# **FCC REPORT**

Report No: CCISE190806501

# (Bluetooth)

Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd.

Address of Applicant: 406-407 Jinqi Zhigu Building,4/F,1 Tangling Road,Nanshan

District, Shenzhen City, China

**Equipment Under Test (EUT)** 

Product Name: TWS Wireless earphones

Model No.: Upods, Upods Max, Upods 2, Upods Max2

Trade mark: UMIDIGI

FCC ID: 2ATZ4UPODS

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 19 Aug., 2019

**Date of Test:** 19 Aug., to 05 Sep., 2019

Date of report issued: 06 Sep., 2019

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 06 Sep., 2019 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by: Date: 06 Sep., 2019

Test Engineer

Reviewed by: 1 1 and Date: 06 Sep., 2019

Project Engineer L

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 3 Contents

|   |                                             | Page |
|---|---------------------------------------------|------|
| 1 | 1 COVER PAGE                                | 1    |
| 2 | 2 VERSION                                   | 2    |
|   | 3 CONTENTS                                  |      |
|   |                                             |      |
| 4 | 4 TEST SUMMARY                              | 4    |
| 5 | 5 GENERAL INFORMATION                       | 5    |
|   | 5.1 CLIENT INFORMATION                      | 5    |
|   | 5.2 GENERAL DESCRIPTION OF E.U.T.           |      |
|   | 5.3 Test environment and test mode          |      |
|   | 5.4 DESCRIPTION OF SUPPORT UNITS            | 6    |
|   | 5.5 MEASUREMENT UNCERTAINTY                 | 6    |
|   | 5.6 LABORATORY FACILITY                     |      |
|   | 5.7 LABORATORY LOCATION                     |      |
|   | 5.8 TEST INSTRUMENTS LIST                   | 8    |
| 6 | 6 TEST RESULTS AND MEASUREMENT DATA         | 9    |
|   | 6.1 ANTENNA REQUIREMENT                     | 9    |
|   | 6.2 CONDUCTED EMISSIONS                     | 10   |
|   | 6.3 CONDUCTED OUTPUT POWER                  | 11   |
|   | 6.4 20DB OCCUPY BANDWIDTH                   |      |
|   | 6.5 CARRIER FREQUENCIES SEPARATION          |      |
|   | 6.6 HOPPING CHANNEL NUMBER                  |      |
|   | 6.7 DWELL TIME                              |      |
|   | 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE |      |
|   | 6.9 BAND EDGE                               |      |
|   | 6.9.1 Conducted Emission Method             |      |
|   | 6.10 Spurious Emission                      |      |
|   | 6.10.1 Conducted Emission Method            |      |
|   | 6.10.2 Radiated Emission Method             |      |
| 7 | 7 TEST SETUP PHOTO                          | Δ1   |
|   |                                             |      |
| 8 | 8 EUT CONSTRUCTIONAL DETAILS                |      |



# 4 Test Summary

| Test Items                       | Section in CFR 47   | Result |
|----------------------------------|---------------------|--------|
| Antenna Requirement              | 15.203 & 15.247 (b) | Pass   |
| AC Power Line Conducted Emission | 15.207              | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)       | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)       | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)       | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)(iii)  | Pass   |
| Dwell Time                       | 15.247 (a)(1)(iii)  | Pass   |
| Spurious Emission                | 15.205 & 15.209     | Pass   |
| Band Edge                        | 15.247(d)           | Pass   |

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.





# 5 General Information

# **5.1 Client Information**

| Applicant:    | Shenzhen Youmi Intelligent Technology Co., Ltd.                                            |
|---------------|--------------------------------------------------------------------------------------------|
| Address:      | 406-407 Jinqi Zhigu Building,4/F,1 Tangling Road,Nanshan District,<br>Shenzhen City, China |
| Manufacturer: | Shenzhen Youmi Intelligent Technology Co., Ltd.                                            |
| Address:      | 406-407 Jinqi Zhigu Building,4/F,1 Tangling Road,Nanshan District,<br>Shenzhen City, China |

# 5.2 General Description of E.U.T.

| <u> </u> |                        |                                                                                                                                                                                          |  |  |  |
|----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|          | Product Name:          | TWS Wireless earphones                                                                                                                                                                   |  |  |  |
|          | Model No.:             | Upods, Upods Max, Upods 2, Upods Max2                                                                                                                                                    |  |  |  |
|          | Operation Frequency:   | 2402MHz~2480MHz                                                                                                                                                                          |  |  |  |
|          | Transfer rate:         | 1/2 Mbits/s                                                                                                                                                                              |  |  |  |
|          | Number of channel:     | 79                                                                                                                                                                                       |  |  |  |
|          | Modulation type:       | GFSK, π/4-DQPSK                                                                                                                                                                          |  |  |  |
|          | Modulation technology: | FHSS                                                                                                                                                                                     |  |  |  |
|          | Antenna Type:          | Chip Antenna                                                                                                                                                                             |  |  |  |
|          | Antenna gain:          | 3.45 dBi                                                                                                                                                                                 |  |  |  |
|          | Power supply:          | Rechargeable Li-ion polymer Battery : Battery capacity of Headset : DC3.7V/43mAh Battery capacity of Box: DC3.7V/600mAh                                                                  |  |  |  |
|          | Test Sample Condition: | The test samples were provided in good working order with no visible defects.                                                                                                            |  |  |  |
|          | Remark                 | The No.: Upods, Upods Max, Upods 2, Upods Max2 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name. |  |  |  |

| Operation Frequency each of channel for GFSK, π/4-DQPSK |                                                        |         |           |         |           |         |           |
|---------------------------------------------------------|--------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                 | Frequency                                              | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                                       | 2402MHz                                                | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1                                                       | 2403MHz                                                | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2                                                       | 2404MHz                                                | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3                                                       | 2405MHz                                                | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4                                                       | 2406MHz                                                | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5                                                       | 2407MHz                                                | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
|                                                         |                                                        |         |           |         |           |         |           |
| 15                                                      | 2417MHz                                                | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16                                                      | 2418MHz                                                | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17                                                      | 2419MHz                                                | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18                                                      | 2420MHz                                                | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19                                                      | 2421MHz                                                | 39      | 2441MHz   | 59      | 2461MHz   |         |           |
| Remark: Cha                                             | Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK |         |           |         |           |         |           |





## 5.3 Test environment and test mode

| Operating Environment: |                                                                         |  |  |  |
|------------------------|-------------------------------------------------------------------------|--|--|--|
| Temperature:           | 24.0 °C                                                                 |  |  |  |
| Humidity:              | 54 % RH                                                                 |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                                               |  |  |  |
| Test Modes:            |                                                                         |  |  |  |
| Non-hopping mode:      | Keep the EUT in continuous transmitting mode with worst case data rate. |  |  |  |
| Hopping mode:          | Hopping mode: Keep the EUT in hopping mode.                             |  |  |  |
| Remark                 | GFSK (1 Mbps) is the worst case mode.                                   |  |  |  |

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

| Manufacturer | Description | Model     | S/N     | FCC ID/DoC |
|--------------|-------------|-----------|---------|------------|
| LENOVO       | Laptop      | SL510     | 2847A65 | DoC        |
| UNONU        | Adapter     | ZNC-5W001 | N/A     | DoC        |

5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.38 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.36 dB (k=2)       |



# 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### ● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### ● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

#### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

# 5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com





# 5.8 Test Instruments list

| Radiated Emission: |                 |               |                    |                         |                             |
|--------------------|-----------------|---------------|--------------------|-------------------------|-----------------------------|
| Test Equipment     | Manufacturer    | Model No.     | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966                | 07-22-2017              | 07-21-2020                  |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B     | 00044              | 03-18-2019              | 03-17-2020                  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497                | 03-18-2019              | 03-17-2020                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916                | 03-18-2019              | 03-17-2020                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 1805               | 06-22-2017              | 06-21-2020                  |
| Horn Antenna       | SCHWARZBECK     | BBHA 9170     | BBHA9170582        | 11-21-2018              | 11-20-2019                  |
| EMI Test Software  | AUDIX           | E3            | Version: 6.110919b |                         | )                           |
| Pre-amplifier      | HP              | 8447D         | 2944A09358         | 03-18-2019              | 03-17-2020                  |
| Pre-amplifier      | CD              | PAP-1G18      | 11804              | 03-18-2019              | 03-17-2020                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454             | 03-18-2019              | 03-17-2020                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP40         | 100363             | 11-21-2018              | 11-20-2019                  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070             | 03-18-2019              | 03-17-2020                  |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458            | 03-18-2019              | 03-17-2020                  |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5           | 03-18-2019              | 03-17-2020                  |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE          | 03-18-2019              | 03-17-2020                  |
| RF Switch Unit     | MWRFTEST        | MW200         | N/A                | N/A                     | N/A                         |
| Test Software      | MWRFTEST        | MTS8200       | Version: 2.0.0.0   |                         |                             |

| Conducted Emission: |                 |            |                    |                         |                             |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-18-2019              | 03-17-2020                  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-18-2019              | 03-17-2020                  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-18-2019              | 03-17-2020                  |
| LION                | Rohde & Schwarz | F0110.75   | 0.4200204/040      | 07-21-2018              | 07-20-2019                  |
| LISN                | Ronde & Schwarz | ESH3-Z5    | 8438621/010        | 07-21-2019              | 07-20-2020                  |
| Cable               | HP              | 10503A     | N/A                | 03-18-2019              | 03-17-2020                  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |



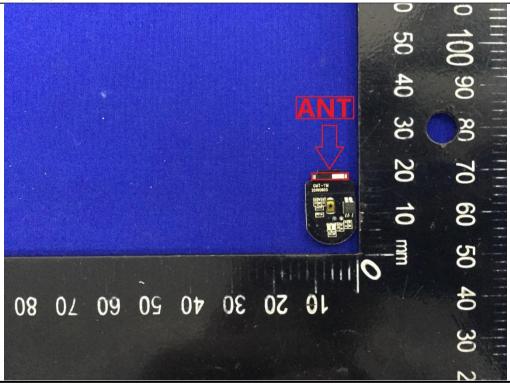
## 6 Test results and measurement data

# 6.1 Antenna Requirement

#### Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **E.U.T Antenna:**

The Bluetooth antenna is an Chip antenna which permanently attached, and the best case gain of the antenna is 3.45 dBi.



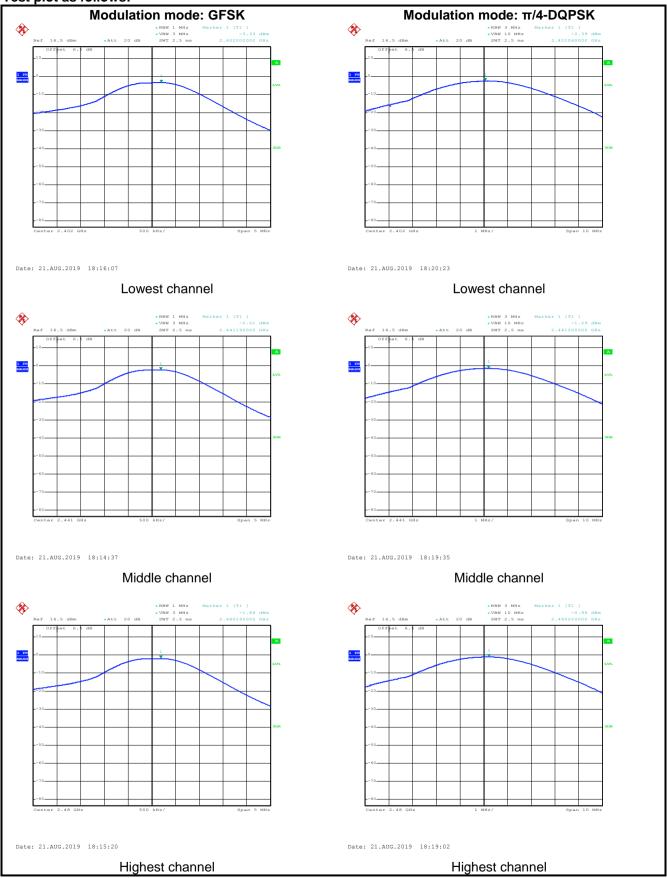


# **6.2 Conducted Emissions**

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--|--|
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |           |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |           |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hz, Sweep time=auto      |           |  |  |
| Limit:                | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (d                 | dBuV)     |  |  |
|                       | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak               | Average   |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66 to 56*                | 56 to 46* |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                       | 46        |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                       | 50        |  |  |
|                       | * Decreases with the log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arithm of the frequency. |           |  |  |
| Test procedure.       | Reference Plane  LISN 40cm 80cm Filter AC power  Equipment Test table/Insulation plane  Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |           |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.</li> </ol> |                          |           |  |  |
| Test Instruments:     | Refer to section 5.8 for o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | letails                  |           |  |  |
| Test mode:            | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |           |  |  |
| Test results:         | The power supply of the EUT is by the DC 3.7V Battery, so not need to be tested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |           |  |  |



# **6.3 Conducted Output Power**


| Test Requirement: | FCC Part 15 C Section 15.247 (b)(1)                                                                                                                                                                                   |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)                                                                                              |  |
| Limit:            | For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                 |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                      |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                      |  |
| Test results:     | Pass                                                                                                                                                                                                                  |  |

#### **Measurement Data:**

| Test channel    | Peak Output Power (dBm) | Limit (dBm) | Result |  |
|-----------------|-------------------------|-------------|--------|--|
|                 | GFSK mod                | de          |        |  |
| Lowest channel  | -3.33                   | 30.00       | Pass   |  |
| Middle channel  | -2.21                   | 30.00       | Pass   |  |
| Highest channel | -1.86                   | 30.00       | Pass   |  |
|                 | π/4-DQPSK mode          |             |        |  |
| Lowest channel  | -2.39                   | 21.00       | Pass   |  |
| Middle channel  | -1.29                   | 21.00       | Pass   |  |
| Highest channel | -0.96                   | 21.00       | Pass   |  |

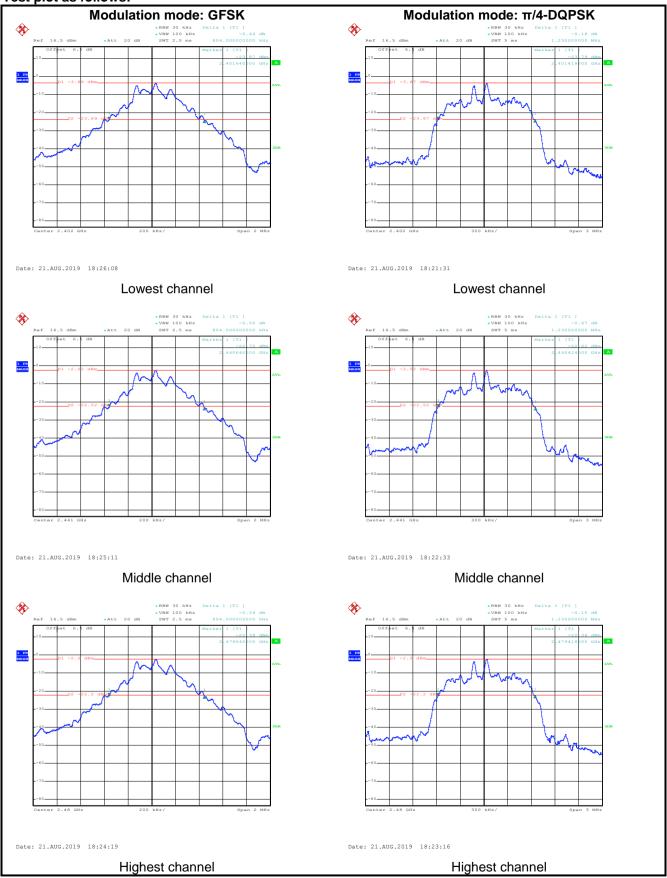


### Test plot as follows:





6.4 20dB Occupy Bandwidth


| 11 20ab 000aby banaman |                                                                       |
|------------------------|-----------------------------------------------------------------------|
| Test Requirement:      | FCC Part 15 C Section 15.247 (a)(1)                                   |
| Receiver setup:        | RBW=30 kHz, VBW=100 kHz, detector=Peak                                |
| Limit:                 | N/A                                                                   |
| Test setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments:      | Refer to section 5.8 for details                                      |
| Test mode:             | Non-hopping mode                                                      |
| Test results:          | Pass                                                                  |

#### **Measurement Data:**

| Test showed  | 20dB Occupy Bandwidth (kHz) |           |  |
|--------------|-----------------------------|-----------|--|
| Test channel | GFSK                        | π/4-DQPSK |  |
| Lowest       | 804.00                      | 1230.00   |  |
| Middle       | 804.00                      | 1230.00   |  |
| Highest      | 804.00                      | 1230.00   |  |



### Test plot as follows:



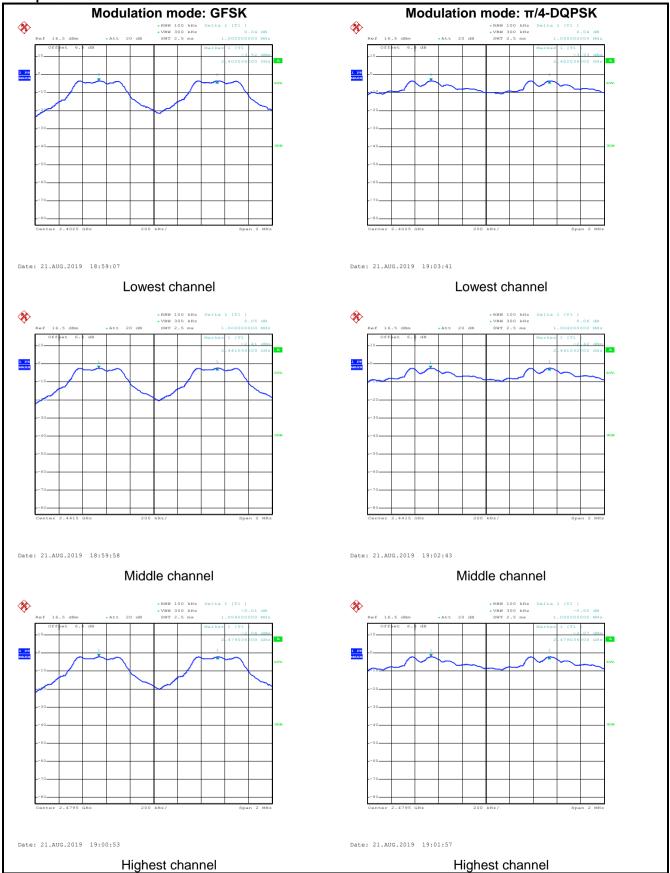


6.5 Carrier Frequencies Separation

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·                 | 1,71,7                                                                                                                                                    |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, detector=Peak                                                                                                                   |
| Limit:            | <ul><li>a) 0.025MHz or the 20dB bandwidth (whichever is greater)</li><li>b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)</li></ul> |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                     |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                          |
| Test mode:        | Hopping mode                                                                                                                                              |
| Test results:     | Pass                                                                                                                                                      |



### **Measurement Data:**


| Test channel | Carrier Frequencies Separation (kHz) Limit (kHz) |        | Result |
|--------------|--------------------------------------------------|--------|--------|
|              | GFSK                                             |        |        |
| Lowest       | 1000                                             | 804.00 | Pass   |
| Middle       | 1000                                             | 804.00 | Pass   |
| Highest      | 1004                                             | 804.00 | Pass   |
|              | π/4-DQPSK mode                                   |        |        |
| Lowest       | 1000                                             | 820.00 | Pass   |
| Middle       | 1004                                             | 820.00 | Pass   |
| Highest      | 1000                                             | 820.00 | Pass   |

Note: According to section 6.4

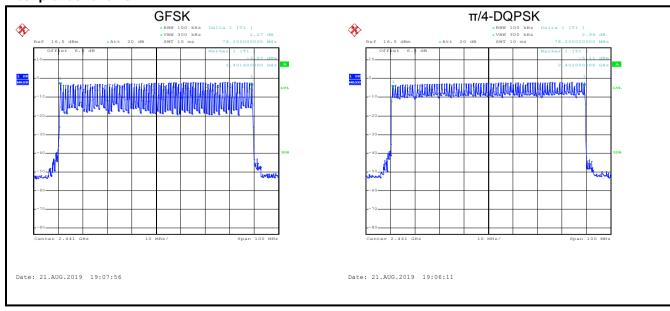
| Mode      | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|-----------|--------------------------------------|-------------------------------------------------|
| GFSK      | 804                                  | 804.00                                          |
| π/4-DQPSK | 1230                                 | 820.00                                          |



### Test plot as follows:






6.6 Hopping Channel Number

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                        |
|-------------------|----------------------------------------------------------------------------|
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |
| Limit:            | 15 channels                                                                |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane      |
| Test Instruments: | Refer to section 5.8 for details                                           |
| Test mode:        | Hopping mode                                                               |
| Test results:     | Pass                                                                       |

#### **Measurement Data:**

| Mode            | Hopping channel numbers | Limit | Result |
|-----------------|-------------------------|-------|--------|
| GFSK, π/4-DQPSK | 79                      | 15    | Pass   |

### Test plot as follows:





# 6.7 Dwell Time

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |
|-------------------|-----------------------------------------------------------------------|
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak                        |
| Limit:            | 0.4 Second                                                            |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Hopping mode                                                          |
| Test results:     | Pass                                                                  |

## Measurement Data (Worse case):

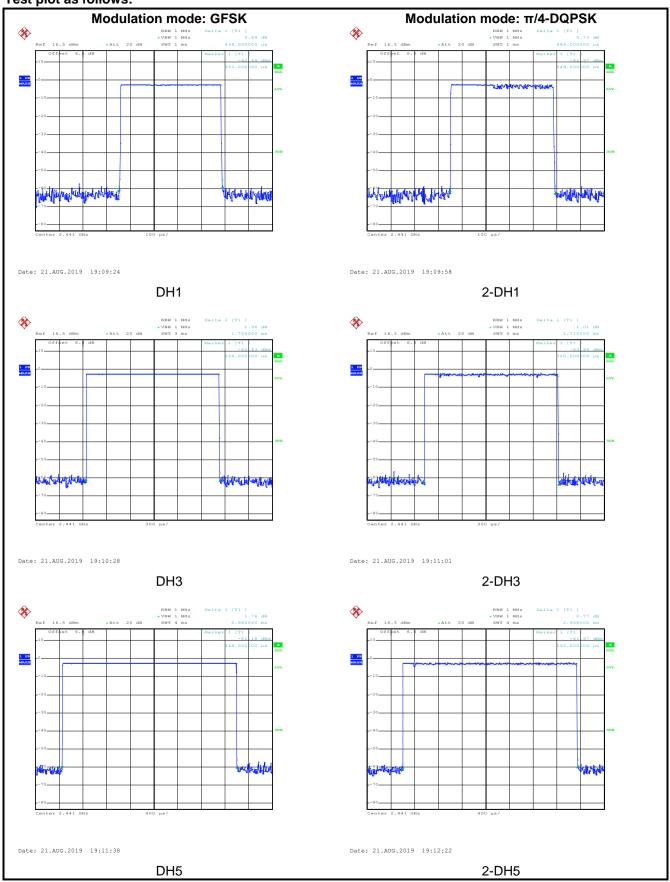
| Mode      | Packet | Dwell time (second) | Limit (second) | Result |
|-----------|--------|---------------------|----------------|--------|
|           | DH1    | 0.14016             |                |        |
| GFSK      | DH3    | 0.27264             | 0.4            | Pass   |
|           | DH5    | 0.31573             |                |        |
|           | 2-DH1  | 0.14272             |                |        |
| π/4-DQPSK | 2-DH3  | 0.27360             | 0.4            | Pass   |
|           | 2-DH5  | 0.31659             |                |        |

### Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop \* Hopping numbers \* Period

For example:


DH1 time slot=0.438\*(1600/ (2\*79)) \* 31.6=140.16ms

DH3 time slot=1.704\*(1600/ (4\*79)) \* 31.6=272.64ms

DH5 time slot=2.960\*(1600/ (6\*79)) \* 31.6=315.73ms



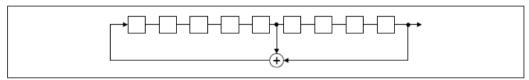
### Test plot as follows:





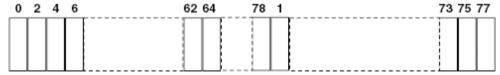
6.8 Pseudorandom Frequency Hopping Sequence

### Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

## **EUT Pseudorandom Frequency Hopping Sequence**


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

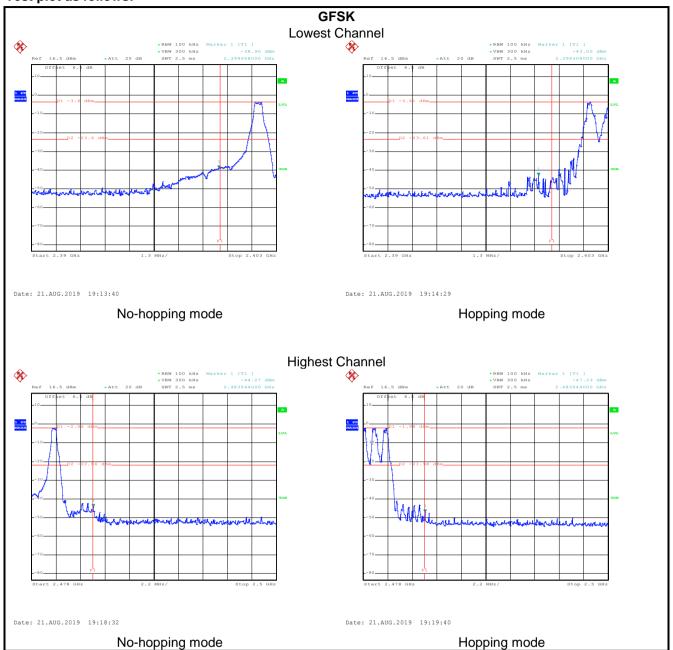
An example of Pseudorandom Frequency Hopping Sequence as follow:



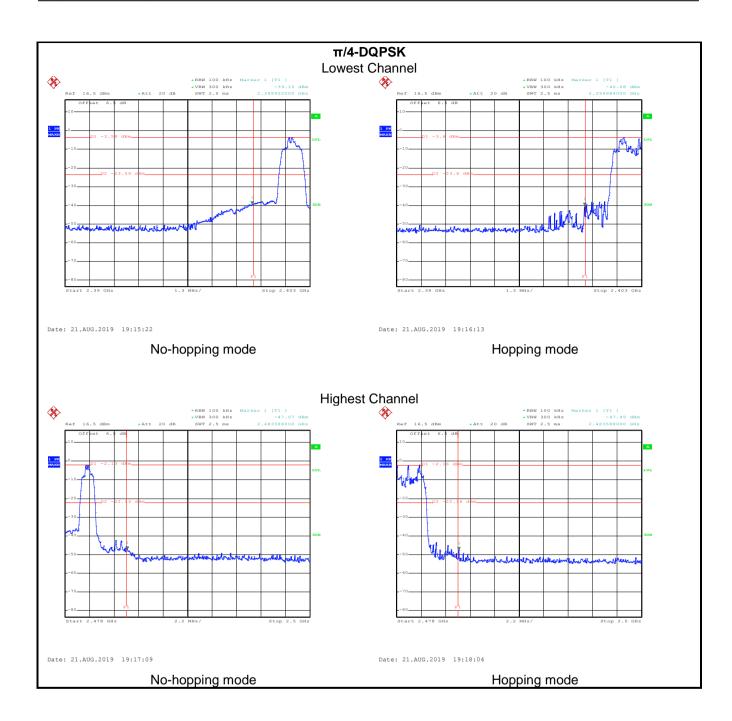
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.




# 6.9 Band Edge

# 6.9.1 Conducted Emission Method


| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |  |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |



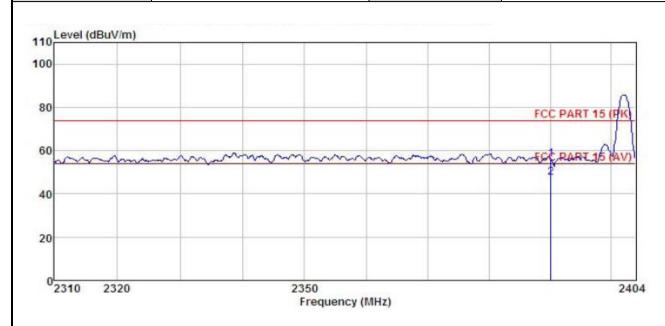
## Test plot as follows:










## 6.9.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 15 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 and 15 205  |       |            |               |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|------------|---------------|--|
| Test Frequency Range: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |       |            |               |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |       |            |               |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBW            | \ \/  | BW         | Remark        |  |
| Neceiver setup.       | rrequericy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1MHz           |       |            | Peak Value    |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1MHz           |       | MHz        | Average Value |  |
| Limit:                | Frequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mit (dBuV/m @: |       | VII 12     | Remark        |  |
| Liitiit.              | rrequeri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cy Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.00          | 5111) | Δι         | verage Value  |  |
|                       | Above 1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.00          |       | Peak Value |               |  |
| Test setup:           | AE (To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Horn Antenna Tower  AE EUT  Ground Reference Plane  Test Receiver  Amplifier  Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |       |            |               |  |
| Test Procedure:       | ground at a determine the second second at a determine the second | <ol> <li>The EUT was placed on the top of a rotating table 1.5meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or</li> </ol> |                |       |            |               |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 5.8 for detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S              |       |            |               |  |
| Test mode:            | Non-hopping m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |       |            |               |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |       |            |               |  |

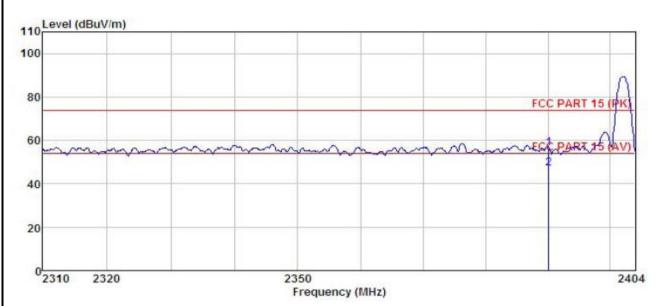


### **GFSK Mode:**

| Product Name: | TWS Wireless earphones | Product Model: | Upods                |
|---------------|------------------------|----------------|----------------------|
| Test By:      | Yaro                   | Test mode:     | DH1 Tx mode          |
| Test Channel: | Lowest channel         | Polarization:  | Vertical             |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24°C Huni: 57% |



|   | Freq                 |      | Antenna<br>Factor |    |    |        |        |           |  |
|---|----------------------|------|-------------------|----|----|--------|--------|-----------|--|
|   | MHz                  | dBu∜ | <u>dB</u> /m      | dB | dB | dBuV/m | dBuV/m | <u>dB</u> |  |
| 1 | 2390.000<br>2390.000 |      |                   |    |    |        |        |           |  |

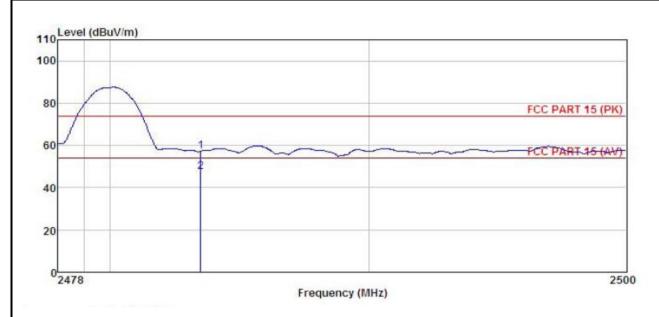

## Remark:

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: | TWS Wireless earphones | Product Model: | Upods               |
|---------------|------------------------|----------------|---------------------|
| Test By:      | Yaro                   | Test mode:     | DH1 Tx mode         |
| Test Channel: | Lowest channel         | Polarization:  | Horizontal          |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |
|               |                        |                |                     |

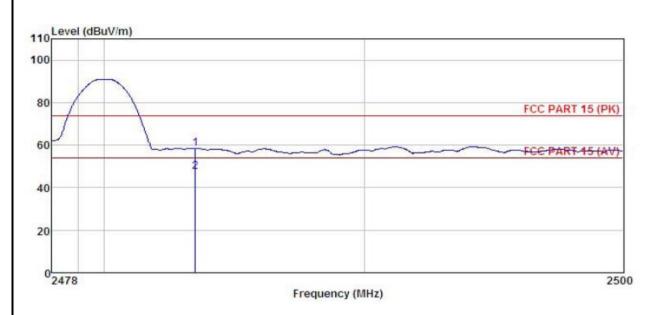



|     | Freq                 |                | Antenna<br>Factor |              |              |                |                |                 | Remark          |
|-----|----------------------|----------------|-------------------|--------------|--------------|----------------|----------------|-----------------|-----------------|
|     | MHz                  | dBu∜           | dB/m              | ₫B           | <u>dB</u>    | dBuV/m         | dBuV/m         | dB              |                 |
| 1 2 | 2390.000<br>2390.000 | 23.10<br>13.76 | 27.08<br>27.08    | 4.69<br>4.69 | 0.00<br>0.00 | 56.55<br>47.21 | 74.00<br>54.00 | -17.45<br>-6.79 | Peak<br>Average |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: | TWS Wireless earphones | Product Model: | Upods               |
|---------------|------------------------|----------------|---------------------|
| Test By:      | Yaro                   | Test mode:     | DH1 Tx mode         |
| Test Channel: | Highest channel        | Polarization:  | Vertical            |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |



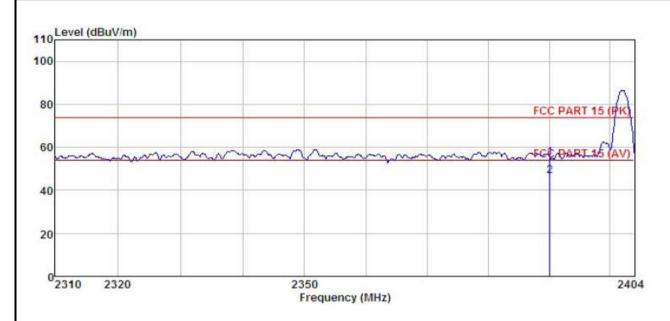

|     | Freq                   |             | Antenna<br>Factor |    |           |        |        |    |  |
|-----|------------------------|-------------|-------------------|----|-----------|--------|--------|----|--|
|     | MHz                    | MHz dBuV dI | dB/m              | dB | <u>dB</u> | dBuV/m | dBuV/m | ₫B |  |
| 1 2 | 2483, 500<br>2483, 500 |             |                   |    |           |        |        |    |  |

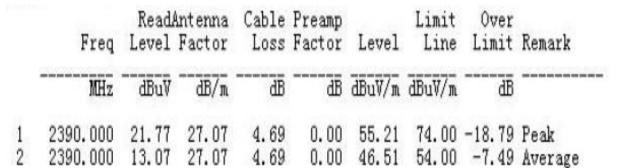
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: | TWS Wireless earphones | Product Model: | Upods                |
|---------------|------------------------|----------------|----------------------|
| Test By:      | Yaro                   | Test mode:     | DH1 Tx mode          |
| Test Channel: | Highest channel        | Polarization:  | Horizontal           |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24°C Huni: 57% |




| red            | Level          | Factor         | Loss                              |                                           |                     |                                                             | Over<br>Limit                                                            |                                                                                                                                                                                   |
|----------------|----------------|----------------|-----------------------------------|-------------------------------------------|---------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz            | dBu∜           | <u>dB</u> /m   | dB                                | dB                                        | dBuV/m              | dBuV/m                                                      | <u>d</u> B                                                               |                                                                                                                                                                                   |
| . 500<br>. 500 | 24.74<br>13.47 | 27.35<br>27.35 | 4.81                              | 0.00                                      | 58.60<br>47.33      | 74.00<br>54.00                                              | -15.40<br>-6.67                                                          | Peak<br>Average                                                                                                                                                                   |
|                | MHz<br>500     | MHz dBuV       | MHz dBuV dB/m<br>.500 24.74 27.35 | MHz dBuV dB/m dB<br>.500 24.74 27.35 4.81 | MHz dBuV dB/m dB dB | MHz dBuV dB/m dB dB dBuV/m .500 24.74 27.35 4.81 0.00 58.60 | MHz dBuV dB/m dB dB dBuV/m dBuV/m .500 24.74 27.35 4.81 0.00 58.60 74.00 | Freq Level Factor Loss Factor Level Line Limit  MHz dBuV dB/m dB dB dBuV/m dBuV/m dB  .500 24.74 27.35 4.81 0.00 58.60 74.00 -15.40  .500 13.47 27.35 4.81 0.00 47.33 54.00 -6.67 |

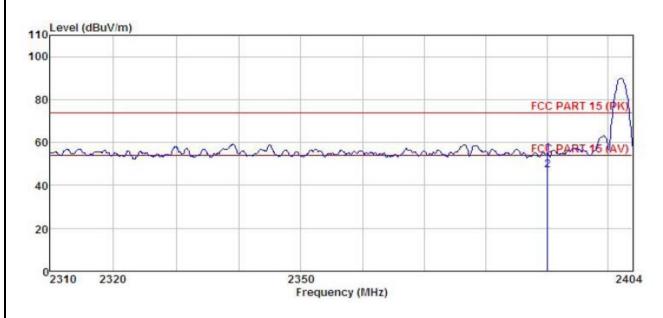

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



#### π/4-DQPSK mode

| Product Name: | TWS Wireless earphones | Product Model: | Upods               |
|---------------|------------------------|----------------|---------------------|
| Test By:      | Yaro                   | Test mode:     | 2DH1 Tx mode        |
| Test Channel: | Lowest channel         | Polarization:  | Vertical            |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |



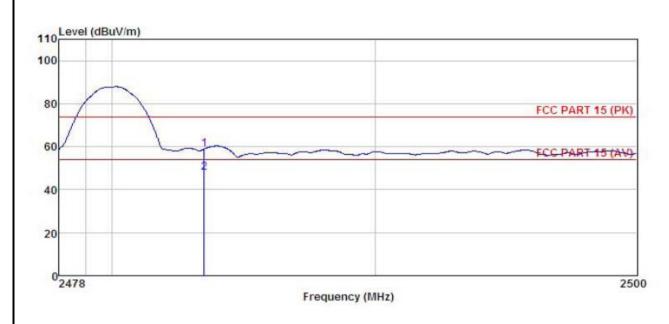



#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: | TWS Wireless earphones | Product Model: | Upods               |  |  |
|---------------|------------------------|----------------|---------------------|--|--|
| Test By:      | Yaro                   | Test mode:     | 2DH1 Tx mode        |  |  |
| Test Channel: | Lowest channel         | Polarization:  | Horizontal          |  |  |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |  |  |

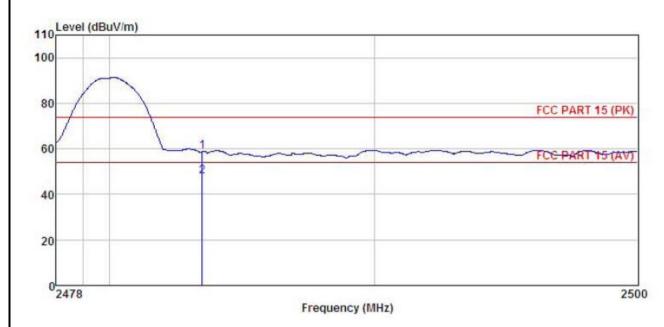



|     | Freq                 |             | Antenna<br>Factor |          |        |                |    | Over<br>Limit |  |
|-----|----------------------|-------------|-------------------|----------|--------|----------------|----|---------------|--|
|     | MHz dBuV             | -dB/m $-dB$ |                   | dB dBuV/ | dBuV/m | BuV/m dBuV/m   | dB |               |  |
| 1 2 | 2390.000<br>2390.000 |             |                   |          |        | 54.69<br>46.99 |    |               |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: | TWS Wireless earphones | Product Model: | Upods               |
|---------------|------------------------|----------------|---------------------|
| Test By:      | Yaro                   | Test mode:     | 2DH1 Tx mode        |
| Test Channel: | Highest channel        | Polarization:  | Vertical            |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |




|     | Freq                 |      | Antenna<br>Factor |    |            |        |           | Remark |
|-----|----------------------|------|-------------------|----|------------|--------|-----------|--------|
|     | MHz                  | dBu₹ | <u>dB</u> /m      | dB | <br>dBuV/m | dBuV/m | <u>dB</u> |        |
| 1 2 | 2483.500<br>2483.500 |      |                   |    |            |        |           |        |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



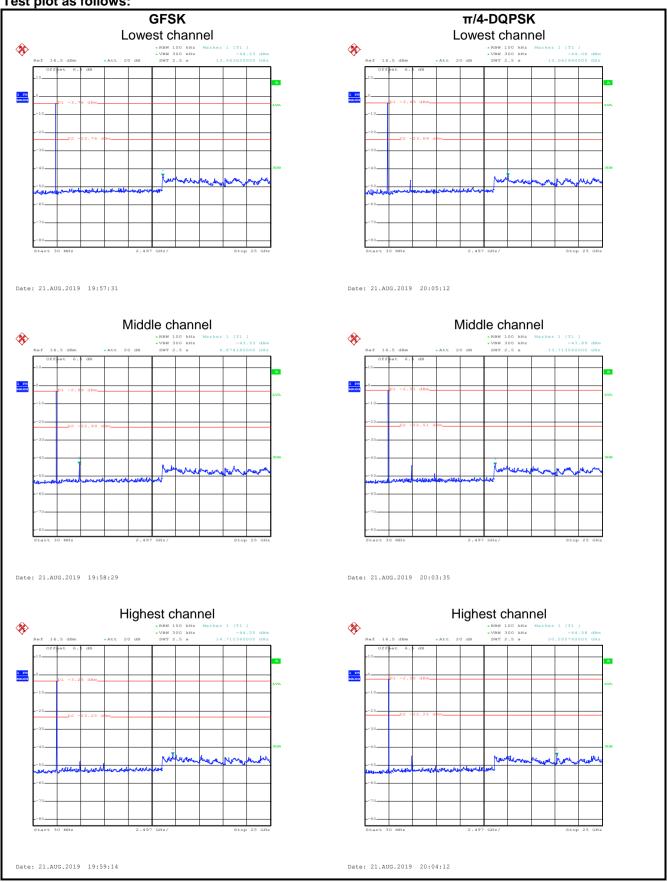
| Product Name: | TWS Wireless earphones | Product Model: | Upods               |
|---------------|------------------------|----------------|---------------------|
| Test By:      | Yaro                   | Test mode:     | 2DH1 Tx mode        |
| Test Channel: | Highest channel        | Polarization:  | Horizontal          |
| Test Voltage: | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |



|   | Freq                 |      | Antenna<br>Factor |           |            |                |        |    |  |
|---|----------------------|------|-------------------|-----------|------------|----------------|--------|----|--|
|   | MHz                  | dBu∀ | dB/m              | <u>dB</u> | <u>d</u> B | dBuV/m         | dBuV/m | dB |  |
| 1 | 2483.500<br>2483.500 |      |                   |           |            | 58.65<br>47.70 |        |    |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.




# 6.10 Spurious Emission

# 6.10.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |



## Test plot as follows:

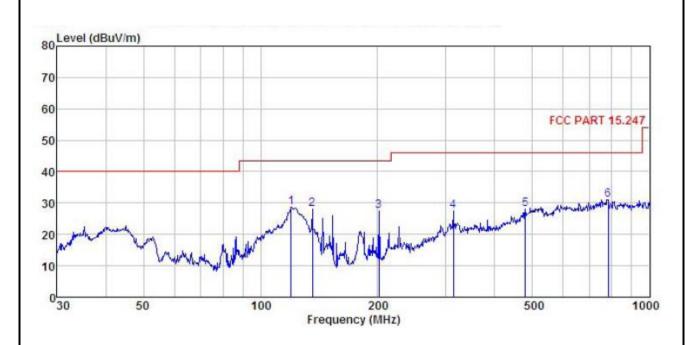




## 6.10.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209                        |                          |                 |                                               |                     |                                                                                  |  |  |
|-----------------------|-----------------------------------------------------|--------------------------|-----------------|-----------------------------------------------|---------------------|----------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 9 kHz to 25 GHz                                     |                          |                 |                                               |                     |                                                                                  |  |  |
| Test Distance:        | 3m                                                  |                          |                 |                                               |                     |                                                                                  |  |  |
| Receiver setup:       | Frequency                                           | Detector                 | r               | RBW                                           | VBW                 | / Remark                                                                         |  |  |
|                       | 30MHz-1GHz                                          | Quasi-pea                | ak              | 120kHz                                        | 300kF               | Iz Quasi-peak Value                                                              |  |  |
|                       | Above 1GHz                                          | Peak                     |                 | 1MHz                                          | 3MH:                | z Peak Value                                                                     |  |  |
|                       | Above 1G112                                         | RMS                      |                 | 1MHz                                          | 3MH                 | z Average Value                                                                  |  |  |
| Limit:                | Frequenc                                            | y .                      | Limi            | it (dBuV/m @                                  | 93m)                | Remark                                                                           |  |  |
|                       | 30MHz-88N                                           | ИHz                      |                 | 40.0                                          |                     | Quasi-peak Value                                                                 |  |  |
|                       | 88MHz-216                                           | MHz                      |                 | 43.5                                          |                     | Quasi-peak Value                                                                 |  |  |
|                       | 216MHz-960                                          | MHz                      |                 | 46.0                                          |                     | Quasi-peak Value                                                                 |  |  |
|                       | 960MHz-10                                           | SHz                      |                 | 54.0                                          |                     | Quasi-peak Value                                                                 |  |  |
|                       | Above 1GI                                           | H7                       |                 | 54.0                                          |                     | Average Value                                                                    |  |  |
|                       | 7,5000 101                                          | 12                       |                 | 74.0                                          |                     | Peak Value                                                                       |  |  |
| Test setup:           | Ta                                                  | um 0.8m                  | 44m             |                                               | orn Antenna         | Antenna Tower  Search Antenna  RF Test Receiver                                  |  |  |
| Test Procedure:       | 1. The EUT was /1.5m(above was rotated 3 radiation. | 1GHz) abo<br>360 degrees | ove tl<br>es to | top of a rota<br>he ground at<br>determine th | ating tab<br>a 3 me | alle 0.8m(below 1GHz) eter chamber. The table on of the highest erence-receiving |  |  |




|                   | <ul><li>antenna, which was mounted on the top of a variable-height antenna tower.</li><li>3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li></ul>                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | <ol> <li>For each suspected emission, the EUT was arranged to its worst case<br/>and then the antenna was tuned to heights from 1 meter to 4 meters<br/>and the rota table was turned from 0 degrees to 360 degrees to find the<br/>maximum reading.</li> </ol>                                                                                        |
|                   | <ol><li>The test-receiver system was set to Peak Detect Function and<br/>Specified Bandwidth with Maximum Hold Mode.</li></ol>                                                                                                                                                                                                                         |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |
| Remark:           | <ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.</li> </ol>                                                                                                                               |

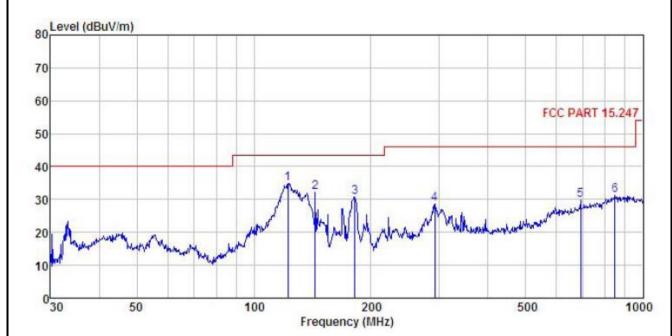


### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | TWS Wireless earphones | Product Model: | Upods                |
|-----------------|------------------------|----------------|----------------------|
| Test By:        | Yaro                   | Test mode:     | BT Tx mode           |
| Test Frequency: | 30 MHz ~ 1 GHz         | Polarization:  | Vertical             |
| Test Voltage:   | DC 3.7V                | Environment:   | Temp: 24°C Huni: 57% |




|             | ReadAnte<br>Freq Level Fac |       |         |      |       |           | Limit<br>Line | Over<br>Limit | Remark |
|-------------|----------------------------|-------|---------|------|-------|-----------|---------------|---------------|--------|
|             | MHz                        | dBuV  | dB/m    | dB   |       | dBuV/m    |               | dB            |        |
|             | JILITZ                     | ши    | CD/ JIL | ш    | ш     | and a / m | and a / W     | ш             |        |
| 1           | 119.856                    | 44.91 | 10.89   | 2.17 | 29.39 | 28.58     | 43.50         | -14.92        | QP     |
| 2           | 135.982                    | 45.17 | 9.76    | 2.35 | 29.29 | 27.99     | 43.50         | -15.51        | QP     |
| 3           | 201.393                    | 42.75 | 10.64   | 2.87 | 28.82 | 27.44     | 43.50         | -16.06        | QP     |
| 4           | 313.276                    | 38.98 | 13.90   | 2.98 | 28.48 | 27.38     | 46.00         | -18.62        | QP     |
| 4<br>5<br>6 | 478.846                    | 35.97 | 17.52   | 3.44 | 28.92 | 28.01     | 46.00         | -17.99        | QP     |
| 6           | 782.345                    | 33.79 | 21.22   | 4.35 | 28.29 | 31.07     | 46.00         | -14.93        | QP     |

#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:   | TWS Wireless earphones | Product Model: | Upods               |
|-----------------|------------------------|----------------|---------------------|
| Test By:        | Yaro                   | Test mode:     | BT Tx mode          |
| Test Frequency: | 30 MHz ~ 1 GHz         | Polarization:  | Horizontal          |
| Test Voltage:   | DC 3.7V                | Environment:   | Temp: 24℃ Huni: 57% |
|                 |                        |                |                     |



|   | ReadAntenna |       | Ant enna | Cable | Preamp    |        | Limit  | Over   |        |  |
|---|-------------|-------|----------|-------|-----------|--------|--------|--------|--------|--|
|   | Freq        | Level | Factor   | Loss  | Factor    | Level  | Line   | Limit  | Remark |  |
|   | MHz         | dBu∜  | dB/m     | ₫B    | <u>dB</u> | dBu√/m | dBuV/m | dB     |        |  |
| 1 | 122.404     | 51.40 | 10.70    | 2.19  | 29.38     | 34.91  | 43.50  | -8.59  | QP     |  |
| 2 | 143.830     | 49.69 | 9.27     | 2.44  | 29.25     | 32.15  | 43.50  | -11.35 | QP     |  |
| 3 | 181.920     | 46.80 | 10.03    | 2.74  | 28.96     | 30.61  | 43.50  | -12.89 | QP     |  |
| 4 | 292.058     | 40.65 | 13.47    | 2.92  | 28.46     | 28.58  | 46.00  | -17.42 | QP     |  |
|   | 691.987     | 34.16 | 20.28    | 4.13  | 28.69     | 29.88  | 46.00  | -16.12 | QP     |  |
| 5 | 848.056     | 32.38 | 22.60    | 4.20  | 28.01     | 31.17  | 46.00  | -14.83 | QP     |  |
|   |             |       |          |       |           |        |        |        |        |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



### **Above 1GHz:**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test channel: Lowest channel |                             |                       |                          |                   |                        |                    |              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | De                    | tector: Peal             | v Value           |                        |                    |              |  |  |  |
| Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read<br>Level<br>(dBuV)      | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |  |
| 4804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.73                        | 30.85                       | 6.80                  | 41.81                    | 42.57             | 74.00                  | -31.43             | Vertical     |  |  |  |
| 4804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.25                        | 30.85                       | 6.80                  | 41.81                    | 43.09             | 74.00                  | -30.91             | Horizontal   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | Dete                  | ector: Avera             | ge Value          |                        |                    |              |  |  |  |
| Frequency (MHz) Read Level (dBuV) (dB/m) (dB) Preamp Factor (dBuV/m) Limit Line (dBuV/m) Color ( |                              |                             |                       |                          |                   |                        |                    | Polarization |  |  |  |
| 4804.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.25                        | 30.85                       | 6.80                  | 41.81                    | 34.09             | 54                     | -19.91             | Vertical     |  |  |  |
| 4804.00 38.46 30.85 6.80 41.81 34.30 54 -19.70 Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                             |                       |                          |                   |                        |                    | Horizontal   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                       |                          |                   |                        |                    |              |  |  |  |

| Test channel: Middle channel |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
|------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|--|--|--|
| Detector: Peak Value         |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |  |  |
| 4882.00                      | 47.26                   | 31.20                       | 6.86                  | 41.84                    | 43.48             | 74.00                  | -30.52             | Vertical     |  |  |  |  |
| 4882.00                      | 47.96                   | 31.20                       | 6.86                  | 41.84                    | 44.18             | 74.00                  | -29.82             | Horizontal   |  |  |  |  |
| Detector: Average Value      |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |  |  |
| 4882.00                      | 38.67                   | 31.20                       | 6.86                  | 41.84                    | 34.89             | 54.00                  | -19.11             | Vertical     |  |  |  |  |
| 4882.00                      | 38.85                   | 31.20                       | 6.86                  | 41.84                    | 35.07             | 54.00                  | -18.93             | Horizontal   |  |  |  |  |
|                              |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |

| Test channel: Highest channel |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
|-------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|--|--|--|
| Detector: Peak Value          |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |  |  |
| 4960.00                       | 47.16                   | 31.63                       | 6.91                  | 41.87                    | 43.83             | 74.00                  | -30.17             | Vertical     |  |  |  |  |
| 4960.00                       | 47.84                   | 31.63                       | 6.91                  | 41.87                    | 44.51             | 74.00                  | -29.49             | Horizontal   |  |  |  |  |
| Detector: Average Value       |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |  |  |
| 4960.00                       | 38.64                   | 31.63                       | 6.91                  | 41.87                    | 35.31             | 54.00                  | -18.69             | Vertical     |  |  |  |  |
| 4960.00                       | 37.25                   | 31.63                       | 6.91                  | 41.87                    | 33.92             | 54.00                  | -20.08             | Horizontal   |  |  |  |  |
|                               |                         |                             |                       |                          |                   |                        |                    |              |  |  |  |  |

#### Remark

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.