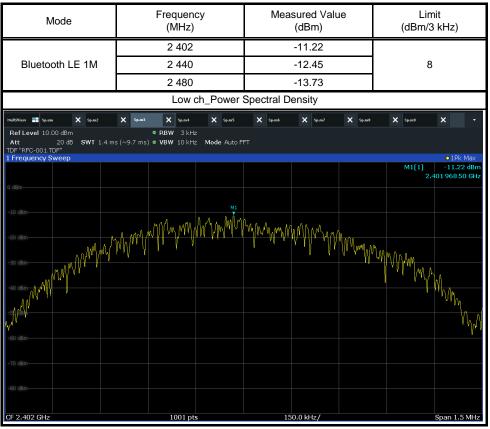
ICRT-QPA-17-03 Rev.2

page : (12) / Total (42)

4.3 Power Spectral Density

4.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

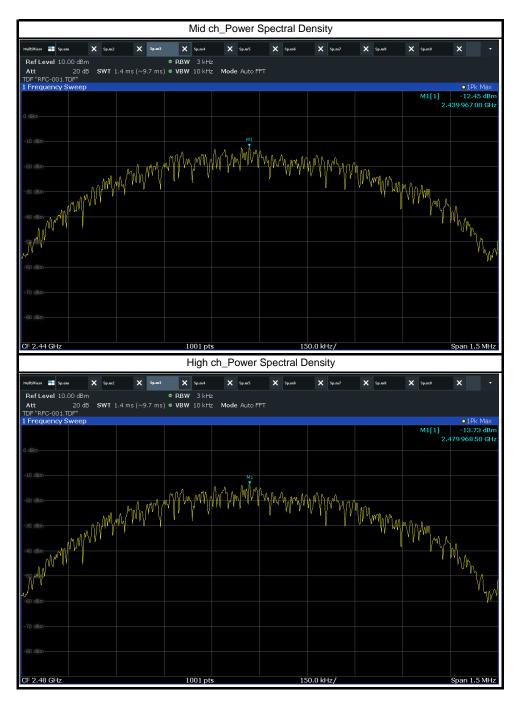

4.3.2 Limit

§15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

4.3.3 Test data

Result : Pass



ICRT-QPA-17-03 Rev.2

page : (13) / Total (42)

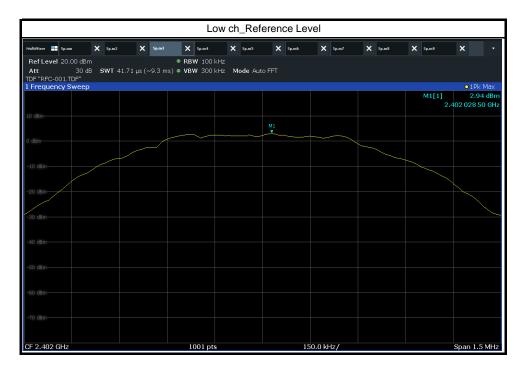
ICRT-QPA-17-03 Rev.2

page : (14) / Total (42)

4.4 Conducted Spurious Emission & Band Edge

4.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

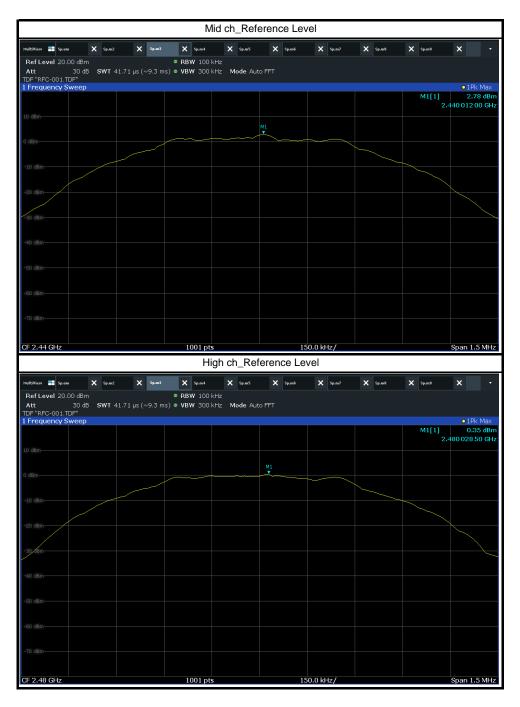

4.4.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

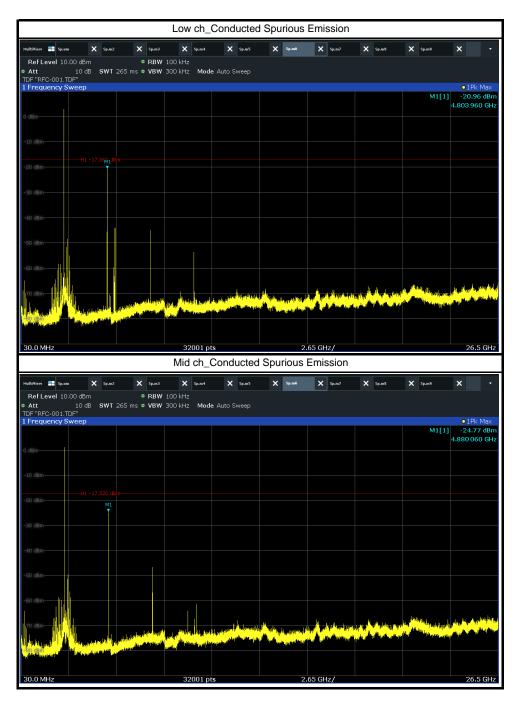
4.4.3 Test data

Result : Pass



ICRT-QPA-17-03 Rev.2

page : (15) / Total (42)



ICRT-QPA-17-03 Rev.2

page : (16) / Total (42)

ICRT-QPA-17-03 Rev.2

page : (17) / Total (42)

						High	ı ch_	Cond	ducted	d Spu	irious	Emi	ssion						
MultiView	Sp.u	m	× Sp.m		X Sp.m3	×	Sp.m4	×	Sp.m5	×	Sp.mő	×	Sp.m7	×	Sp.m8	×	Sp.m9	×	•
Ref L • Att	.evel 10).00 dBm				100 kHz 300 kHz													
TDF "RF	-C-001.	TDF"	5 5 44 1	265 m	S 🛎 ARAA	300 KHZ	Mod	e Auto s	weep										
1 Freq	uency \$	Sweep															M1[1]	01Pk	
																		4.960 30	
0 dBm—																			
-10 dBm																			
0.0 10																			
-20 dBm																			
-30 dBm			Ĭ																
-40 dBm																			
-50 dBm																			
-60 dBm																			
1		d .														. A.	h		An dan.
70 dBm		1			a. Helena	. Philip	يعلموا أوأرم ال	ی مراجع اور	<mark>History</mark> ał	al a da	المراجعة المرجعة الم	and an	La Manuella .	a de la	(lingel japa) Historia		in the second second	A share	فراطامتناه
A.W.		a state	in the left	a all the second	الىر بەر يەكرىمار	A STATE	diam di	AND IN CONTRACTOR	alitication for	Ad.	and the state of the state	w lui	and annia fi	1 1	1 19 19 19 19 19 19 19 19 19 19 19 19 19		a da anti-		
-at) dBm	month	Thund	is delike ti di ⁿ a	1															
30.0 M	1Hz					32	:001 p	ts			2.	.65 GH	lz/					26.	5 GHz

ICRT-QPA-17-03 Rev.2

page : (18) / Total (42)

Low ch_Band Edge × Sp.m6 × Sp.m7 × Sp.m9
 Ref Level
 10:00 dBm
 9:002
 X
 \$p:m3
 X
 \$p:m4
 X
 \$p:m5

 e Att
 10:00 dB
 W
 RBW
 100 kHz
 e
 e
 Att
 10:00 SWT
 1.01 ms = VBW
 300 kHz
 Mode
 Auto Sweep

 1DF "PFC-00:1DF"
 1 Frequency Sweep
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 × Sp.m2 × Sp.m3 × Sp.m-4 × Sp.m5 X Sp.m8 × •1Pk Max 49.79 dB 2,400 000 0 GHz 2.31 GHz 1001 pts 10.0 MHz/ 2.41 GHz High ch_Band Edge **X** Sp.m5 × Sp.m6 🕂 Sp.um × Sp.m2 X Sp.m3 X Sp.m4 × Sp.m7 X Sp.m8 X Sp.m9 ×
 Ref Level
 10.00 dBm
 © RBW
 100 kHz

 Att
 20 dB
 SWT
 1.02 ms
 © VBW
 300 kHz
 Mode
 Auto Sweep

 TDF "&FC-001.TDF"
 "
 "
 TDF "APC-001.TDF"
 "
 TDF "APC-001.TDF"
 o1Pk Max 1 Frequency S M1[1] -56.50 dBm 2,483 500 0 GHz M1 ww Man Many man have been you .478 GHz 1001 pt 2.2 MHz/ 2.5 GHz

ICRT-QPA-17-03 Rev.2

page : (19) / Total (42)

4.5 Radiated Spurious Emission

4.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

4.5.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§15.209 Radiated emission limits; general requirements.(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

ICRT-QPA-17-03 Rev.2

page : (20) / Total (42)

§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

ICRT-QPA-17-03 Rev.2

page : (21) / Total (42)

4.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
It was not found any emissions peaks found from the EUT.										
- Below 30 M	MHz_Mid ch									
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
	lt	was not fou	nd any	/ emissions p	beaks found t	from the EUT	Г.			
- Below 30 M	MHz_High ch	ı								
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
	It was not found any emissions peaks found from the EUT.									

ICRT-QPA-17-03 Rev.2

page : (22) / Total (42)

- 30 IVIAZ ~	1 GHZ_LOW	CIT						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
120.02	62.22	QP	V	-26.6	35.62	43.5	7.88	
372.02	55.45	QP	Н	-19.5	35.95	46.0	10.05	
408.01	53.88	QP	Н	-18.4	35.48	46.0	10.52	
420.04	55.13	QP	Н	-18.1	37.03	46.0	8.97	
- 30 MHz ~	1 GHz_Mid o	h						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
120.02	62.69	QP	V	-26.6	36.09	43.5	7.41	
372.02	57.43	QP	Н	-19.5	37.93	46.0	8.07	
408.01	54.73	QP	Н	-18.4	36.33	46.0	9.67	
420.04	55.49	QP	Н	-18.1	37.39	46.0	8.61	
- 30 MHz ~	1 GHz_High	ch						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
120.02	62.90	QP	V	-26.6	36.30	43.5	7.20	
372.02	57.62	QP	Н	-19.5	38.12	46.0	7.88	
408.01	54.37	QP	Н	-18.4	35.97	46.0	10.03	
420.04	54.91	QP	Н	-18.1	36.81	46.0	9.19	

- 30 MHz ~ 1 GHz Low ch

ICRT-QPA-17-03 Rev.2

page : (23) / Total (42)

-	1	GHz Above	Low	ch
		0112700000		011

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0.057.05	43.39	PK	V	40.4	32.99	74	41.01	Restricted
2 357.25	29.88	AVG	V	-10.4	19.48	54	34.52	band
4 000 00	44.39	PK	Н	4.0	43.19	74	30.81	2nd
4 808.00	33.53	AVG	Н	-1.2	32.33	54	21.67	Harmonic
7 204.80	39.77	PK	Н	3.4	43.17	74	30.83	3nd
7 204.80	25.71	AVG	Н	3.4	29.11	54	24.89	Harmonic
9 607.20	38.79	PK	Н	5.6	44.39	74	29.61	4nd
9 007.20	24.63	AVG	Н	5.6	30.23	54	23.77	Harmonic
- 1 GHz Abo	ove_Mid ch					-		-
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 000 50	41.54	PK	Н		40.44	74	33.56	2nd
4 880.50	27.57	AVG	Н	-1.1	26.47	54	27.53	Harmonic
7 000 00	38.45	PK	V	0.4	41.55	74	32.45	3nd
7 320.00	25.08	AVG	V	3.1	28.18	54	25.82	Harmonic
0.750.00	36.98	PK	Н	0.7	43.68	74	30.32	4nd
9 759.60	23.62	AVG	Н	6.7	30.32	54	23.68	Harmonic
- 1 GHz Abc	ove_High ch							
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0.400.00	45.02	PK	Н	0.0	35.22	74	38.78	Restricted
2 499.23	31.48	AVG	Н	-9.8	21.68	54	32.32	band
4 000 00	40.64	PK	V	4.0	39.64	74	34.36	2nd
4 960.00	27.02	AVG	V	-1.0	26.02	54	27.98	Harmonic
7 440 00	39.11	PK	н	2.8	41.91	74	32.09	3nd
7 440.00	25.42	AVG	н	2.8	28.22	54	25.78	Harmonic
0.010.00	36.82	PK	V	6.0	43.02	74	30.98	4nd
9 919.20	23.17	AVG	V	6.2	29.37	54	24.63	Harmonic

ICRT-QPA-17-03 Rev.2

page : (24) / Total (42)

5. Test Result (Earphone Left)

5.1.6 dB Bandwidth

5.1.1 Test procedure

ANSI C63.10-2013 Clause 11.8

5.1.2 Limit

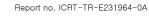
§15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.3 Test data

Result : Pass

ICRT-QPA-17-03 Rev.2



page : (25) / Total (42)

ICRT-QPA-17-03 Rev.2

page : (26) / Total (42)

5.2 Maximum Conducted Output Power

5.2.1 Test procedure

ANSI C63.10-2013 Clause 11.9

5.2.2 Limit

§15.247 (b) (3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.2.3 Test data

Result : Pass

Mode	Frequenc (MHz)	Mea	sured Valı (dBm)	a	Limit (dBm)			
	2 402		3.18					
Bluetooth LE 1M	2 440			2.05		30		
	2 480			0.61				
	Low ch_Max	kimum Col	nducted O	utput Pow	er			
MultiView Sp.um Sp.m2 Ref Level 20.00 dBm Att 30 dB • SWT 1.01	Sp.m3 X Sp.m4 RBW 1 MHz ms VBW 3 MHz Mode A	× sp.m5	X Sp.m6	X Sp.m7	X 5p.m8	Sp.m9	×	
TDF "RFC-001.TDF" 1 Frequency Sweep							●1Pk Max	
						M1[1] 2.	3.18 dBm 402 128 90 GHz	
10 dBm-								
0 dBm			T					
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm-								
-60 dBm								
-70 dBm-								
CF 2.402 GHz	1001 pts		30	0.0 kHz/			Span 3.0 MHz	

ICRT-QPA-17-03 Rev.2

page : (27) / Total (42)

		Ν	/lid ch_Ma	ximum Coi	nducted O	utput Pow	er		
Multi¥iew 📕 Sp.um	X Sp.m2	X Sp.m3	★ Sp.m-4	× Sp.m5	X Sp.m6	× Sp.m7	X Sp.m8	X Sp.m9	× ·
Ref Level 20.00 dB Att 30 d	m 18 • SWT 1.01	RBW	1 MHz 3 MHz Mode	Auto Sween					
TDF "RFC-001.TDF" 1 Frequency Sweep			STAILS MODE	Auto oweep					o1Pk Max
1 Frequency Sweet								M1[1]	2.05 dBm
10 dBm									2.439 799 20 GHz
10 000				M1					
0 dBm-				· · · · · · · · · · · · · · · · · · ·					
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-40 ubm									
-50 dBm									
-60 dBm-									
-70 dBm-									
CF 2.44 GHz			1001 pts	s	30	0.0 kHz/			Span 3.0 MHz
					50				opun olo minz
		Н		aximum Co			ver		Span 310 Minz
Multi¥iew III Sp.um	X Sp.m2	H × sp.m3					/er × sp.m8	X Sp.m9	× ·
Ref Level 20.00 dB	m	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		Sp.m9	
Ref Level 20.00 dBi Att 30 d TDF "RFC-001.TDF"	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		Sp.m9	× ·
RefLevel 20.00 dB Att 30 d	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow			
Ref Level 20.00 dB Att 30 c TDF "RFC-001.TDF" 1 Frequency Sweep	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max
Ref Level 20.00 dBi Att 30 d TDF "RFC-001.TDF"	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 30 c TDF "RFC-001.TDF" 1 Frequency Sweep	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	aximum Co × sp.m5	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 300 TDF "RFC-01.TDF" I Frequency Sweet 10 dBm-	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 d TDF "RFC-001.TDF" 1 Frequency Sweep	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 0 TDF "RFC-001.TDF" I Frequency Sweet 10 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 30 0 TDF "RFC-01.TDF" I Frequency Sweet	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 0 TDF "RFC-001.TDF" I Frequency Sweet 10 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 c TDF "RFC-001.TDF" I Frequency Sweet 10 dBm - 0 dBm - 20 dBm - 30 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 0 TDF "RFC-001.TDF" I Frequency Sweer 10 dBm -10 dBm -20 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 c TDF "RFC-001.TDF" I Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 c TDF "RFC-001.TDF" I Frequency Sweet 10 dBm 0 dBm -20 dBm -30 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dBi Att 30 c TDF "RFC-001.TDF" I Frequency Sweet 10 dBm 0 dBm -20 dBm -30 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 30 c The "Ref-coil Top" I Frequency Sweet 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 30 c The "Ref-Coll Top" I Frequency Sweet 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Aximum Co x Spans Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm
Ref Level 20.00 dB Att 30 c The Test Constraint of the test of	m iB = SWT 1.01	Sp.m3 • RBW	ligh ch_Ma	Auto Sweep	nducted O	utput Pow		M1[1]	• 1Pk Max 0.61 dBm

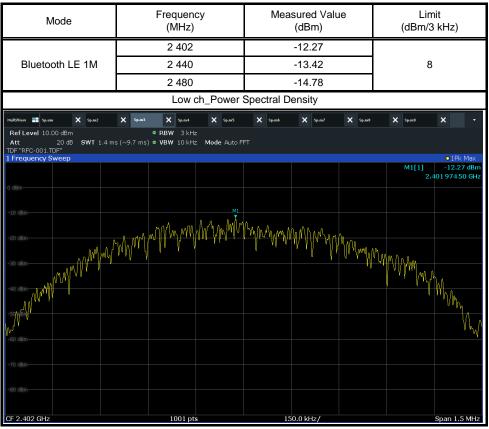
ICRT-QPA-17-03 Rev.2

page : (28) / Total (42)

5.3 Power Spectral Density

5.3.1 Test procedure

ANSI C63.10-2013 Clause 11.10

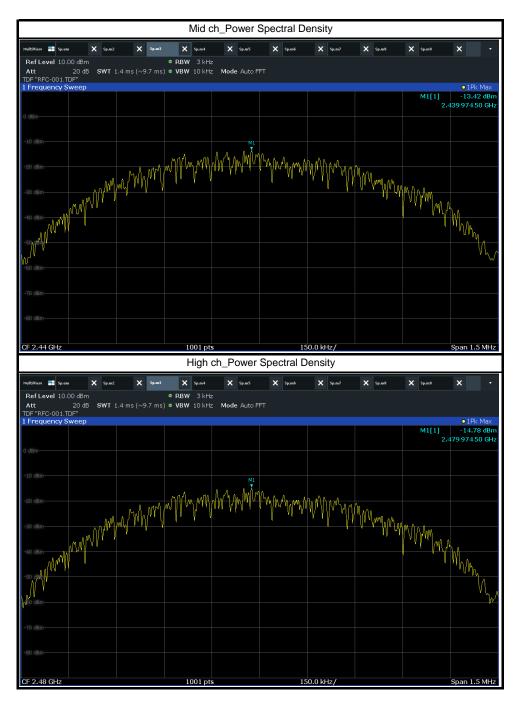

5.3.2 Limit

§15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.3 Test data

Result : Pass


ICRT-QPA-17-03 Rev.2

page : (29) / Total (42)

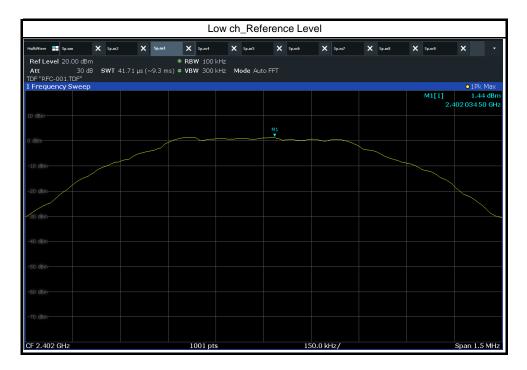
ICRT-QPA-17-03 Rev.2

page : (30) / Total (42)

5.4 Conducted Spurious Emission & Band Edge

5.4.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.13

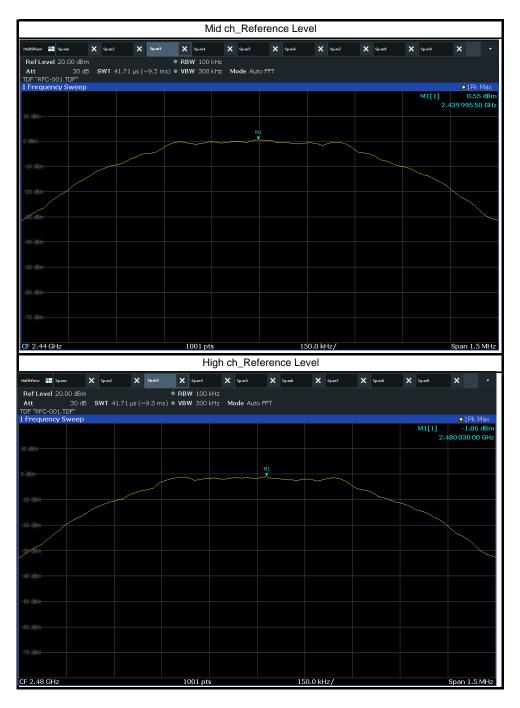

5.4.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

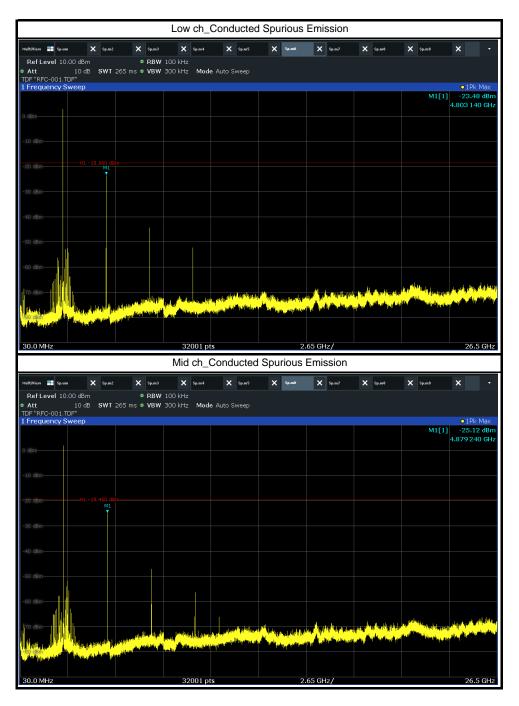
5.4.3 Test data

Result : Pass



ICRT-QPA-17-03 Rev.2

page: (31) / Total (42)



ICRT-QPA-17-03 Rev.2

page : (32) / Total (42)

ICRT-QPA-17-03 Rev.2

page : (33) / Total (42)

							Hig	h ch_	Cond	ducte	d Spu	irious	Emi	ssion						
MultiView	Sp.a	unı	×	Sp.m2		X Sp.m3	×	Sp.m4	×	Sp.m5	×	Sp.mő	×	Sp.m7	×	Sp.m8	×	Sp.m9	×	•
Ref L Att	evel 1			WT :	265 ms		♥ 100 kH: ♥ 300 kH:		e Auto :	Sween										
TDF "RF 1 Frequ		TDF"																	o1Pk	Max
	ĺ																	M1[1]	-27.5 4.959 47	9 dBm '0 GHz
0 dBm—																				
-10 dBm																				
-20 dBm		-		60 dB M1																
-30 dBm																				
-40 dBm																				
-50 dBm																				
-60 dBm																				
<mark>1</mark> 70 dBm	_										He. 1.		. III ¹¹ 1	u. Martu		ويلد وماريطي	J. P			te atilan
-30 dBm			d di alla	e la ple	ana ang ang ang Sang ang ang ang ang ang ang ang ang ang	an ^{an a} bh		MARINE Andreada	and Parling Planta del	a the photo sur			A.	N. Hudbert		alitic ala Alitic de la	A 1	AND AND AND AND A	Jite Marine Marine	a a a a a a a a a a a a a a a a a a a
a, that has	il and a second second		1.57																	
30.0 M	1Hz						3	2001 p	ts			2.	.65 GH	lz/					26.	5 GHz

ICRT-QPA-17-03 Rev.2

page : (34) / Total (42)

Low ch_Band Edge Sp.um × Sp.m4 × Sp.m5 × Sp.m6 × Sp.m7 **X** Sp.m8 × Sp.m9 × Sp.m2 × Sp.m3
 RefLevel 10.00 dBm

 • RBW 100 kHz

 • Att 10 dB SWT 1.01 ms
 • VBW 300 kHz
 Mode Auto Sweep

 IFrequency Sweep
 01Pk Max 50.82 dB M1[1] 2.400 000 0 GHz 2.31 GHz 2.41 GHz 1001 pts 10.0 MHz/ High ch_Band Edge X Sp.m5 X Sp.m6 iew 📑 Sp.um × Sp.m3 × Sp.m-4 × Sp.m7 🗙 Sp.m8 × Sp.m9 ×
 Ref Level
 10.00 dBm
 © RBW
 100 kHz

 Att
 20 dB
 SWT
 1.02 ms
 © VBW
 300 kHz
 Mode
 Auto Sweep

 TDF "RFC-001.TDF"
 "
 "
 "
 100 kHz
 Node
 ○1Pk Max 1 Frequency Sv M1[1] -58.59 dBm 2.483 500 0 GHz M1 2.478 GHz 1001 pts 2.2 MHz/ 2.5 GHz

ICRT-QPA-17-03 Rev.2

page: (35) / Total (42)

5.5 Radiated Spurious Emission

5.5.1 Test procedure

ANSI C63.10-2013 Clause 11.11, 11.12

5.5.2 Limit

§15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

§15.209 Radiated emission limits; general requirements.(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

ICRT-QPA-17-03 Rev.2

page : (36) / Total (42)

§15.205 Restricted bands of operation.(a),(b)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

ICRT-QPA-17-03 Rev.2

page : (37) / Total (42)

5.5.3 Test data

Result : Pass

- Below 30 MHz_Low ch

r	_			-	1		-			
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
It was not found any emissions peaks found from the EUT.										
- Below 30 N	√Hz_Mid ch									
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
	lt	was not fou	nd any	/ emissions p	eaks found	from the EUT	Г.			
- Below 30 N	MHz_High ch	1								
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note		
	It was not found any emissions peaks found from the EUT.									

ICRT-QPA-17-03 Rev.2

page : (38) / Total (42)

- 30 MHz ~ 1 GHz_Low ch								
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
384.05	58.51	QP	Н	-18.9	39.61	46	6.39	
408.01	57.76	QP	Н	-18.4	39.36	46	6.64	
432.07	52.79	QP	Н	-18.0	34.79	46	11.21	
444.00	52.87	QP	Н	-17.9	34.97	46	11.03	
- 30 MHz ~	1 GHz_Mid c	h						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
252.03	59.40	QP	Н	-22.6	36.80	46	9.20	
384.05	58.22	QP	Н	-18.9	39.32	46	6.68	
408.01	58.00	QP	Н	-18.4	39.60	46	6.40	
432.07	54.85	QP	Н	-18.0	36.85	46	9.15	
- 30 MHz ~	1 GHz_High	ch						
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
252.03	59.46	QP	Н	-22.6	36.86	46	9.14	
384.05	57.15	QP	Н	-18.9	38.25	46	7.75	
408.01	56.39	QP	Н	-18.4	37.99	46	8.01	
432.07	54.58	QP	Н	-18.0	36.58	46	9.42	

ICRT-QPA-17-03 Rev.2

page : (39) / Total (42)

 1 GHz Above_Low of 	ch
--	----

Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
2,296,06	43.36	PK	Н	-10.2	33.16	74	40.84	Restricted
2 386.06	29.79	AVG	Н	-10.2	19.59	54	34.41	band
4 904 50	45.89	PK	Н	-1.2	44.69	74	29.31	2nd
4 804.50	33.49			-1.2	32.29	54	21.71	Harmonic
7 206.00	46.8	PK	V	2.4	50.20	74	23.80	3rd
7 206.00	34.86	AVG	V	3.4	38.26	54	15.74	Harmonic
7 608.40	38.87	PK	V	5.7	44.57	74	29.43	4th
7 000.40	24.52	AVG	V	5.7	30.22	54	23.78	Harmonic
10,000,00	44.31	PK	V	0.4	52.41	74	21.59	5th
12 009.60	31.34	AVG	V	8.1	39.44	54	14.56	Harmonic
- 1 GHz Abc	ove_Mid ch							
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
4 879.50	44.76	PK	Н	-1.1	43.66	74	30.34	2nd Harmonic
	32.62	AVG	Н		31.52	54	22.48	
7 000 00	38.15	PK	V	3.1	41.25	74	32.75	3nd
7 320.00	25.07	AVG	V	3.1	28.17	54	25.83	Harmonic
9 759.60	37.86	PK	Н	6.7	44.56	74	29.44	4nd
9759.00	23.72	AVG	Н	0.7	30.42	54	23.58	Harmonic
- 1 GHz Abc	ve_High ch							
Frequency (MHz)	Reading (dBuV/m)	Detector	Pol.	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)	note
0 490 40	44.63	PK	Н	0.0	34.83	74	39.17	Restricted
2 489.49	31.13	AVG	Н	-9.8	21.33	54	32.67	band
4 064 00	42.58	PK	Н	1.0	41.58	74	32.42	2nd
4 961.00	28.80	AVG	Н	-1.0	27.80	54	26.20	Harmonic
7 200 22	38.58	PK	н	2.4	41.68	74	32.32	3nd
7 399.20	25.30	AVG	Н	3.1	28.40	54	25.60	Harmonic
0.004.00	36.99	PK	V	6.2	43.19	74	30.81	4nd
9 921.60	23.19	AVG	V	<u></u> 6.2	29.39	54	24.61	Harmonic

ICRT-QPA-17-03 Rev.2

page: (40) / Total (42)

4.6 Power Line Conducted Emission

4.6.1 Test procedure

ANSI C63.10-2013 Clause 6.2

4.6.2 Limit

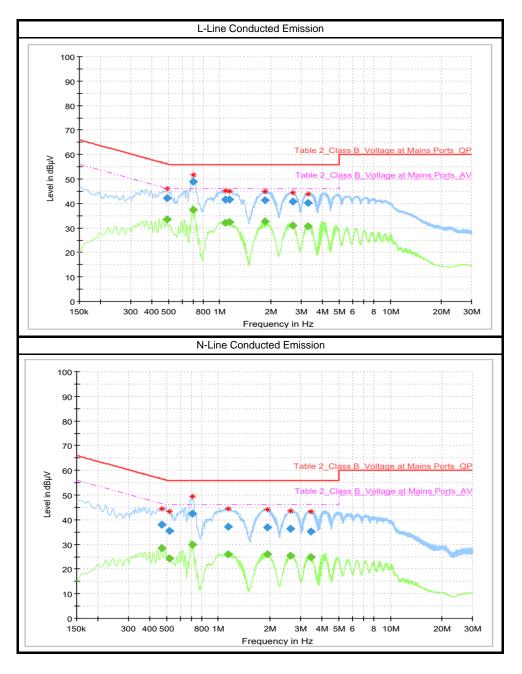
§15.207 (a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBµV)			
riequency of emission (Mriz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

ICRT-QPA-17-03 Rev.2



page : (41) / Total (42)

4.6.3 Test data

Result : Pass

ICRT-QPA-17-03 Rev.2

page : (42) / Total (42)

6. Used equipment

Description	Model Name	Manufacturer	Serial Number	Calibration	Next Cal
SIGNAL GENERATOR	SMB100A	R&S	180607	2023-03-02	2024-03-02
SIGNAL & SPECTRUM ANALYZER	FSW85	R&S	101306	2023-03-03	2024-03-03
ATTENUATOR	PFA40K2-10	PSATEK	-	2023-03-07	2024-03-07
DC BLOCK	PDCB-00012650 -SMSF-3	PSATEK INC.	-	2023-05-02	2024-05-02
DC POWER SUPPLY	E3632A	AGILANT	MY51300069	2023-03-03	2024-03-03
LOOP ANTENNA	HFH2-Z2	R&S	100271	2023-03-08	2025-03-08
BI-Log ANTENNA	VULB 9162	SCHWARZBECK	120	2022-12-26	2024-12-26
SIGNAL CONDITIONING UNIT	SCU 08	R&S	100746	2023-04-03	2024-04-03
EMI TEST RECEIVER	ESR26	R&S	101462	2023-04-04	2024-04-04
DOUBLE RIDGED HORN ANTENNA	HF907	R&S	102556	2023-08-04	2024-08-04
SIGNAL CONDITIONING UNIT	SCU18	R&S	102342	2023-04-03	2024-04-03
EMI TEST RECEIVER	ESR26	R&S	101461	2023-04-04	2024-04-04
HORN ANTENNA	LB-42-10-C-KF	A-INFOMW	J202024625	2023-03-07	2024-03-07
PREAMPLIFIER	AMF-4F-18265- 35-8P-1	MITEQ	-	2023-03-07	2024-03-07

- END OF REPORT.

ICRT-QPA-17-03 Rev.2

