DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.883 \text{ S/m}; \ \epsilon_r = 41.32; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-05-2020; Ambient Temp: 22.3°C; Tissue Temp: 20.6°C Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.50 W/kg SAR(1 g) = 1.74 W/kg Deviation(1 g) = 8.34% 0 dB = 2.25 W/kg = 3.52 dBW/kg #### DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.877 \text{ S/m}; \ \epsilon_r = 40.595; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-12-2020; Ambient Temp: 22.6°C; Tissue Temp: 20.1°C Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.41 W/kg SAR(1 g) = 1.66 W/kg Deviation(1 g) = 0.24% #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.933 \text{ S/m}; \ \epsilon_r = 41.052; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-02-2020; Ambient Temp: 24.3°C; Tissue Temp: 21.6°C Probe: EX3DV4 - SN7417; ConvF(10.07, 10.07, 10.07) @ 835 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.96 W/kg SAR(1 g) = 1.93 W/kg Deviation(1 g) = 2.44% 0 dB = 2.61 W/kg = 4.17 dBW/kg #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.902 \text{ S/m}; \ \epsilon_r = 40.598; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-07-2020; Ambient Temp: 22.3°C; Tissue Temp: 20.2°C Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.85 W/kgSAR(1 g) = 1.89 W/kgDeviation(1 g) = -2.07% 0 dB = 2.53 W/kg = 4.03 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.364 \text{ S/m}; \ \epsilon_r = 39.913; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-29-2020; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1750 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.14 W/kg SAR(1 g) = 3.83 W/kg Deviation(1 g) = 5.80% 0 dB = 5.97 W/kg = 7.76 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.357 \text{ S/m}; \ \epsilon_r = 39.267; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-02-2020; Ambient Temp: 21.1°C; Tissue Temp: 20.3°C Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1750 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.17 W/kgSAR(1 g) = 3.8 W/kgDeviation(1 g) = 4.97% 0 dB = 5.94 W/kg = 7.74 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.463 \text{ S/m}; \ \epsilon_r = 39.648; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-31-2020; Ambient Temp: 22.2°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.76 W/kg SAR(1 g) = 4.15 W/kg Deviation(1 g) = 6.14% 0 dB = 6.52 W/kg = 8.14 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 39.218; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-03-2020; Ambient Temp: 20.2°C; Tissue Temp: 19.4°C Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.43 W/kg SAR(1 g) = 4 W/kg Deviation(1 g) = 2.30% 0 dB = 6.25 W/kg = 7.96 dBW/kg #### **DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073** Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Head Medium parameters used: $f = 2300 \text{ MHz}; \sigma = 1.693 \text{ S/m}; \epsilon_r = 41.215; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-30-2020; Ambient Temp: 22.5°C; Tissue Temp: 21.6°C Probe: EX3DV4 - SN7417; ConvF(7.73, 7.73, 7.73) @ 2300 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 2300 MHz System Verification at 20.0 dBm (100 mW) **Area Scan (8x9x1):** Measurement grid: dx=12mm, dy=12mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 5.02 W/kgDeviation(1 g) = 2.03% #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.857 \text{ S/m}; \ \epsilon_r = 38.723; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-24-2020; Ambient Temp: 21.0°C; Tissue Temp: 20.0°C Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483) ## 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.31 W/kg Deviation(1 g) = 0.76% 0 dB = 8.99 W/kg = 9.54 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head Medium parameters used: $f = 2600 \text{ MHz}; \
\sigma = 1.924 \text{ S/m}; \ \epsilon_r = 40.733; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-30-2020; Ambient Temp: 22.5°C; Tissue Temp: 21.6°C Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2600 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 5.83 W/kg Deviation(1 g) = 0.34% #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 1.957 \text{ S/m}; \ \epsilon_r = 38.063; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 21.9°C; Tissue Temp: 20.9°C Probe: EX3DV4 - SN7570; ConvF(7.28, 7.28, 7.28) @ 2600 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.32 W/kg Deviation(1 g) = -4.83% 0 dB = 9.09 W/kg = 9.59 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 1.963 \text{ S/m}; \ \epsilon_r = 37.699; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-19-2020; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7570; ConvF(7.28, 7.28, 7.28) @ 2600 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ## 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 13.1 W/kg SAR(1 g) = 5.94 W/kg Deviation(1 g) = 6.26% 0 dB = 10.2 W/kg = 10.09 dBW/kg #### **DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018** Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Head; Medium parameters used: $f = 3700 \text{ MHz}; \ \sigma = 3.066 \text{ S/m}; \ \epsilon_r = 36.72; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-11-2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 3700 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 6.3 W/kgDeviation(1 g) = -4.26% 0 dB = 12.8 W/kg = 11.07 dBW/kg #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: $f = 5250 \text{ MHz}; \ \sigma = 4.713 \text{ S/m}; \ \epsilon_r = 36.795; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-14-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.8 W/kg **SAR(1 g) = 3.64 W/kg** Deviation(1 g) = -8.08% #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5600 MHz; $\sigma = 5.123$ S/m; $\varepsilon_r = 36.159$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-14-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.5 W/kg **SAR**(1 g) = 4.14 W/kg Deviation(1 g) = -1.55% #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5750 MHz; $\sigma = 5.31$ S/m; $\varepsilon_r = 35.91$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-14-2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5750 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ### 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 3.71 W/kgDeviation(1 g) = -7.83% #### DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.957 \text{ S/m}; \ \epsilon_r = 52.993; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 01-29-2020; Ambient Temp: 21.5°C; Tissue Temp: 19.6°C Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.68 W/kg SAR(1 g) = 1.77 W/kg Deviation(1 g) = 4.98% 0 dB = 2.36 W/kg = 3.73 dBW/kg #### DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 54.188; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-11-2020; Ambient Temp: 22.0°C; Tissue Temp: 20.7°C Probe: EX3DV4 - SN7551; ConvF(10.09, 10.09, 10.09) @ 750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 750 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.76 W/kg SAR(1 g) = 1.77 W/kg Deviation(1 g) = 3.51% 0 dB = 2.40 W/kg = 3.80 dBW/kg #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.969 \text{ S/m}; \ \epsilon_r = 53.145; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 01-27-2020; Ambient Temp: 20.5°C; Tissue Temp: 19.8°C Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.13 W/kgSAR(1 g) = 2.05 W/kgDeviation(1 g) = 8.24% 0 dB = 2.75 W/kg = 4.39 dBW/kg #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.981 \text{ S/m}; \ \epsilon_r = 52.901; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-05-2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.10 W/kg SAR(1 g) = 2.02 W/kg Deviation(1 g) = 1.41% 0 dB = 2.71 W/kg = 4.33 dBW/kg #### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.941 \text{ S/m}; \ \epsilon_r = 54.852; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm Test Date: 02-13-2020; Ambient Temp: 22.3°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7406; ConvF(9.78, 9.78, 9.78) @ 835 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ### 835 MHz System Verification at 23.0 dBm (200 mW) Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.03 W/kg Deviation(1 g) = 7.18% #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 54.519; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-31-2020; Ambient Temp: 21.3°C; Tissue Temp: 20.3°C Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.27 W/kg SAR(1 g) = 3.97 W/kg Deviation(1 g) = 5.31% 0 dB = 6.03 W/kg = 7.80 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.504 \text{ S/m}; \ \epsilon_r = 54.787; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-03-2020; Ambient Temp: 21.5°C; Tissue Temp: 20.3°C Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.19 W/kg SAR(10 g) = 2.08 W/kg Deviation(10 g) = 5.05% 0 dB = 5.94 W/kg = 7.74 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 54.334; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-05-2020; Ambient Temp: 21.8°C; Tissue Temp: 20.9°C Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.20 W/kg SAR(1 g) = 3.98 W/kg; SAR(10 g) = 2.11 W/kg Deviation(1 g) = 5.57%; Deviation(10 g) = 6.57% 0 dB = 6.00 W/kg = 7.78 dBW/kg ### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.492 \text{ S/m}; \ \epsilon_r = 55.102; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-10-2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.91 W/kg SAR(1 g) = 3.81 W/kg Deviation(1 g) = 1.06% 0 dB = 5.73 W/kg = 7.58 dBW/kg #### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.5 \text{ S/m}; \ \epsilon_r = 56.062; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1750 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.24 W/kg SAR(1 g) = 3.99 W/kg Deviation(1 g) = 5.84% #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.551 \text{ S/m}; \ \epsilon_r = 51.507; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-27-2020; Ambient Temp: 23.3°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.77 W/kg SAR(1 g) = 4.21 W/kg Deviation(1 g) = 7.67% 0 dB = 6.33 W/kg = 8.01 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.566 \text{ S/m}; \ \epsilon_r = 51.778; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-30-2020; Ambient Temp: 22.7°C; Tissue Temp: 22.4°C Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.70 W/kg SAR(1 g) = 4.14 W/kg; SAR(10 g) = 2.12 W/kg Deviation(1 g) = 5.88%; Deviation(10 g) = 3.41% 0 dB = 6.41 W/kg = 8.07 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.535 \text{ S/m}; \ \epsilon_r = 51.741; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-01-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.82 W/kg SAR(1 g) = 4.19 W/kg Deviation(1 g) = 6.35% 0 dB = 6.58 W/kg = 8.18 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.536 \text{ S/m}; \ \epsilon_r = 52.801; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-09-2020; Ambient Temp: 22.7°C; Tissue Temp: 24.7°C Probe: EX3DV4 - SN7571;
ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.71 W/kgSAR(1 g) = 4.22 W/kg; SAR(10 g) = 2.17 W/kgDeviation(1 g) = 7.11%; Deviation(10 g) = 4.83% 0 dB = 6.48 W/kg = 8.12 dBW/kg #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.564 \text{ S/m}; \ \epsilon_r = 51.603; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-12-2020; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.79 W/kg SAR(1 g) = 4.24 W/kg; SAR(10 g) = 2.18 W/kg Deviation(1 g) = 7.61%; Deviation(10 g) = 5.31% 0 dB = 6.51 W/kg = 8.14 dBW/kg #### **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.567 \text{ S/m}; \ \epsilon_r = 51.287; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-20-2020; Ambient Temp: 22.9°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 1900 MHz System Verification at 20.0 dBm (100 mW) **Area Scan (7x11x1):** Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 7.72 W/kgSAR(10 g) = 2.14 W/kgDeviation(10 g) = 3.38% 0 dB = 6.49 W/kg = 8.12 dBW/kg #### **DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073** Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Body; Medium parameters used: $f = 2300 \text{ MHz}; \ \sigma = 1.862 \text{ S/m}; \ \epsilon_r = 51.861; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-19-2020; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2300 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ## 2300 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.2 W/kgSAR(1 g) = 5.18 W/kgDeviation(1 g) = 8.60% 0 dB = 8.40 W/kg = 9.24 dBW/kg #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.013 \text{ S/m}; \ \epsilon_r = 51.575; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-29-2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C Probe: EX3DV4 - SN7410; ConvF(7.44, 7.44, 7.44) @ 2450 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.2 W/kg SAR(1 g) = 4.86 W/kg Deviation(1 g) = -4.52% 0 dB = 8.19 W/kg = 9.13 dBW/kg ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.035 \text{ S/m}; \ \epsilon_r = 51.728; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-06-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) #### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.6 W/kg SAR(10 g) = 2.37 W/kg Deviation(10 g) = -2.07% 0 dB = 8.45 W/kg = 9.27 dBW/kg #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.04 \text{ S/m}; \ \epsilon_r = 51.03; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-11-2020; Ambient Temp: 22.3°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) #### 2450 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kgSAR(1 g) = 5.15 W/kgDeviation(1 g) = 0.78% #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.225 \text{ S/m}; \ \epsilon_r = 50.951; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 01-29-2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C Probe: EX3DV4 - SN7410; ConvF(7.43, 7.43, 7.43) @ 2600 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.39 W/kg Deviation(1 g) = -3.06% 0 dB = 9.41 W/kg = 9.74 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.177 \text{ S/m}; \ \epsilon_r = 51.49; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-06-2020; Ambient Temp: 23.1°C; Tissue Temp: 22.2°C Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.6 W/kg SAR(10 g) = 2.4 W/kg Deviation(10 g) = -2.83% 0 dB = 9.18 W/kg = 9.63 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.218 \text{ S/m}; \ \epsilon_r = 50.57; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Sectio; Space: 1.0 cm Test Date: 02-11-2020; Ambient Temp: 22.3°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.2 W/kg SAR(1 g) = 5.61 W/kg Deviation(1 g) = 2.37% 0 dB = 9.72 W/kg = 9.88 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.211 \text{ S/m}; \ \epsilon_r = 50.915; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 23.5°C; Tissue Temp: 22.6°C Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated:
7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) #### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 5.5 W/kg Deviation(1 g) = -1.08% 0 dB = 9.42 W/kg = 9.74 dBW/kg #### **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.218 \text{ S/m}; \ \epsilon_r = 51.021; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-19-2020; Ambient Temp: 23.1°C; Tissue Temp: 23.0°C Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) ### 2600 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.2 W/kg SAR(1 g) = 5.56 W/kg Deviation(1 g) = 1.46% 0 dB = 9.62 W/kg = 9.83 dBW/kg #### **DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059** Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body; Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 3.464 \text{ S/m}; \ \epsilon_r = 49.905; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-18-2020; Ambient Temp: 21.2°C; Tissue Temp: 20.1°C Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 3500 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.67 W/kg Deviation(1 g) = 0.07 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg #### **DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018** Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Body; Medium parameters used: $f = 3700 \text{ MHz}; \ \sigma = 3.687 \text{ S/m}; \ \epsilon_r = 49.594; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-18-2020; Ambient Temp: 21.2°C; Tissue Temp: 20.1°C Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### 3700 MHz System Verification at 20.0 dBm (100 mW) Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 6.55 W/kg Deviation(1 g) = 1.87% 0 dB = 13.1 W/kg = 11.17 dBW/kg #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5250 \text{ MHz}; \ \sigma = 5.428 \text{ S/m}; \ \epsilon_r = 49.59; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### 5250 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 3.69 W/kg; SAR(10 g) = 1.03 W/kg Deviation(1 g) = -4.16%; Deviation(10 g) = -3.74% 0 dB = 8.76 W/kg = 9.43 dBW/kg #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 5.899 \text{ S/m}; \ \epsilon_r = 49.019; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470) #### 5600 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 3.99 W/kg; SAR(10 g) = 1.1 W/kgDeviation(1 g) = 1.53%; Deviation(10 g) = 0.46% 0 dB = 9.84 W/kg = 9.93 dBW/kg #### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5750 \text{ MHz}; \ \sigma = 6.111 \text{ S/m}; \ \epsilon_r = 48.804; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm Test Date: 02-17-2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### 5750 MHz System Verification at 17.0 dBm (50 mW) Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 3.77 W/kg; SAR(10 g) = 1.03 W/kgDeviation(1 g) = -1.95%; Deviation(10 g) = -3.29% 0 dB = 9.27 W/kg = 9.67 dBW/kg #### APPENDIX C: SAR TISSUE SPECIFICATIONS Measurement Procedure for Tissue verification: - The network analyzer and probe system was configured and calibrated. - 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. - 3) The complex admittance with respect to the probe aperture was measured - 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $\dot{J} = \sqrt{-1}$. #### 3 Composition / Information on ingredients Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components: | CAS: 107-21-1 | Ethanediol | >1.0-4.9% | |--------------------------------|---
--| | EINECS: 203-473-3 | STOT RE 2, H373; | | | Reg.nr.: 01-2119456816-28-0000 | Acute Tox. 4, H302 | | | CAS: 68608-26-4 | Sodium petroleum sulfonate | < 2.9% | | EINECS: 271-781-5 | Eye Irrit. 2, H319 | | | Reg.nr.: 01-2119527859-22-0000 | | | | CAS: 107-41-5 | Hexylene Glycol / 2-Methyl-pentane-2,4-diol | < 2.9% | | EINECS: 203-489-0 | Skin Irrit. 2, H315; Eye Irrit. 2, H319 | | | Reg.nr.: 01-2119539582-35-0000 | | | | CAS: 68920-66-1 | Alkoxylated alcohol, > C ₁₆ | < 2.0% | | NLP: 500-236-9 | Aquatic Chronic 2, H411; | | | Reg.nr.: 01-2119489407-26-0000 | Skin Irrit. 2, H315; Eye Irrit. 2, H319 | | | Additional informations | <u> </u> | The state of s | Additional information: withheld as a trade secret. For the wording of the listed risk phrases refer to section 16. Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is #### Figure C-1 Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below. | FCC ID: ZNFV600TM | SAR EVALUATION RE | PORT LG | Approved by: Quality Manager | |---------------------|----------------------------|---------|-------------------------------| | Test Dates: | DUT Type: Portable Handset | | APPENDIX C: | | 01/27/20 - 02/24/20 | | | Page 1 of 3 | © 2020 PCTEST **REV 21.4 M** 09/11/2019 p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### **Measurement Certificate / Material Test** | Item Name | Body Tissue Simulating Liquid (MBBL600-6000V6) | |--------------|--| | Product No. | SL AAM U16 BC (Batch: 181029-1) | | Manufacturer | SPEAG | #### Measurement Method TSL dielectric parameters measured using calibrated DAK probe. Target Parameters Target parameters as defined in the KDB 865664 compliance standard. #### **Test Condition** Ambient Condition 22°C; 30% humidity TSL Temperature 22°C Test Date 30-Oct-18 # Operator CL Additional Information TSL Density TSL Heat-capa | | Measu | ired | | Targe | t | Diff.to Tar | get [%] | |---------|-------|------|-------|-------|-------|-------------|---------| | f [MHz] | e' | е" | sigma | eps | sigma | Δ-eps | Δ-sigma | | 800 | 55.1 | 21.3 | 0.95 | 55.3 | 0.97 | -0.4 | -2.1 | | 825 | 55.1 | 20.8 | 0.96 | 55.2 | 0.98 | -0.3 | -2.0 | | 835 | 55.1 | 20.6 | 0.96 | 55.1 | 0.99 | 0.0 | -2.5 | | 850 | 55.1 | 20.4 | 0.96 | 55.2 | 0.99 | -0.1 | -3.0 | | 900 | 55.0 | 19.7 | 0.98 | 55.0 | 1.05 | 0.0 | -6.7 | | 1400 | 54.2 | 15.6 | 1.22 | 54.1 | 1.28 | 0.2 | -4.7 | | 1450 | 54.1 | 15.4 | 1.24 | 54.0 | 1.30 | 0.2 | -4.6 | | 1500 | 54.1 | 15.3 | 1.27 | 53.9 | 1.33 | 0.3 | -4.5 | | 1550 | 54.0 | 15.1 | 1.30 | 53.9 | 1.36 | 0.2 | -4.4 | | 1600 | 53.9 | 15.0 | 1.33 | 53.8 | 1.39 | 0.2 | -4.3 | | 1625 | 53.9 | 14.9 | 1.35 | 53.8 | 1.41 | 0.3 | -4.3 | | 1640 | 53.9 | 14.9 | 1.36 | 53.7 | 1.42 | 0.3 | -4.2 | | 1650 | 53.8 | 14.9 | 1.36 | 53.7 | 1.43 | 0.2 | -4.9 | | 1700 | 53.8 | 14.8 | 1.40 | 53.6 | 1.46 | 0.4 | -4.1 | | 1750 | 53.7 | 14.7 | 1.43 | 53.4 | 1.49 | 0.5 | -4.0 | | 1800 | 53.7 | 14.6 | 1.46 | 53.3 | 1.52 | 0.8 | -3.9 | | 1810 | 53.7 | 14.6 | 1.47 | 53.3 | 1.52 | 0.8 | -3.3 | | 1825 | 53.7 | 14.6 | 1.48 | 53.3 | 1.52 | 0.8 | -2.6 | | 1850 | 53.6 | 14.5 | 1.50 | 53.3 | 1.52 | 0.6 | -1.3 | | 1900 | 53.5 | 14.5 | 1.53 | 53.3 | 1.52 | 0.4 | 0.7 | | 1950 | 53.5 | 14.5 | 1.57 | 53.3 | 1.52 | 0.4 | 3.3 | | 2000 | 53.4 | 14.4 | 1.60 | 53.3 | 1.52 | 0.2 | 5.3 | | 2050 | 53.4 | 14.4 | 1.64 | 53.2 | 1.57 | 0.3 | 4.5 | | 2100 | 53.3 | 14.4 | 1.68 | 53.2 | 1.62 | 0.2 | 3.7 | | 2150 | 53.3 | 14.4 | 1.72 | 53.1 | 1.66 | 0.4 | 3.6 | | 2200 | 53.2 | 14.4 | 1.76 | 53.0 | 1.71 | 0.3 | 2.9 | | 2250 | 53.1 | 14.4 | 1.81 | 53.0 | 1.76 | 0.2 | 2.8 | | 2300 | 53.1 | 14.4 | 1.85 | 52.9 | 1.81 | 0.4 | 2.2 | | 2350 | 53.0 | 14.5 | 1.89 | 52.8 | 1.85 | 0.3 | 2.2 | | 2400 | 52.9 | 14.5 | 1.94 | 52.8 | 1.90 | 0.2 | 2.1 | | 2450 | 52.9 | 14.5 | 1.98 | 52.7 | 1.95 | 0.4 | 1.5 | | 2500 | 52.8 | 14.6 | 2.03 | 52.6 | 2.02 | 0.3 | 0.5 | | 2550 | 52.7 | 14.6 | 2.07 | 52.6 | 2.09 | 0.2 | -1.0 | | 2600 | 52.6 | 14.7 | 2.12 | 52.5 | 2.16 | 0.2 | -1.9 | | 3500 | 51.1 | 15.5 | 3.02 | 51.3 | 3.31 | -0.4 | -8.8 | |------|------|------|------|------|------|------|------| | 3700 | 50.8 | 15.7 | 3.24 | 51.1 | 3.55 | -0.5 | -8.8 | | 5200 | 48.1 | 18.2 | 5.27 | 49.0 | 5.30 | -1.8 | -0.6 | | 5250 | 48.0 | 18.3 | 5.34 | 49.0 | 5.36 | -1.9 | -0.4 | | 5300 | 47.9 | 18.4 | 5.41 | 48.9 | 5.42 | -2.0 | -0.2 | | 5500 | 47.5 | 18.6 | 5.70 | 48.6 | 5.65 | -2.2 | 0.8 | | 5600 | 47.3 | 18.8 | 5.84 | 48.5 | 5.77 | -2.3 | 1.3 | | 5700 | 47.1 | 18.9 | 5.99 | 48.3 | 5.88 | -2.5 | 1.8 | | 5800 | 47.0 | 19.0 | 6.14 | 48.2 | 6.00 | -2.6 | 2.3 | TSL Dielectric Parameters Figure C-2 600 - 5800 MHz Body Tissue Equivalent Matter | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Approved by: Quality Manager | |-------|---------------------|----------------------|-----------------------|----|------------------------------| | | Test Dates: | DUT Type: Portable H | andset | | APPENDIX C: | | | 01/27/20 - 02/24/20 | | | | Page 2 of 3 | | © 202 | 20 PCTEST | | | | REV 21.4 M | REV 21.4 M 09/11/2019 Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### Measurement Certificate / Material Test Item Name Head Tissue Simulating Liquid (HBBL600-10000V6) SL AAH U16 BC (Batch: 181031-2) Product No. Manufacturer SPEAG Measurement Method TSL dielectric parameters measured using calibrated DAK probe. Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. **Test Condition** Ambient Condition 22°C; 30% humidity TSL Temperature 22°C Test Date 31-Oct-18 Operator CL Additional Information TSL Density TSL Heat-capacity | | Meas | ured | Man de | Targe | et | Diff.to Targ | get [%] | |---------|------|------|--------|-------|-------|--------------|---------| | f [MHz] | e' | е" | sigma | eps | sigma | Δ-eps | Δ-sigma | | 800 | 43.8 | 20.5 | 0.91 | 41.7 | 0.90 | 5.1 | 1.4 | | 825 | 43.8 | 20.1 | 0.92 | 41.6 | 0.91 | 5.3 | 1.5 | | 835 | 43.8 | 19.9 | 0.93 | 41.5 | 0.91 | 5.4 | 2.0 | | 850 | 43.7 | 19.7 | 0.93 | 41.5 | 0.92 | 5.3 | 1.5 | | 900 | 43.5 | 18.9 | 0.95 | 41.5 | 0.97 | 4.8 | -2.1 | | 1400 | 42.5 | 15.0 | 1.17 | 40.6 | 1.18 | 4.7 | -0.8 | | 1450 | 42.5 | 14.8 | 1.19 | 40.5 | 1.20 | 4.9 | -0.8 | | 1600 | 42.2 | 14.3 | 1.27 | 40.3 | 1.28 | 4.7 | -1.1 | | 1625 | 42.2 | 14.2 | 1.29 | 40.3 | 1.30 | 4.8 | -0.7 | | 1640 | 42.2 | 14.2 | 1.30 | 40.3 | 1.31 | 4.8 | -0.5 | | 1650 | 42.1 | 14.2 | 1.30 | 40.2 | 1.31 | 4.6 | -1.0 | | 1700 | 42.1 | 14.0 | 1.33 | 40.2 | 1.34 | 4.8 | -0.9 | | 1750 | 42.0 | 13.9 | 1.36 | 40.1 | 1.37 | 4.8 | -0.8 | | 1800 | 41.9 | 13.9 | 1.39 | 40.0 | 1.40 | 4.7 | -0.7 | | 1810 | 41.9 | 13.8 | 1.40 | 40.0 | 1.40 | 4.7 | 0.0 | | 1825 | 41.9 | 13.8 | 1.41 | 40.0 | 1.40 | 4.7 | 0.7 | | 1850 | 41.8 | 13.8 | 1.42 | 40.0 | 1.40 | 4.5 | 1.4 | | 1900 | 41.8 | 13.7 | 1.45 | 40.0 | 1.40 | 4.5 | 3.6 | | 1950 | 41.7 | 13.7 | 1.48 | 40.0 | 1.40 | 4.3 | 5.7 | | 2000 | 41.6 | 13.6 | 1.51 | 40.0 | 1.40 | 4.0 | 7.9 | | 2050 | 41.6 | 13.6 | 1.55 | 39.9 | 1.44 | 4.2 | 7.3 | | 2100 | 41.5 | 13.5 | 1.58 | 39.8 | 1.49 | 4.2 | 6.1 | | 2150 | 41.4 | 13.5 | 1.62 | 39.7 | 1.53 | 4.2 | 5.7 | | 2200 | 41.4 | 13.5 | 1.65 | 39.6 | 1.58 | 4.4 | 4.6 | | 2250 | 41.3 | 13.5 | 1.69 | 39.6 | 1.62 | 4.4 | 4.2 | | 2300 | 41.2 | 13.5 | 1.72 | 39.5 | 1.67 | 4.4 | 3.2 | | 2350 | 41.1 | 13.5 | 1.76 | 39.4 | 1.71 | 4.4 | 2.9 | | 2400 | 41.1 | 13.5 | 1.80 | 39.3 | 1.76 | 4.6 | 2.5 | | 2450 | 41.0 | 13.5 | 1.84 | 39.2 | 1.80 | 4.6 | 2.2 | | 2500 | 40.9 | 13.5 | 1.88 | 39.1 | 1.85 | 4.5 | 1.4 | | 2550 | 40.8 | 13.5 | 1.92 | 39.1 | 1.91 |
4.4 | 0.6 | | 2600 | 40.8 | 13.6 | 1.96 | 39.0 | 1.96 | 4.6 | -0.2 | | 3500 | 39.2 | 14.1 | 2.74 | 37.9 | 2.91 | 3.3 | -5.8 | | 3700 | 38.9 | 14.2 | 2.93 | 37.7 | 3.12 | 3.1 | -6.1 | 9.80 31.0 9.71 -6.8 0.9 Figure C-3 600 - 5800 MHz Head Tissue Equivalent Matter | FCC ID: ZNFV600TM | SAR EVALUATION REPORT | LG | Approved by: Quality Manager | |---------------------|----------------------------|----|------------------------------| | Test Dates: | DUT Type: Portable Handset | | APPENDIX C: | | 01/27/20 - 02/24/20 | | | Page 3 of 3 | © 2020 PCTEST **REV 21.4 M** #### APPENDIX D: SAR SYSTEM VALIDATION Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media. A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. Table D-1 SAR System Validation Summary – 1q | | OAK System validation Summary – 19 | | | | | | | | | | | | | |-------------|------------------------------------|-----------|----------|---------|-----------|-------|--------|-------------|--------------------|-------------------|--------------|-----------------|------| | SAR | | | | | | COND. | PERM. | C | W VALIDATION | | ľ | MOD. VALIDATION | 1 | | SYSTEM
| FREQ. [MHz] | DATE | PROBE SN | PROBE C | AL. POINT | (σ) | (er) | SENSITIVITY | PROBE
LINEARITY | PROBE
ISOTROPY | MOD.
TYPE | DUTY FACTOR | PAR | | L | 750 | 9/24/2019 | 7410 | 750 | Head | 0.878 | 42.471 | PASS | PASS | PASS | N/A | N/A | N/A | | Е | 835 | 9/20/2019 | 7417 | 835 | Head | 0.912 | 43.45 | PASS | PASS | PASS | GMSK | PASS | N/A | | L | 835 | 9/24/2019 | 7410 | 835 | Head | 0.911 | 42.199 | PASS | PASS | PASS | GMSK | PASS | N/A | | D | 1750 | 5/24/2019 | 3914 | 1750 | Head | 1.366 | 41.075 | PASS | PASS | PASS | N/A | N/A | N/A | | L | 1900 | 9/24/2019 | 7410 | 1900 | Head | 1.442 | 39.947 | PASS | PASS | PASS | GMSK | PASS | N/A | | E | 2300 | 9/6/2019 | 7417 | 2300 | Head | 1.737 | 39.748 | PASS | PASS | PASS | N/A | N/A | N/A | | M | 2450 | 2/17/2020 | 7570 | 2450 | Head | 1.837 | 38.34 | PASS | PASS | PASS | OFDM/TDD | PASS | PASS | | E | 2600 | 9/5/2019 | 7417 | 2600 | Head | 1.979 | 39.302 | PASS | PASS | PASS | TDD | PASS | N/A | | М | 2600 | 2/17/2020 | 7570 | 2600 | Head | 1.957 | 38.064 | PASS | PASS | PASS | TDD | PASS | N/A | | D | 3700 | 2/4/2020 | 7488 | 3700 | Head | 3.037 | 36.597 | PASS | PASS | PASS | TDD | PASS | N/A | | Н | 5250 | 12/7/2019 | 7406 | 5250 | Head | 4.709 | 35.885 | PASS | PASS | PASS | OFDM | N/A | PASS | | н | 5600 | 12/7/2019 | 7406 | 5600 | Head | 5.12 | 35.211 | PASS | PASS | PASS | OFDM | N/A | PASS | | н | 5750 | 12/7/2019 | 7406 | 5750 | Head | 5.309 | 34.961 | PASS | PASS | PASS | OFDM | N/A | PASS | | Р | 750 | 9/26/2019 | 7551 | 750 | Body | 0.959 | 54.287 | PASS | PASS | PASS | N/A | N/A | N/A | | Р | 835 | 9/26/2019 | 7551 | 835 | Body | 0.991 | 54.104 | PASS | PASS | PASS | GMSK | PASS | N/A | | Н | 835 | 1/6/2020 | 7406 | 835 | Body | 0.978 | 54.174 | PASS | PASS | PASS | GMSK | PASS | N/A | | 1 | 1750 | 5/21/2019 | 7357 | 1750 | Body | 1.442 | 55.384 | PASS | PASS | PASS | N/A | N/A | N/A | | J | 1900 | 1/1/2020 | 7571 | 1900 | Body | 1.579 | 51.919 | PASS | PASS | PASS | GMSK | PASS | N/A | | К | 2300 | 9/5/2019 | 7547 | 2300 | Body | 1.893 | 52.45 | PASS | PASS | PASS | N/A | N/A | N/A | | L | 2450 | 8/15/2019 | 7410 | 2450 | Body | 2.018 | 52.505 | PASS | PASS | PASS | OFDM/TDD | PASS | PASS | | K | 2450 | 9/6/2019 | 7547 | 2450 | Body | 1.996 | 51.898 | PASS | PASS | PASS | OFDM/TDD | PASS | PASS | | L | 2600 | 8/16/2019 | 7410 | 2600 | Body | 2.161 | 52.297 | PASS | PASS | PASS | TDD | PASS | N/A | | K | 2600 | 9/5/2019 | 7547 | 2600 | Body | 2.716 | 52.04 | PASS | PASS | PASS | TDD | PASS | N/A | | D | 3500 | 2/12/2020 | 7488 | 3500 | Body | 3.373 | 50.003 | PASS | PASS | PASS | TDD | PASS | N/A | | D | 3700 | 2/12/2020 | 7488 | 3700 | Body | 3.585 | 49.719 | PASS | PASS | PASS | TDD | PASS | N/A | | G | 5250 | 10/4/2019 | 7409 | 5250 | Body | 5.223 | 47.07 | PASS | PASS | PASS | OFDM | N/A | PASS | | G | 5600 | 10/7/2019 | 7409 | 5600 | Body | 5.884 | 47.08 | PASS | PASS | PASS | OFDM | N/A | PASS | | G | 5750 | 10/7/2019 | 7409 | 5750 | Body | 6.111 | 46.78 | PASS | PASS | PASS | OFDM | N/A | PASS | Table D-2 SAR System Validation Summary – 10g | | OAR Cystem validation Califficaty 109 | | | | | | | | | | | | | |-------------|---------------------------------------|-----------|----------|----------|-----------|-------|--------|-------------|--------------------|-------------------|--------------|-----------------|------| | SAR | | | | | | COND. | PERM. | C | W VALIDATION | | N | MOD. VALIDATION | 1 | | SYSTEM
| FREQ. [MHz] | DATE | PROBE SN | PROBE C. | AL. POINT | (σ) | (εr) | SENSITIVITY | PROBE
LINEARITY | PROBE
ISOTROPY | MOD.
TYPE | DUTY FACTOR | PAR | | 1 | 1750 | 5/21/2019 | 7357 | 1750 | Body | 1.442 | 55.384 | PASS | PASS | PASS | N/A | N/A | N/A | | J | 1900 | 1/1/2020 | 7571 | 1900 | Body | 1.579 | 51.919 | PASS | PASS | PASS | GMSK | PASS | N/A | | K | 2450 | 9/6/2019 | 7547 | 2450 | Body | 1.996 | 51.898 | PASS | PASS | PASS | OFDM/TDD | PASS | PASS | | K | 2600 | 9/5/2019 | 7547 | 2600 | Body | 2.716 | 52.04 | PASS | PASS | PASS | TDD | PASS | N/A | | G | 5250 | 10/4/2019 | 7409 | 5250 | Body | 5.223 | 47.07 | PASS | PASS | PASS | OFDM | N/A | PASS | | G | 5600 | 10/7/2019 | 7409 | 5600 | Body | 5.884 | 47.08 | PASS | PASS | PASS | OFDM | N/A | PASS | | G | 5750 | 10/7/2019 | 7409 | 5750 | Body | 6.111 | 46.78 | PASS | PASS | PASS | OFDM | N/A | PASS | NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04. | FCC ID: ZNFV600TM | <u>PCTEST</u> | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager | |---------------------|----------------------------|-----------------------|-----|------------------------------| | Test Dates: | DUT Type: Portable Handset | | | APPENDIX D: | | 01/27/20 - 02/24/20 | | | | Page 1 of 1 | | 20 DCTECT | | | | DEV/ 24 4 M | © 2020 PCTEST REV 21.4 M 09/11/2019 #### APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS #### 1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements. #### LTE DLCA Test Reduction Methodology: - The supported combinations were arranged by the number of component carriers in columns. - Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC). - Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets. - Only subsets that have the exact same components as a superset were excluded for measurement. - When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated. - Both inter-band and intra-band downlink carrier aggregation scenarios were considered. - Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes. Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration | FCC ID: ZNFV600TM | SAR EVALUATION REPORT | LG | Reviewed by:
Quality Manager | |---------------------|-----------------------|----|---------------------------------| | Test Dates: | DUT Type: | | APPENDIX F: | | 01/27/20 - 02/24/20 | Portable Handset | | Page 1 of 4 | #### 1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications
when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations. LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, only combinations that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M1911250198-01-R4.ZNF for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance. General PCC and SCC configuration selection procedure - PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation. - To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers. - All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier. Figure 1 DL CA Power Measurement Setup | FCC ID: ZNFV600TM | SAR EVALUATION | REPORT (L) LG | Reviewed by:
Quality Manager | |---------------------|------------------|----------------------|---------------------------------| | Test Dates: | DUT Type: | | APPENDIX F: | | 01/27/20 - 02/24/20 | Portable Handset | | Page 2 of 4 | Figure 2 DL CA with DL 4x4 MIMO Power Measurement Setup #### 1.3 Downlink Carrier Aggregation RF Conducted Powers #### 1.3.1 LTE Band 48 as PCC Table 1 Maximum Output Powers | | · | | | | | SCC 1 | | | | S | CC 2 | | | sc | C 3 | | Por | wer | | | | | | |-------------|----------|-----------------|--------------|-------------------------|------|---------------|---------------------|---------------------|-------------------------|----------|-----------------|---------------------|-------------------------|----------|-----------------|---------------------|-------------------------|----------|-----------------|---------------------|-------------------------|---------|-------| | Combination | PCC Band | PCC BW
[MHz] | PCC (UL) Ch. | PCC (UL)
Freq. [MHz] | Mod. | PCC UL#
RB | PCC UL RB
Offset | PCC (DL)
Channel | PCC (DL) Freq.
[MHz] | SCC Band | SCC BW
[MHz] | SCC (DL)
Channel | SCC (DL)
Freq. [MHz] | SCC Band | SCC BW
[MHz] | SCC (DL)
Channel | SCC (DL)
Freq. [MHz] | SCC Band | SCC BW
[MHz] | SCC (DL)
Channel | SCC (DL) Freq.
[MHz] | Enabled | | | CA_48C | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | LTE B48 | 20 | 55936 | 3619.6 | - | - | - | - | - | - | - | - | 21.77 | 21.77 | | CA_48A-48A | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | LTE B48 | 20 | 56640 | 3690 | - | - | - | | - | | - | - | 21.74 | 21.77 | | CA_48D | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | LTE B48 | 20 | 55936 | 3619.6 | LTE B48 | 20 | 56134 | 3639.4 | - | - | - | - | 21.75 | 21.77 | | CA_48E | LTE B48 | 15 | 55765 | 3602.5 | QPSK | - 1 | 74 | 55765 | 3602.5 | LTE B48 | 20 | 55936 | 3619.6 | LTE B48 | 20 | 56134 | 3639.4 | LTE B48 | 20 | 56332 | 3659.2 | 21.82 | 21.77 | #### 1.4 DL CA with DL 4x4 MIMO RF Conduction Powers This device supports downlink 4x4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied. Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive. #### 1.4.1 LTE 4x4 MIMO DL Standalone Powers Table 2 Maximum Output Powers | LTE
Band | Bandwidth
[MHz] | Channel | Frequency
[MHz] | Modulation | RB
Size | RB
Offset | 4x4 DL MIMO
Tx. Power
[dBm] | Single
Antenna
Tx.
Power
[dBm] | Target
Power
[dBm] | |-------------|--------------------|---------|--------------------|------------|------------|--------------|-----------------------------------|--|--------------------------| | 48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 21.73 | 21.77 | 22.0 | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |----|---------------------|------------------|-----------------------|-----|---------------------------------| | | Test Dates: | DUT Type: | | | APPENDIX F: | | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 3 of 4 | | 02 | PCTEST | | | | RFV 21 3 M | ### 1.4.2 LTE Band 48 as PCC #### Table 3 **Maximum Output Powers** | | | PCC | | | | SCC 1 | | | | SCC 2 | | | | SCC 3 | | | | Po | wer | | | | | | | | | |----------------|----------|-----------------|-------|----------------------------|------|---------|---------------------|-------|-------------------------|--------------------|---------|-----------------|-------|----------------------------|--------------------|----------|-----------------|-----------------|----------------------------|--------------------|----------|-----------------|-----------------|----------------------------|--------------------|--|---| | Combination | PCC Band | PCC BW
[MHz] | | PCC (UL)
Freq.
[MHz] | Mod. | PCC UL# | PCC UL
RB Offset | | PCC (DL) Freq.
[MHz] | DL Ant.
Config. | | SCC BW
[MHz] | SCC | SCC (DL)
Freq.
[MHz] | DL Ant.
Config. | SCC Band | SCC BW
[MHz] | SCC
(DL) Ch. | SCC (DL)
Freq.
[MHz] | DL Ant.
Config. | SCC Band | SCC BW
[MHz] | SCC
(DL) Ch. | SCC (DL)
Freq.
[MHz] | DL Ant.
Config. | LTE Tx.Power
with DL CA
Enabled
(dBm) | LTE Single
Carrier Tx
Power (dBm) | | CA_[48A]-[48A] | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | 4x4 | LTE B48 | 20 | 56640 | 3690 | 4x4 | - | - | | | - | - | - | - | - | - | 21.84 | 21.77 | | CA_[48C] | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | 4x4 | LTE B48 | 20 | 55936 | 3619.6 | 4x4 | - | - | • | | - | | | - | - | | 21.87 | 21.77 | | CA_[48D] | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | 4x4 | LTE B48 | 20 | 55936 | 3619.6 | 4x4 | LTE B48 | 20 | 56134 | 3639.4 | 4x4 | | - | | - | - | 21.80 | 21.77 | | CA [48E] | LTE B48 | 15 | 55765 | 3602.5 | QPSK | 1 | 74 | 55765 | 3602.5 | 4x4 | LTE B48 | 20 | 55936 | 3619.6 | 4x4 | LTE B48 | 20 | 56134 | 3639.4 | 4x4 | LTE B48 | 20 | 56332 | 3659.2 | 4x4 | 21.78 | 21.77 | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|-----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX F: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 4 of 4 | #### POWER REDUCTION VERIFICATION **APPENDIX G** Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors. #### **G.1 Power Verification Procedure** The power verification was performed according to the following procedure: - 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered. - Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated. - 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time: powers were confirmed to be within tolerances after each additional mechanism was activated. #### **G.2 Distance Verification Procedure** The distance verification procedure was performed according to the following procedure: - 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom. - 2. The device
was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer. - 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details). - 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms. | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|-----|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX G: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 1 of 3 | © 2020 PCTFST REV 20.05 M ## **G.3** Main Antenna Verification Summary Table G-1 Power Measurement Verification for Main Antenna | | | | I | | | |------------|------------|-----------------|-----------------------|---------------------------|---------------------------| | Mecha | nism(s) | | (| Conducted Power (d | Bm) | | 1st | 2nd | Mode/Band | Un-triggered
(Max) | Mechanism #1
(Reduced) | Mechanism #2
(Reduced) | | Hotspot On | | UMTS 1750 | 1 | 5 | | | Hotspot On | Grip | UMTS 1750 | 1 | 5 | 5 | | Grip | · | UMTS 1750 | 1 | 8 | | | Grip | Hotspot On | UMTS 1750 | 1 | 8 | 5 | | Hotspot On | · | UMTS 1900 | 1 | 5 | | | Hotspot On | Grip | UMTS 1900 | 1 | 5 | 5 | | Grip | · | UMTS 1900 | 1 | 8 | | | Grip | Hotspot On | UMTS 1900 | 1 | 8 | 5 | | Hotspot On | | PCS EVDO | 1 | 5 | | | Hotspot On | Grip | PCS EVDO | 1 | 5 | 5 | | Grip | | PCS EVDO | 1 | 8 | | | Grip | Hotspot On | PCS EVDO | 1 | 8 | 5 | | Hotspot On | | LTE FDD Band 4 | 1 | 5 | | | Hotspot On | Grip | LTE FDD Band 4 | 1 | 5 | 5 | | Grip | · | LTE FDD Band 4 | 1 | 8 | | | Grip | Hotspot On | LTE FDD Band 4 | 1 | 8 | 5 | | Hotspot On | | LTE FDD Band 66 | 1 | 5 | | | Hotspot On | Grip | LTE FDD Band 66 | 1 | 5 | 5 | | Grip | | LTE FDD Band 66 | 1 | 8 | | | Grip | Hotspot On | LTE FDD Band 66 | 1 | 8 | 5 | | Hotspot On | | LTE FDD Band 2 | 1 | 5 | | | Hotspot On | Grip | LTE FDD Band 2 | 1 | 5 | 5 | | Grip | | LTE FDD Band 2 | 1 | 8 | | | Grip | Hotspot On | LTE FDD Band 2 | 1 | 8 | 5 | | Hotspot On | | LTE FDD Band 25 | 1 | 5 | | | Hotspot On | Grip | LTE FDD Band 25 | 1 | 5 | 5 | | Grip | | LTE FDD Band 25 | 1 | 8 | | | Grip | Hotspot On | LTE FDD Band 25 | 1 | 8 | 5 | | Hotspot On | | LTE FDD Band 7 | 1 | 5 | | | Hotspot On | Grip | LTE FDD Band 7 | 1 | 5 | 5 | | Grip | | LTE FDD Band 7 | 1 | 8 | | | Grip | Hotspot On | LTE FDD Band 7 | 1 | 8 | 5 | Table G-2 Distance Measurement Verification for Main Antenna | | Diotario inoao | aronnonic voin | ioation for man | / \u | | |--------------|-----------------------|----------------|-----------------|---------------|----------------------| | Machanism(s) | Test Condition | Dand | Distance Meas | urements (mm) | Minimum Distance per | | Mechanism(s) | rest Condition | Band | Moving Toward | Moving Away | Manufacturer (mm) | | Grip | Phablet - Back Side | Mid | 4 | 6 | 3 | | Grip | Phablet - Back Side | High | 4 | 6 | 3 | | Grip | Phablet - Front Side | Mid | 2 | 5 | 2 | | Grip | Phablet - Front Side | High | 2 | 5 | 2 | | Grip | Phablet - Bottom Edge | Mid | 5 | 7 | 4 | | Grip | Phablet - Bottom Edge | High | 5 | 7 | 4 | *Note: Mid band refers to: CDMA BC1, UMTS B2/4, LTE B4/66/2/25. High band refers to LTE B7. | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|-------------|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX G: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 2 of 3 | ## **G.4** WIFI Verification Summary Table G-3 Power Measurement Verification WIFI – Antenna 1 | Tower moded official volume and a visit of the t | | | | | | | | | | |--|-------------------|-----------------------|---------------------------|--|--|--|--|--|--| | Mechanism(s) | | Conducted Power (dBm) | | | | | | | | | 1st | Mode/Band | Un-triggered
(Max) | Mechanism #1
(Reduced) | | | | | | | | Held-to-Ear | 802.11b | 18.91 | 15.23 | | | | | | | | Held-to-Ear | 802.11g | 18.44 | 14.03 | | | | | | | | Held-to-Ear | 802.11n (2.4GHz) | 17.01 | 14.45 | | | | | | | | Held-to-Ear | 802.11ac (2.4GHz) | 16.59 | 14.22 | | | | | | | ^{*}Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations. Table G-4 Power Measurement Verification WIFI – Antenna 2 | Mechanism(s) | | Conducted Power (dBm) | | | | | |--------------|-------------------|-----------------------|---------------------------|--|--|--| | 1st | Mode/Band | Un-triggered
(Max) | Mechanism #1
(Reduced) | | | | | Held-to-Ear | 802.11b | 18.63 | 15.44 | | | | | Held-to-Ear | 802.11g | 18.07 | 15.01 | | | | | Held-to-Ear | 802.11n (2.4GHz) | 17.33 | 15.13 | | | | | Held-to-Ear | 802.11ac (2.4GHz) | 16.99 | 14.98 | | | | ^{*}Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations. | FCC ID: ZNFV600TM | <u><u><u></u> PCTEST</u></u> | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |---------------------|------------------------------|-----------------------|-------------|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX G: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 3 of 3 | #### APPENDIX H: IEEE 802.11AX RU SAR EXCLUSION #### 1.1 **IEEE 802.11ax RU SAR Exclusion** To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T and 996T. Per FCC Guidance, 802.11ax was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes. #### 1.2 **IEEE 802.11ax RU Target Powers** #### 1.2.1 Maximum 802.11ax RU WLAN Output Power | Tones | | SISO (ANT1/2) /in dBm | | | | MIMO (ALL) /in dBm | | | | |-------|---------|-----------------------|------------|------------|------------|--------------------|------------|------------|------------| | | | 2.4GHz | 5GHz/20MHz | 5GHz/40MHz | 5GHz/80MHz | 2.4GHz | 5GHz/20MHz | 5GHz/40MHz | 5GHz/80MHz | | 26T | Maximum | 10.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 13.0 | 13.0 | | 201 | Nominal | 9.0 | 9.0 | 9.0 | 9.0 | 12.0 | 12.0 | 12.0 | 12.0 | | 52T | Maximum | 10.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 13.0 | 13.0 | | 521 | Nominal | 9.0 | 9.0 | 9.0 | 9.0 | 12.0 | 12.0 | 12.0 | 12.0 | | 106T | Maximum | 10.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 13.0 | 13.0 | | 1001 | Nominal | 9.0 | 9.0 | 9.0 | 9.0 | 12.0 | 12.0 | 12.0 | 12.0 | | 242T | Maximum | 10.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 13.0 | 13.0 | | 2421 | Nominal | 9.0 | 9.0 | 9.0 | 9.0 | 12.0 | 12.0 | 12.0 | 12.0 | | 484T | Maximum | | | 10.0 | 10.0 | | | 13.0 | 13.0 | | 4041 | Nominal | | | 9.0 | 9.0 | | | 12.0 | 12.0 | | 996T | Maximum | | | | 10.0 | | | | 13.0 | | 530 I | Nominal | | | | 9.0 | | | | 12.0 | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | (LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|-----|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 1 of 9 | ### 1.3 IEEE 802.11ax
Measured Powers Table 1 Maximum 2.4 GHz 802.11ax RU Output Power – Ant 1 | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | | | | 0 | 8.80 | | 2412 | 1 | 26T | 4 | 8.78 | | | | | 8 | 9.37 | | | | | 0 | 9.16 | | 2437 | 6 | 26T | 4 | 9.02 | | | | | 8 | 8.45 | | | | | 0 | 8.41 | | 2462 | 11 | 26T | 4 | 8.61 | | | | | 8 | 8.33 | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | | | | 37 | 8.85 | | 2412 | 1 | 52T | 38 | 8.82 | | | | | 40 | 9.23 | | | | | 37 | 9.13 | | 2437 | 6 | 52T | 38 | 9.18 | | | | | 40 | 8.50 | | | | | 37 | 8.50 | | 2462 | 11 | 52T | 38 | 8.69 | | | | | 40 | 8.44 | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|--------|----------|-------------------------------------| | 2412 | 1 | 106T | 53 | 9.05 | | 2412 | ı | | 54 | 9.32 | | 2437 | 6 | 106T | 53 | 9.32 | | 2431 | O | 1001 | 54 | 9.02 | | 2462 | 11 106T | 1 100T | 53 | 8.77 | | 2402 | | 54 | 9.03 | | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | 2412 | 1 | 242T | 61 | 9.09 | | 2437 | 6 | 242T | 61 | 9.26 | | 2462 | 11 | 242T | 61 | 9.15 | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|----|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 2 of 9 | Table 2 Maximum 2.4 GHz 802.11ax RU Output Power – Ant 2 | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | | | | 0 | 9.63 | | 2412 | 1 | 26T | 4 | 9.09 | | | | | 8 | 9.47 | | | | | 0 | 9.36 | | 2437 | 6 | 26T | 4 | 9.55 | | | | | 8 | 9.05 | | | | | 0 | 9.11 | | 2462 | 11 | 26T | 4 | 9.31 | | | | | 8 | 9.22 | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | | | | 37 | 9.56 | | 2412 | 1 | 52T | 38 | 9.28 | | | | | 40 | 9.33 | | | | | 37 | 9.49 | | 2437 | 6 | 52T | 38 | 9.65 | | | | | 40 | 9.19 | | · | | | 37 | 9.24 | | 2462 | 11 | 52T | 38 | 9.23 | | | | | 40 | 9.27 | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | 2412 | 1 | 106T | 53 | 9.52 | | 2412 | | 1001 | 54 | 9.45 | | 2437 | 6 | 106T | 53 | 9.68 | | 2437 | b | 106T | 54 | 9.34 | | 2462 | 2462 11 | 106T | 53 | 9.35 | | 2402 | - 11 | 1001 | 54 | 9.42 | | Freq
[MHz] | Channel | Tones | RU Index | Avg
Conducted
Powers
(dBm) | |---------------|---------|-------|----------|-------------------------------------| | 2412 | 1 | 242T | 61 | 9.63 | | 2437 | 6 | 242T | 61 | 9.77 | | 2462 | 11 | 242T | 61 | 9.56 | | FCC ID: ZNFV600TM | <u> PCTEST</u> | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 3 of 9 | Table 3 Maximum 5 GHz 802.11ax RU Output Power – Ant 1 | | | F | | | Avg Co | nducted Power | (dBm) | |-------|------|---------------|---------|-------|----------|---------------|-------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | [1411 12] | | | 0 | 4 | 8 | | | | 5180 | 36 | 26T | 9.03 | 9.16 | 9.21 | | ≥ | 1 | 5200 | 40 | 26T | 9.02 | 9.07 | 9.06 | | BW | | 5240 | 48 | 26T | 9.06 | 9.06 | 9.06 | | | | 5260 | 52 | 26T | 9.03 | 9.04 | 9.04 | | Ÿ | 2A | 5280 | 56 | 26T | 9.03 | 9.02 | 9.03 | | 5 | | 5320 | 64 | 26T | 9.06 | 9.06 | 9.01 | | 20MHz | | 5500 | 100 | 26T | 9.07 | 9.11 | 9.05 | | Ñ | 2C | 5600 | 120 | 26T | 9.17 | 9.05 | 9.09 | | | | 5720 | 144 | 26T | 9.12 | 9.10 | 9.18 | | | | 5745 | 149 | 26T | 9.09 | 9.06 | 9.02 | | | 3 | 5785 | 157 | 26T | 9.59 | 9.59 | 9.55 | | | | 5825 | 165 | 26T | 9.12 | 9.45 | 9.44 | | | | _ | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | | [IVITZ] | | | 37 | 39 | 40 | | | | | 5180 | 36 | 52T | 9.31 | 9.35 | 9.29 | | | ≥ | 1 | 5200 | 40 | 52T | 9.12 | 9.27 | 9.11 | | | BW | | 5240 | 48 | 52T | 9.09 | 9.15 | 9.04 | | | | | 5260 | 52 | 52T | 9.08 | 9.14 | 9.01 | | | ÷ | 2A | 5280 | 56 | 52T | 9.05 | 9.05 | 9.03 | | | 5 | | 5320 | 64 | 52T | 9.03 | 9.13 | 9.04 | | | 20MHz | | 5500 | 100 | 52T | 9.13 | 9.17 | 9.15 | | | N | 2C | 5600 | 120 | 52T | 9.15 | 9.27 | 9.17 | | | | | 5720 | 144 | 52T | 9.29 | 9.28 | 9.18 | | | | | 5745 | 149 | 52T | 9.11 | 9.23 | 9.11 | | | | 3 | 5785 | 157 | 52T | 9.63 | 9.74 | 9.54 | | | | | 5825 | 165 | 52T | 9.58 | 9.65 | 9.49 | | | | | | | | Avg Co | nducted Power | r (dBm) | |-------|------|---------------|---------|-------|----------|---------------|---------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | [IVII12] | | | 53 | 54 | N/A | | | | 5180 | 36 | 106T | 9.40 | 9.42 | | | > | 1 | 5200 | 40 | 106T | 9.18 | 9.25 | | | BW | | 5240 | 48 | 106T | 9.19 | 9.23 | | | | | 5260 | 52 | 106T | 9.22 | 9.14 | | | Ÿ | 2A | 5280 | 56 | 106T | 9.16 | 9.14 | | | 5 | | 5320 | 64 | 106T | 9.15 | 9.17 | | | 20MHz | | 5500 | 100 | 106T | 9.25 | 9.33 | | | Ñ | 2C | 5600 | 120 | 106T | 9.29 | 9.25 | | | | | 5720 | 144 | 106T | 9.38 | 9.34 | | | | | 5745 | 149 | 106T | 9.30 | 9.30 | | | | 3 | 5785 | 157 | 106T | 9.75 | 9.75 | | | | | 5825 | 165 | 106T | 9.66 | 9.65 | | | | | _ | | | Avg Co | onducted Power | (dBm) | |----------|------|---------------|---------|-------|----------|----------------|-------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | [IVIITZ] | | | 61 | N/A | N/A | | | | 5180 | 36 | 242T | 9.54 | | | | > | 1 | 5200 | 40 | 242T | 9.31 | | | | m | | 5240 | 48 | 242T | 9.41 | | | | | | 5260 | 52 | 242T | 9.35 | | | | Ÿ | 2A | 5280 | 56 | 242T | 9.30 | | | | 5 | | 5320 | 64 | 242T | 9.36 | | | | 20MHz BW | | 5500 | 100 | 242T | 9.45 | | | | Ñ | 2C | 5600 | 120 | 242T | 9.47 | | | | | | 5720 | 144 | 242T | 9.54 | | | | | | 5745 | 149 | 242T | 9.45 | | | | | 3 | 5785 | 157 | 242T | 9.92 | | | | | | 5825 | 165 | 242T | 9.83 | | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 4 of 9 | | | | _ | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [IVII 12] | 112] | | 0 | 8 | 17 | | | BW | 1 | 5190 | 38 | 26T | 9.05 | 9.53 | 9.03 | | | m | ' ' | 5230 | 46 | 26T | 9.03 | 9.46 | 9.02 | | | N | 2A | 5270 | 54 | 26T | 9.02 | 9.45 | 9.04 | | | | 2/1 | 5310 | 62 | 26T | 9.02 | 9.58 | 9.03 | | | ≥ | | 5510 | 102 | 26T | 9.25 | 9.79 | 9.18 | | | 40MHz | 2C | 5590 | 118 | 26T | 9.09 | 9.63 | 9.15 | | | 7 | | 5710 | 142 | 26T | 9.26 | 9.54 | 9.16 | | | | 3 | 5755 | 151 | 26T | 9.36 | 9.48 | 9.29 | | | | | 5795 | 159 | 26T | 9.71 | 9.97 | 9.12 | | | | | - | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [IVII12] | | | 37 | 40 | 44 | | | BW | 1 | 5190 | 38 | 52T | 9.17 | 9.54 | 9.07 | | | m | ' | 5230 | 46 | 52T | 9.14 | 9.52 | 9.05 | | | N | 2A | 5270 | 54 | 52T | 9.07 | 9.43 | 9.01 | | | ≖ | ZA | 5310 | 62 | 52T | 9.13 | 9.54 | 9.02 | | | 40MHz | | 5510 | 102 | 52T | 9.37 | 9.71 | 9.33 | | | 으 | 2C | 5590 | 118 | 52T | 9.16 | 9.63 | 9.20 | | | 7 | | 5710 | 142 | 52T | 9.31 | 9.75 | 9.23 | | | | 3 | 5755 | 151 | 52T | 9.52 | 9.86 | 9.34 | | | | 3 | 5795 | 159 | 52T | 9.77 | 9.97 | 9.67 | | | | | - | | | Avg Co | nducted Power | (dBm) | | |-------|-----------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | [1411 12] | | | 53 | 54 | 56 | | | | BW | 1 | 5190 | 38 | 106T | 9.38 | 9.61 | 9.23 | | | മ | ' | 5230 | 46 | 106T | 9.31 | 9.57 | 9.24 | | | N | 2A | 5270 | 54 | 106T | 9.22 | 9.51 | 9.15 | | | Ξ. | ZA | 5310 | 62 | 106T | 9.35 | 9.54 | 9.25 | | | 40MHz | | 5510 | 102 | 106T | 9.59 | 9.87 | 9.51 | | | 유 | 2C | 5590 | 118 | 106T | 9.40 | 9.70 | 9.45 | | | • | | 5710 | 142 | 106T | 9.55 | 9.80 | 9.50 | | | | 3 | 5755 | 151 | 106T | 9.74 | 9.95 | 9.67 | | | | 3 | 5795 | 159 | 106T | 9.94 | 9.99 | 9.90 | | | | | | | | Avg Co | nducted Power | (dBm) | |-------|----------|---------------|---------|-------|----------|---------------|-------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | _ | [IVII12] | [IVII 12] | | | 61 | 62 | N/A | | BW | 1 | 5190 | 38 | 242T | 9.55 | 9.51 | | | m | ' | 5230 | 46 | 242T | 9.46 | 9.46 | | | N | 2A | 5270 | 54 | 242T | 9.41 | 9.41 | | | I | 2/1 | 5310 | 62 | 242T | 9.49 | 9.46 | | | 40MHz | | 5510 | 102 | 242T | 9.69 | 9.67 | | | 유 | 2C | 5590 | 118 | 242T | 9.59 | 9.55 | | | 7 | | 5710 | 142 | 242T | 9.74 | 9.66 | | | | 3 | 5755 | 151 | 242T | 9.83 | 9.78 | | | | 3 | 5795 | 159 | 242T | 9.98 | 9.94 | | | | | | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [IVIITZ] | |
 65 | N/A | N/A | | | BW | 1 | 5190 | 38 | 484T | 9.49 | | | | | m | ' | 5230 | 46 | 484T | 9.41 | | | | | N | 2A | 5270 | 54 | 484T | 9.45 | | | | | 40MHz | 2/1 | 5310 | 62 | 484T | 9.48 | | | | | ≥ | | 5510 | 102 | 484T | 9.75 | | | | | 유 | 2C | 5590 | 118 | 484T | 9.67 | | | | | 7 | | 5710 | 142 | 484T | 9.75 | | | | | | 3 | 5755 | 151 | 484T | 9.90 | | | | | | 3 | 5795 | 159 | 484T | 9.97 | | | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 5 of 9 | | | | - | | el Tones | Avg Conducted Power (dBm) | | | | |-------|-----------|---------------|---------|----------|---------------------------|------|------|--| | > | Band | Freq
[MHz] | Channel | | RU Index | | | | | BW | [1411.12] | | | 0 | 18 | 36 | | | | | 1 | 5210 | 42 | 26T | 9.08 | 9.35 | 9.03 | | | 80MHz | 2A | 5290 | 58 | 26T | 9.07 | 9.39 | 9.06 | | | \$ | | 5530 | 106 | 26T | 9.23 | 9.59 | 9.09 | | | 5 | 2C | 5610 | 122 | 26T | 9.03 | 9.34 | 9.06 | | | œ | | 5690 | 138 | 26T | 9.37 | 9.62 | 9.18 | | | | 3 | 5775 | 155 | 26T | 9.61 | 9.90 | 9.32 | | | | | - | | | Avg Conducted Power (dBm) | | | | |---------|------|---------------|---------|-------|---------------------------|------|------|--| | > | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | BW | | | | | 37 | 44 | 52 | | | 80MHz I | 1 | 5210 | 42 | 52T | 9.03 | 9.25 | 9.53 | | | | 2A | 5290 | 58 | 52T | 9.09 | 9.34 | 9.03 | | | 5 | | 5530 | 106 | 52T | 9.18 | 9.53 | 9.35 | | | 6 | 2C | 5610 | 122 | 52T | 9.05 | 9.39 | 9.17 | | | 8(| | 5690 | 138 | 52T | 9.35 | 9.68 | 9.24 | | | | 3 | 5775 | 155 | 52T | 9.68 | 9.50 | 9.55 | | | | | req
[MHz] | Channel | Tones | Avg Conducted Power (dBm) | | | | |-------|------|--------------|---------|-------|---------------------------|----------|------|--| | > | Band | | | | | RU Index | | | | Band | | | | | 53 | 56 | 60 | | | 80MHz | 1 | 5210 | 42 | 106T | 9.16 | 9.46 | 9.03 | | | | 2A | 5290 | 58 | 106T | 9.17 | 9.44 | 9.06 | | | \$ | | 5530 | 106 | 106T | 9.27 | 9.60 | 9.35 | | | 6 | 2C | 5610 | 122 | 106T | 9.14 | 9.48 | 9.21 | | | 8 | | 5690 | 138 | 106T | 9.40 | 9.75 | 9.24 | | | | 3 | 5775 | 155 | 106T | 9.79 | 9.95 | 9.57 | | | | | F | | | Avg Conducted Power (dBm) | | | | | |-------|------|---------------|---------|-------|---------------------------|----------|------|--|--| | > | Band | Freq
[MHz] | Channel | Tones | | RU Index | | | | | BW | | | | | 61 | 62 | 64 | | | | | 1 | 5210 | 42 | 242T | 9.33 | 9.48 | 9.24 | | | | 무 | 2A | 5290 | 58 | 242T | 9.46 | 9.57 | 9.22 | | | | 5 | | 5530 | 106 | 242T | 9.48 | 9.65 | 9.49 | | | | 80MHz | 2C | 5610 | 122 | 242T | 9.39 | 9.55 | 9.23 | | | | 8(| | 5690 | 138 | 242T | 9.58 | 9.80 | 9.39 | | | | | 3 | 5775 | 155 | 242T | 9.92 | 9.97 | 9.78 | | | | | | | | | Avg Co | nducted Power | r (dBm) | |---------|------|---------------|---------|-------|--------|---------------|---------| | > | Band | Freq
[MHz] | Channel | Tones | | RU Index | | | BW | | | | | 65 | 66 | N/A | | 80MHz I | 1 | 5210 | 42 | 484T | 9.47 | 9.40 | | | | 2A | 5290 | 58 | 484T | 9.53 | 9.44 | | | 5 | | 5530 | 106 | 484T | 9.65 | 9.59 | | | 6 | 2C | 5610 | 122 | 484T | 9.49 | 9.41 | | | 8 | | 5690 | 138 | 484T | 9.75 | 9.55 | | | | 3 | 5775 | 155 | 484T | 9.98 | 9.92 | | | | | F | | | Avg Co | nducted Power | r (dBm) | |-------|------|---------------|---------|-------|--------|---------------|---------| | > | Band | Freq
[MHz] | Channel | Tones | | RU Index | | | BW | | [IVII 12] | | | 67 | N/A | N/A | | | 1 | 5210 | 42 | 996T | 9.31 | | | | 7 | 2A | 5290 | 58 | 996T | 9.31 | | | | 80MHz | | 5530 | 106 | 996T | 9.49 | | | | 6 | 2C | 5610 | 122 | 996T | 9.33 | | | | 8 | | 5690 | 138 | 996T | 9.63 | | | | | 3 | 5775 | 155 | 996T | 9.85 | | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 6 of 9 | Table 4 Maximum 5 GHz 802.11ax RU Output Power – Ant 2 | | | F | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | | | | | 0 | 4 | 8 | | | | | 5180 | 36 | 26T | 9.25 | 9.59 | 9.45 | | | > | 1 | 5200 | 40 | 26T | 9.66 | 9.70 | 9.62 | | | BW | | 5240 | 48 | 26T | 9.68 | 9.75 | 9.63 | | | | | 5260 | 52 | 26T | 9.77 | 9.76 | 9.62 | | | | 2A | 5280 | 56 | 26T | 9.71 | 9.72 | 9.62 | | | 5 | | 5320 | 64 | 26T | 9.59 | 9.20 | 9.49 | | | 20MHz | | 5500 | 100 | 26T | 9.31 | 9.25 | 9.35 | | | Ñ | 2C | 5600 | 120 | 26T | 9.66 | 9.84 | 9.82 | | | | | 5720 | 144 | 26T | 9.50 | 9.72 | 9.62 | | | | | 5745 | 149 | 26T | 9.28 | 9.43 | 9.37 | | | | 3 | 5785 | 157 | 26T | 9.52 | 9.59 | 9.58 | | | | | 5825 | 165 | 26T | 9.38 | 9.45 | 9.56 | | | | | _ | | | Avg Co | nducted Power | (dBm) | | |-------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | | [IVII12] | | | 37 | 39 | 40 | | | | | 5180 | 36 | 52T | 9.64 | 9.74 | 9.60 | | | ≥ | 1 | 5200 | 40 | 52T | 9.62 | 9.75 | 9.63 | | | BW | | 5240 | 48 | 52T | 9.71 | 9.79 | 9.65 | | | | 2A | 5260 | 52 | 52T | 9.85 | 9.85 | 9.71 | | | ÷ | | 5280 | 56 | 52T | 9.72 | 9.79 | 9.59 | | | 20MHz | | 5320 | 64 | 52T | 9.61 | 9.56 | 9.38 | | | 5 | | 5500 | 100 | 52T | 9.51 | 9.59 | 9.47 | | | N | 2C | 5600 | 120 | 52T | 9.75 | 9.89 | 9.81 | | | | | 5720 | 144 | 52T | 9.66 | 9.60 | 9.65 | | | | | 5745 | 149 | 52T | 9.35 | 9.50 | 9.41 | | | | 3 | 5785 | 157 | 52T | 9.53 | 9.66 | 9.55 | | | | | 5825 | 165 | 52T | 9.35 | 9.63 | 9.50 | | | | | F | | | Avg Co | nducted Power | r (dBm) | |-------|------|---------------|---------|-------|----------|---------------|---------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | [1411 12] | | | 53 | 54 | N/A | | | | 5180 | 36 | 106T | 9.73 | 9.80 | | | > | 1 | 5200 | 40 | 106T | 9.83 | 9.79 | | | BW | | 5240 | 48 | 106T | 9.87 | 9.86 | | | | | 5260 | 52 | 106T | 9.89 | 9.69 | | | 20MHz | 2A | 5280 | 56 | 106T | 9.92 | 9.80 | | | 5 | | 5320 | 64 | 106T | 9.75 | 9.63 | | | 0 | | 5500 | 100 | 106T | 9.65 | 9.65 | | | Ñ | 2C | 5600 | 120 | 106T | 9.87 | 9.97 | | | | | 5720 | 144 | 106T | 9.81 | 9.78 | | | | | 5745 | 149 | 106T | 9.51 | 9.53 | | | | 3 | 5785 | 157 | 106T | 9.56 | 9.73 | | | | | 5825 | 165 | 106T | 9.69 | 9.74 | | | | | _ | | | Avg Co | onducted Power | (dBm) | |----------|------|---------------|---------|-------|----------|----------------|-------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | | [IVIITZ] | | | 61 | N/A | N/A | | | | 5180 | 36 | 242T | 9.93 | | | | > | 1 | 5200 | 40 | 242T | 9.96 | | | | m | | 5240 | 48 | 242T | 9.94 | | | | 20MHz BW | 2A | 5260 | 52 | 242T | 9.98 | | | | 꾸 | | 5280 | 56 | 242T | 9.97 | | | | 5 | | 5320 | 64 | 242T | 9.88 | | | | 6 | | 5500 | 100 | 242T | 9.81 | | | | Ñ | 2C | 5600 | 120 | 242T | 9.96 | | | | | | 5720 | 144 | 242T | 9.91 | | | | | | 5745 | 149 | 242T | 9.70 | | | | | 3 | 5785 | 157 | 242T | 9.90 | | | | | | 5825 | 165 | 242T | 9.88 | | | | FCC ID: ZNFV600TM | <u> PCTEST</u> | SAR EVALUATION REPORT | LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|----|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 7 of 9 | | | | _ | | | Avg Co | nducted Power | (dBm) | | |--------------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [| | | 0 | 8 | 17 | | | BW | 1 | 5190 | 38 | 26T | 9.63 | 9.95 | 9.57 | | | \mathbf{m} | ' | 5230 | 46 | 26T | 9.66 | 9.97 | 9.49 | | | N | 2A | 5270 | 54 | 26T | 9.85 | 9.47 | 9.65 | | | ≖ | ZA | 5310 | 62 | 26T | 9.75 | 9.96 | 9.40 | | | 40MHz | | 5510 | 102 | 26T | 9.63 | 9.92 | 9.59 | | | 유 | 2C | 5590 | 118 | 26T | 9.69 | 9.24 | 9.89 | | | 7 | | 5710 | 142 | 26T | 9.70 | 9.96 | 9.51 | | | | 3 | 5755 | 151 | 26T | 9.48 | 9.93 | 9.51 | | | | 3 | 5795 | 159 | 26T | 9.24 | 9.32 | 9.87 | | | | | F | | | Avg Co | nducted Power | (dBm) | | |--------------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [IVIITZ] | | | 37 | 40 | 44 | | | BW | 1 | 5190 | 38 | 52T | 9.65 | 9.94 | 9.65 | | | \mathbf{m} | ' | 5230 | 46 | 52T | 9.74 | 9.96 | 9.56 | | | N | 2A | 5270 | 54 | 52T | 9.86 | 9.49 | 9.69 | | | I | 2/1 | 5310 | 62 | 52T | 9.84 | 9.98 | 9.47 | | | 40MHz | | 5510 | 102 | 52T | 9.78 | 9.95 | 9.66 | | | 유 | 2C | 5590 | 118 | 52T | 9.82 | 9.26 | 9.94 | | | • | | 5710 | 142 | 52T | 9.77 | 9.97 | 9.83 | | | | 3 | 5755 | 151 | 52T | 9.52 | 9.90 | 9.58 | | | | 3 | 5795 | 159 | 52T | 9.82 | 9.32 | 9.91 | | | | | | | | Avg Co | nducted Power | (dBm) | | |----------|------|---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | _ | | [IVII 12] | | | 53 | 54 | 56 | | | BW | 1 | 5190 | 38 | 106T | 9.87 | 9.98 | 9.89 | | | m | ' | 5230 | 46 | 106T | 9.89 | 9.97 | 9.79 | | | N | 2A | 5270 | 54 | 106T | 9.97 | 9.61 | 9.93 | | | <u> </u> | 2/1 | 5310 | 62 | 106T | 9.91 | 9.96 | 9.78 | | | 40MHz | | 5510 | 102 | 106T | 9.95 | 9.98 | 9.86 | | | 으 | 2C | 5590 | 118 | 106T | 9.96 | 9.33 | 9.97 | | | 7 | | 5710 | 142 | 106T | 9.96 | 9.26 | 9.96 | | | | 3 | 5755 | 151 | 106T | 9.70 | 9.93 | 9.77 | | | | 3 | 5795 | 159 | 106T | 9.92 | 9.41 | 9.95 | | | | | F | | | Avg Co | nducted Power | (dBm) | | |----------|------
---------------|---------|-------|----------|---------------|-------|--| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | 1 | | [IVII 12] | | | 61 | 62 | N/A | | | ВМ | 1 | 5190 | 38 | 242T | 9.96 | 9.91 | | | | 8 | ' | 5230 | 46 | 242T | 9.93 | 9.95 | | | | Z | 2A | 5270 | 54 | 242T | 9.41 | 9.96 | | | | <u> </u> | 2/1 | 5310 | 62 | 242T | 9.97 | 9.94 | | | | 40MHz | | 5510 | 102 | 242T | 9.95 | 9.95 | | | | 9 | 2C | 5590 | 118 | 242T | 9.93 | 9.97 | | | | 7 | | 5710 | 142 | 242T | 9.94 | 9.96 | | | | | 3 | 5755 | 151 | 242T | 9.89 | 9.85 | | | | | 3 | 5795 | 159 | 242T | 9.97 | 9.26 | | | | | | F | | | Avg Co | nducted Power | (dBm) | |----------|------|---------------|---------|-------|----------|---------------|-------| | | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | 1 | | [IVII 12] | | | 65 | N/A | N/A | | ВМ | 1 | 5190 | 38 | 484T | 9.92 | | | | 8 | ' | 5230 | 46 | 484T | 9.96 | | | | <u> </u> | 2A | 5270 | 54 | 484T | 9.98 | | | | 40MHz | ZA. | 5310 | 62 | 484T | 9.95 | | | | ≥ | | 5510 | 102 | 484T | 9.97 | | | | 0‡ | 2C | 5590 | 118 | 484T | 9.93 | | | | 7 | | 5710 | 142 | 484T | 9.96 | | | | | 3 | 5755 | 151 | 484T | 9.85 | | | | | 3 | 5795 | 159 | 484T | 9.98 | | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager | |---------------------|------------------|-----------------------|----|-------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 8 of 9 | | | | | | | Avg Conducted Power (dBm) | | | | |-------|----------|---------------|---------|-------|---------------------------|------|------|--| | > | Band | Freq
[MHz] | Channel | Tones | RU Index | | | | | BW | | [1411 12] | | | 0 | 18 | 36 | | | | 1 | 5210 | 42 | 26T | 9.70 | 9.90 | 9.56 | | | + | 2A | 5290 | 58 | 26T | 9.91 | 9.70 | 9.38 | | | 80MHz | | 5530 | 106 | 26T | 9.50 | 9.71 | 9.40 | | | 5 | 2C | 5610 | 122 | 26T | 9.75 | 9.25 | 9.23 | | | œ | ∞ | 5690 | 138 | 26T | 9.60 | 9.96 | 9.90 | | | | 3 | 5775 | 155 | 26T | 9.33 | 9.85 | 9.63 | | | | | F | | | Avg Conducted Power (dBm) | | | | |-------|-----------------|-----------|-------|----------|---------------------------|------|------|--| | > | Band Freq [MHz] | Channel | Tones | RU Index | | | | | | BW | | [1411 12] | | | 37 | 44 | 52 | | | | 1 | 5210 | 42 | 52T | 9.66 | 9.93 | 9.63 | | | Ŷ | 2A | 5290 | 58 | 52T | 9.94 | 9.96 | 9.55 | | | 5 | | 5530 | 106 | 52T | 9.53 | 9.78 | 9.51 | | | 80MHz | 2C | 5610 | 122 | 52T | 9.81 | 9.22 | 9.22 | | | œ | | 5690 | 138 | 52T | 9.65 | 9.98 | 9.94 | | | | 3 | 5775 | 155 | 52T | 9.56 | 9.82 | 9.21 | | | | | and Freq | | | Avg Conducted Power (dBm) | | | | |-------|------|----------|---------|-------|---------------------------|------|------|--| | > | Band | | Channel | Tones | RU Index | | | | | BW | L | [IVIITZ] | | | 53 | 56 | 60 | | | | 1 | 5210 | 42 | 106T | 9.84 | 9.96 | 9.65 | | | 우 | 2A | 5290 | 58 | 106T | 9.95 | 9.98 | 9.49 | | | 80MHz | | 5530 | 106 | 106T | 9.63 | 9.80 | 9.50 | | | 6 | 2C | 5610 | 122 | 106T | 9.90 | 9.23 | 9.24 | | | Θ | | 5690 | 138 | 106T | 9.75 | 9.94 | 9.94 | | | | 3 | 5775 | 155 | 106T | 9.59 | 9.85 | 9.62 | | | | | Band Freq [MHz] C | | | Avg Conducted Power (dBm) | | | | |----------------|------|-------------------|---------|-------|---------------------------|------|------|--| | > | Band | | Channel | Tones | RU Index | | | | | BW | | | | | 61 | 62 | 64 | | | | 1 | 5210 | 42 | 242T | 9.91 | 9.96 | 9.77 | | | l ? | 2A | 5290 | 58 | 242T | 9.12 | 9.12 | 9.75 | | | 80MHz | | 5530 | 106 | 242T | 9.78 | 9.89 | 9.66 | | | 6 | 2C | 5610 | 122 | 242T | 9.91 | 9.26 | 9.43 | | | œ | | 5690 | 138 | 242T | 9.90 | 9.95 | 9.95 | | | | 3 | 5775 | 155 | 242T | 9.73 | 9.92 | 9.83 | | | | | Band Freq | | | Avg Co | nducted Power | (dBm) | |-------|------|-----------|---------|-------|--------|---------------|-------| | > | Band | | Channel | Tones | | RU Index | | | BW | L | [IVII 12] | | | 65 | 66 | N/A | | | 1 | 5210 | 42 | 484T | 9.93 | 9.97 | | | 꾸 | 2A | 5290 | 58 | 484T | 9.15 | 9.90 | | | 5 | | 5530 | 106 | 484T | 9.86 | 9.79 | | | 80MHz | 2C | 5610 | 122 | 484T | 9.98 | 9.48 | | | ω̈ | | 5690 | 138 | 484T | 9.96 | 9.98 | | | | 3 | 5775 | 155 | 484T | 9.83 | 9.96 | | | | | - | | | Avg Co | nducted Power | r (dBm) | |-------|------|---------------|---------|-------|--------|---------------|---------| | > | Band | Freq
[MHz] | Channel | Tones | | RU Index | | | BW | Ľ | [IVIITZ] | | | 67 | N/A | N/A | | | 1 | 5210 | 42 | 996T | 9.81 | | | | 꾸 | 2A | 5290 | 58 | 996T | 9.80 | | | | 80MHz | | 5530 | 106 | 996T | 9.65 | | | | 6 | 2C | 5610 | 122 | 996T | 9.98 | | | | œ | | 5690 | 138 | 996T | 9.96 | | | | | 3 | 5775 | 155 | 996T | 9.83 | | | | FCC ID: ZNFV600TM | PCTEST | SAR EVALUATION REPORT | LG | Reviewed by:
Quality Manager | |---------------------|------------------|-----------------------|----|---------------------------------| | Test Dates: | DUT Type: | | | APPENDIX H: | | 01/27/20 - 02/24/20 | Portable Handset | | | Page 9 of 9 | # APPENDIX I: PROBE AND DIPOLE CALIBRATION CERTIFICATES #### Calibration Laboratory of Schmid & Partner Engineering AG ...Zeughausstrasse-43,-8004 Zurich,-Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S - Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D750V3-1003_Jan18 ## CALIBRATION CERTIFICATE Object D750V3 - SN:1003 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 15, 2018 **炒**へ -01-25-2013 This callbration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. 12/06/201 All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Арг-18
Арг-18 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | in house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Nelwork Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Lelf Klysner | Laboratory Technician | Sed Wen | | Approved by: | Kalja Pokovic | Technical Manager | leace. | Issued: January 15, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossarv: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA
connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5.0 mm$ | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.28 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.42 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.58 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.71 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.8 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.6 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.2 Ω - 6.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) 1.043 ns | Electrical Delay (one direction) | 1.043 ns | |---|----------------------------------|----------| |---|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 21, 2009 | # Appendix (Additional assessments outside the scope of SCS 0108) ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.94 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.32 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.22 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.52 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | - | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.06 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.52 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.70 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.60 W/kg ± 16.9 % (k=2) | ## **DASY5 Validation Report for Head TSL** Date: 12.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg 0 dB = 2.80 W/kg = 4.47 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 12.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg # Impedance
Measurement Plot for Body TSL # **DASY5 Validation Report for SAM Head** Date: 15.01.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** - Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - · Phantom: SAM Head - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg # SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg # SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg # SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg 0 dB = 2.58 W/kg = 4.12 dBW/kg ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN: 1003 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 1/15/2019 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 2/8/2018 | Annual | 2/8/2019 | US39170122 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2018 | Annual | 3/2/2019 | 1339018 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Control Company | 4040 | Therm./Clock/Humidity Monitor | 3/31/2017 | Biennial | 3/31/2019 | 170232394 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 10/3/2018 | Annual | 10/3/2019 | 1558 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | | SPEAG | EX3DV4 | SAR Probe | 8/23/2018 | Annual | 8/23/2019 | 7308 | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1003 | 01/15/2019 | rage ror4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Head SAR (1g) | (0/) | | Head SAR | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---------------|-------|------|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 1/15/2018 | 1/15/2019 | 1.043 | 1.656 | 1.75 | 5.68% | 1.08 | 1.15 | 6.09% | 53.8 | 54.8 | 1 | -2.1 | -2.2 | 0.1 | -27.6 | -25.8 | 6.50% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Body SAR (1g) | (96) | | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 1/15/2018 | 1/15/2019 | 1.043 | 1.716 | 1.84 | 7.23% | 1.14 | 1.23 | 7.71% | 49.2 | 49 | 0.2 | -6.2 | -5.1 | 1.1 | -24 | -25.6 | -6.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1003 | 01/15/2019 | Fage 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D750V3-1054 Mar19/2 # CALIBRATION CERTIFICATE (Replacement of No:D750V3-1154_Mar19) Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 4-29-2019 Calibration date: March 18, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 07-Oct-15 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check
Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Manu Seltz | Laboratory Technician | | | | | | | | Approved by: | Katja Pokovic | Technical Manager | Slift | | | | | | Issued: April 12, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1054_Mar19/2 Page 1 of 11 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5.0 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | * | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.29 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.48 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ₩ 24 A4 A4 | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.18 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.55 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.67 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.5 Ω - 0.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.2 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.2 Ω - 3.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.3 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.035 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1054_Mar19/2 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. | Phantom SAM Head Phantom For usage with cSAR3DV2-R/L | Phantom | |--|---------| |--|---------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.72 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.23 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.20 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.55 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Neck) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.00 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.00 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.51 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.64 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---
--------------------|--------------------------| | SAR measured | 250 mW input power | 1.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.55 W/kg ± 16.9 % (k=2) | #### **DASY5 Validation Report for Head TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_f = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.32, 10.32, 10.32) @ 750 MHz; Calibrated: 31.12.2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.96 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.73 W/kg 0 dB = 2.73 W/kg = 4.36 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.29, 10.29, 10.29) @ 750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.37 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg # Impedance Measurement Plot for Body TSL #### **DASY5 Validation Report for SAM Head** Date: 18.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.904 \text{ S/m}$; $\varepsilon_r = 44.22$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: - Probe: EX3DV4 SN7349; ConvF(10.32, 10.32, 10.32) @ 750 MHz; Calibrated: 31.12.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.10.2018 - Phantom: SAM Head - DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### SAM Right/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.66 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.80 W/kg SAR(1 g) = 1.93 W/kg; SAR(10 g) = 1.31 W/kg Maximum value of SAR (measured) = 2.52 W/kg #### SAM Right/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.68 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.98 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.68 W/kg #### SAM Right/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.23 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.82 W/kg SAR(1 g) = 2 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg #### SAM Right/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.76 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.32 W/kg SAR(1 g) = 1.66 W/kg; SAR(10 g) = 1.14 W/kg Maximum value of SAR (measured) = 2.11 W/kg Certificate No: D750V3-1054_Mar19/2 0 dB = 2.11 W/kg = 3.24 dBW/kg ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D750V3-1161_Oct18 | Object | D750V3 - SN:116 |)j | | |---|--|--|---| | Calibration procedure(s) | QA CAL-05.v10
Calibration proce | dure for dipole validation kits abo | ve 700 MHz | | | | | ./ | | Calibration date: | October 19, 2018 |) | its of measurements (SI). BNV | | | | | 10-30 | | This calibration certificate documer | nts the traceability to nati | onal standards, which realize the physical uni | its of measurements (Si). BN^{\vee} | | | | robability are given on the following pages an | d are part of the certificate. 10-20 | | | | | | | All calibrations have been conducte | ed in the closed laborator | ry facility: environment temperature (22 \pm 3)°(| C and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | | | | | Primary Standards | ID # | Cal Date (Cortificate No.) | Scheduled Calibration | | | ID #
SN: 104778 | Cai Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) | Scheduled Calibration | | Power meter NRP | | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778 | | *************************************** | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672) | Apr-19
Apr-19
Apr-19 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power
sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | . This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1161_Oct18 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1161_Oct18 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole
Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.89 mho/m ± 6 % | | | Head TSL temperature change during test | < 0.5 °C | | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.03 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.26 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity 0.96 mho/m | | |---|-----------------|--------------|-------------------------|--| | Nominal Body TSL parameters | 22.0 °C | 55.5 | | | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.96 mho/m ± 6 % | | | Body TSL temperature change during test | < 0.5 °C | | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.43 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.55 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1161_Oct18 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.6 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.0 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.6 Ω - 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.6 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.032 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 19, 2015 | Certificate No: D750V3-1161_Oct18 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 2.70 W/kg 0 dB = 2.70 W/kg = 4.31 dBW/kg Certificate No: D750V3-1161_Oct18 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg # Impedance Measurement Plot for Body TSL # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN:1161 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 4/24/2019 | Annual | 4/24/2020 | 7357 | | SPEAG | EX3DV4 | SAR Probe | 7/16/2019 | Annual | 7/16/2020 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/18/2019 | Annual | 4/18/2020 | 1407 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3
requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Head SAR (1g) | (96) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/19/2018 | 10/18/2019 | 1.032 | 1.61 | 1.64 | 2.12% | 1.05 | 1.08 | 2.66% | 55.6 | 53.2 | 2.4 | -1.9 | -3.4 | 1.5 | -25 | -26.8 | -7.30% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | (96) | Certificate
SAR Target
Body (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/19/2018 | 10/18/2019 | 1.032 | 1.69 | 1.76 | 4.39% | 1.11 | 1.17 | 5.41% | 50.6 | 50 | 0.6 | -4.2 | -4 | 0.2 | -27.6 | -28.1 | -1.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL 15:34:00 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | rage 3 014 | ## Impedance & Return-Loss Measurement Plot for Body TSL 15:35:04 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | Page 4 of 4 | ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D835V2-4d047 Mar19 # **CALIBRATION CERTIFICATE** Object D835V2 - SN:4d047 QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 13, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 07-Oct-15 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | | | | | | Name | Function | Signature | | Calibrated by: | Manu Seitz | Laboratory Technician | | | | | | | | | | | | | Approved by: | Katja Pokovic | Technical Manager | 10111 | | | | | | | | | | | Issued: March 13, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d047_Mar19 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d047_Mar19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.42 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input
power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.13 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.3 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d047_Mar19 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.4 Ω - 2.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.7 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 6.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.9 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D835V2-4d047_Mar19 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg 0 dB = 3.18 W/kg = 5.02 dBW/kg ### **Impedance Measurement Plot for Head TSL** ### **DASY5 Validation Report for Body TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg 0 dB = 3.23 W/kg = 5.09 dBW/kg Certificate No: D835V2-4d047_Mar19 # Impedance Measurement Plot for Body TSL ### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No: D835V2-4d132_Jan20 # CALIBRATION CERTIFICATE Object D835V2 - SN:4d132 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sol Mar | | | | | | | Approved by: | Katja Pokovic | Technical Manager | | | | | | | | | | | | Issued: January 21, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d132 Jan20 Page 1 of 9 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty
required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|---| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | - TTTTTTTTT - 1 TIMING MITTERS TOTAL MINISTRA | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.65 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.30 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | PA 20 10 10 | | ### **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.53 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.96 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.64 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.4 Ω - 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.7 Ω - 5.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.8 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.385 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | lanufactured by | SPEAG | |-----------------|-------| Certificate No: D835V2-4d132_Jan20 #### **DASY5 Validation Report for Head TSL** Date: 13.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.89, 9.89, 9.89) @ 835 MHz; Calibrated: 31.12.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.94 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.60 W/kg ### SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 3.20 W/kg 0 dB = 3.20 W/kg = 5.05 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 13.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.16, 10.16, 10.16) @ 835 MHz; Calibrated: 31.12.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.64 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.71 W/kg #### SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.68 W/kg Smallest distance from peaks to all points 3 dB below = 16.2 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 3.33 W/kg 0 dB = 3.20 W/kg = 5.05 dBW/kg # Impedance Measurement Plot for Body TSL ### Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ ### **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| |---------|------------------|--------------------------------------| ### SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.34 W/kg ± 17.5 % (k=2) | | SAR averaged ever 10 cm ³ /10 g) of Head TSI | a and then | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 6.19 W/ka ± 16.9 % (k=2) | ### SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 9.80 W/kg ± 17.5 % (k=2) | | | 1 | | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Neck ≅ H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|------------------|--------------------------|--| | SAR for nominal Head TSL parameters | normalized to 1W | 9.32 W/kg ± 17.5 % (k=2) | | | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | | ### SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.01 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | Certificate No: D835V2-4d132_Jan20 Additional assessments outside the current scope of SCS 0108 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CALIBRATION CERTIFICATE Accreditation No.: SCS 0108 Issued: May 23, 2018 Client **PC** Test Certificate No: D1765V2-1008_May18 | | D1765V2 - SN:1 | 008 | |
---|--|--|--| | Calibration procedure(s) | QA CAL-05.v10
Calibration proce | edure for dipole validation kits ab | OVE 700 MHz 7/16/2018
BNV
05/2012 | | Calibration date: | May 23, 2018 | | BN
05/2012 | | This calibration certificate docum
The measurements and the unce | ents the traceability to nat
rtainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages ar | nits of measurements (SI). nd are part of the certificate. | | All calibrations have been conduc | cted in the closed laborato | ory facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | Calibration Equipment used (M&7 | ΓE critical for calibration) | | | | Primary Standards | iD# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | ower meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | ower sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672) | Apr-19
Apr-19 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | | | Apr-19 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19
Apr-19 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17) | Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
26-Oct-17 (No. DAE4-601_Oct17) | Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID # | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB374B0704
SN: US37292783 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 | Certificate No: D1765V2-1008_May18 Page 1 of 11 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with
the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1765V2-1008_May18 Page 2 of 11 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52,10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5.0 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permitti∨ity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.0 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | Certificate No: D1765V2-1008_May18 Page 3 of 11 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.7 Ω - 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 43.3 Ω - 6.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.210 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 06, 2005 | Certificate No: D1765V2-1008_May18 Page 4 of 11 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. ### SAR result with SAM Head (Top) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.4 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.9 W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.2 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.4 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 16.9 % (k=2) | ## SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 7 .12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 28.7 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 16.1 W/kg ± 16.9 % (k=2) | Certificate No: D1765V2-1008_May18 Page 5 of 11 ### **DASY5 Validation Report for Head TSL** Date: 15.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 15.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference
Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg Certificate No: D1765V2-1008_May18 Page 8 of 11 # Impedance Measurement Plot for Body TSL ### **DASY5 Validation Report for SAM Head** Date: 23.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 41.8$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 · Phantom: SAM Head • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg #### SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg #### SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg #### SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg Certificate No: D1765V2-1008_May18 0 dB = 10.3 W/kg = 10.13 dBW/kg ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1765V2 – SN: 1008 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 5/17/2019 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 3/11/2019 | Annual | 3/11/2020 | US39170122 | | Agilent | N5182A | MXG Vector Signal Generator | 11/28/2018 | Annual | 11/28/2019 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1027293 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 10/9/2018 | Biennial | 10/9/2020 | 181647811 | | Control Company | 4352 | Ultra Long Stem Thermometer | 6/6/2018 | Biennial | 6/6/2020 | 181334678 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 3914 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/14/2019 | Annual | 2/14/2020 | 1272 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1765V2 – SN: 1008 | 05/17/2019 | rage 1014 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | M/kg @ 20.0 | (9/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (10a) M//ka @ | Deviation 10g
(%) | | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---------------|-------|---|---------------|----------------------|------|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5/23/2019 | 5/17/2019 | 1.21 | 3.62 | 3.63 | 0.28% | 1.9 | 1.92 | 1.05% | 47.7 | 47 | 0.7 | -6.5 | -6 | 0.5 | -23 | -23.3 | -1.20% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Body SAR (1g) | (9/.) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) M//ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5/23/2019 | 5/17/2019 | 1.21 | 3.74 | 3.95 | 5.61% | 1.99 | 2.08 | 4.52% | 43.3 | 44.6 | 1.3 | -6 | -7 | 1 | -20.3 | -20.5 | -0.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1765V2 – SN: 1008 | 05/17/2019 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No: D1750V2-1148_May19 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1148 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 05-23-20 Calibration date: May 15, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID# | Check Date (in
house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seif Algan | | Approved by: | Katja Pokovic | Technical Manager | AU. | Issued: May 15, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1148_May19 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1148_May19 Page 2 of 11 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5.0 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.0 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.83 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.5 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | <u> </u> | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### **SAR result with Body TSL** | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.35 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1148_May19 Page 3 of 11 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.4 Ω - 0.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.4 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | |-----------------------| |-----------------------| # Appendix (Additional assessments outside the scope of SCS 0108) ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. | | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |-----|---------|------------------|-----------------------------| | - 1 | | | | ### SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.9 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 16.9 % (k=2) | ### **SAR result with SAM Head (Mouth)** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.8 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 16.9 % (k=2) | ### SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.6 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.9 W/kg ± 16.9 % (k=2) | ### SAR
result with SAM Head (Ear) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 7.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 28.7 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 3.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 16.0 W/kg ± 16.9 % (k=2) | Certificate No: D1750V2-1148_May19 ### **DASY5 Validation Report for Head TSL** Date: 08.05.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\varepsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 08.05,2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg # Impedance Measurement Plot for Body TSL #### **DASY5 Validation Report for SAM Head** Date: 15.05.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2019 · Phantom: SAM Head DASY52 52.10.2(1495); SEMCAD X 14.6,12(7450) #### SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 14.2 W/kg #### SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 13.9 W/kg #### SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 15.5 W/kg SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.1 W/kg #### SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.82 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 7.11 W/kg; SAR(10 g) = 3.98 W/kg Maximum value of SAR (measured) = 10.2 W/kg Certificate No: D1750V2-1148_May19 0 dB = 10.2 W/kg = 10.09 dBW/kg ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D1900V2-5d148 Feb19 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d148 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 1300 Calibration date: February 21, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 07-Oct-15 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Manu Seltz | Laboratory Technician | - Pi | | | | | 770 | | Approved by: | Katja Pokovic | Technical Manager | AUG | Issued: February 21, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters
are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d148_Feb19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.65 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.56 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω + 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.2 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.4 Ω + 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | | |----------------------------------|----------| | Liectrical Delay (one direction) | 1.170 ns | | | | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | #### **DASY5 Validation Report for Head TSL** Date: 21.02,2019 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 15.0 W/kg 0 dB = 15.0 W/kg = 11.76 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.02.2019 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10,2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D1900V2-5d149_Oct18 | Object | D1900V2-SN:50 | 1149 | | |--
---|--|--| | | and the trade material expension readings | | | | Calibration procedure(s) | QA CAL-05.v10 | dura for dipola validation bits abo | wo 700 MB> | | | Gailbrailon proce | dure for dipole validation kits abo | IVE 700 MITZ | | | | | $\rho_{ m N}V$ | | | Total Control of the | | BNV
10-30-2018
10-20-20 | | Calibration date: | October 23, 2018 | 3 | 10-30- | | | | | BNY | | The state of s | | | 10-20-1 | | | • | ional standards, which realize the physical uni | • • | | he measurements and the uncert | tainties with confidence p | robability are given on the following pages an | d are part of the certificate. | | All actibrations have been analyst | | | O I b I-da- 2700/ | | ui caidiations have been conque | ed in the closed laborato | ry facility: environment temperature (22 ± 3)°C | Jana numidity < 70%. | | Colibration Equipment used (MRT) | E critical for calibration) | | | | Jauniauon Equipinen used (Mai) | | | | | Januarion Equipment used (Math | E crided for calibrationy | | | | , , | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | 1 | Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) | Scheduled Calibration Apr-19 | | Primary Standards Power meter NRP | ID# | | | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID#
SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | ID #
SN: 104778
SN: 103244 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672) | Apr-19
Apr-19 | | Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19
Apr-19 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19
Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Recomer sensor HP 8481A Recomer sensor HP 8481A Recomer sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No.
217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | Certificate No: D1900V2-5d149_Oct18 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | MALE | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.9 Ω + 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.5 Ω + 8.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one
direction) | 1.193 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | Certificate No: D1900V2-5d149_Oct18 ## **DASY5 Validation Report for Head TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23,10,2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg # Impedance Measurement Plot for Body TSL #### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1900V2 – SN:5d149 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 3914 | | SPEAG | EX3DV4 | SAR Probe | 5/16/2019 | Annual | 5/16/2020 | 7406 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/8/2019 | Annual | 5/8/2020 | 859 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/14/2019 | Annual | 2/14/2020 | 1272 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | XDK- | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (96) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|------|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2019 | 1.193 | 3.93 | 4.24 | 7.89% | 2.05 | 2.18 | 6.34% | 52.9 | 51.8 | 1.1 | 6.3 | 6.4 | 0.1 | -23.4 | -23.8 | -1.80% | Pass | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (0/) | | (40-) M(4 © | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2019 | 1.193 | 3.94 | 4.2 | 6.60% | 2.07 | 2.15 | 3.86% | 48.5 | 48.4 | 0.1 | 8.2 | 7.6 | 0.6 | -21.5 | -22.1 | -2.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL 14:33:19 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | rage 3 01 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL 14:40:34 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Page 4 of 4 | # Calibration Laboratory of Schmid & Partner Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio
svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D2300V2-1073_Aug18 # BRATION CERTIFICATE Object D2300V2 - SN:1073 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|------------------------------|--|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | | Apr-19 | | DAE4 | SN: 601 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | | SI4, 501 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Charle Date (in traver) | _ | | Power meter EPM-442A | SN: GB37480704 | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (iπ house check Oct-16) | In house check: Oct-18 | | | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | Iπ house check: Oct-18 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | | | | | | MINUS) | | Approved by: | Katja Pokovic | Technical Manager | and the | | | And the second second second | en e | Jex cos | Issued: August 13, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1073_Aug18 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.70 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # **SAR result with Head TSL** | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.85 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 47.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.86 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.2 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1 Ω - 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.5 Ω - 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.9 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) 1.171 ns | Fleet-te-I Del (P. d.) | | |---|----------------------------------|------------| | 1.17 (115 | Electrical Delay (one direction) | 1 171 pc | | | | 1.17 (115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 16, 2015 | Certificate No: D2300V2-1073_Aug18 # **DASY5 Validation Report for Head TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.7$ S/m;
$\epsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.2 W/kg 0 dB = 20.2 W/kg = 13.05 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 19.1 W/kg 0 dB = 19.1 W/kg = 12.81 dBW/kg # Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2300V2 – SN: 1073 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: 08/09/2019 Description: SAR Validation Dipole at 2300 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 10/2/2018 | Annual | 10/2/2019 | US39170118 | | Agilent | N5182A | MXG Vector Signal Generator | 6/27/2019 | Annual | 6/27/2020 | US46240505 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1339007 | | Control Company | 4040 | Temperature / Humidity Monitor | 2/28/2018 | Biennial | 2/28/2020 | 150761911 | | Control Company | 4352 | Ultra Long Stem Thermometer | 2/28/2018 | Biennial | 2/28/2020 | 170330160 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 5/23/2018 | Biennial | 5/23/2020 | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 7417 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/13/2019 | Annual | 2/13/2020 | 665 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2300V2 – SN: 1073 | 08/09/2019 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 8/13/2018 | 8/9/2019 | 1.171 | 4.92 | 5.21 | 5.89% | 2.38 | 2.49 | 4.62% | 50.1 | 47.5 | 2.6 | -5.2 | -4.2 | 1 | -25.7 | -26.1 | -1.60% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 8/13/2018 | 8/9/2019 | 1.171 | 4.77 | 5.05 | 5.87% | 2.32 | 2.4 | 3.45% | 45.5 | 44.4 | 1.1 | -4.1 | -3.3 | 0.8 | -23.9 | -23.2 | 2.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2300V2 – SN: 1073 | 08/09/2019 | Fage 2 01 4 | ## Impedance & Return-Loss Measurement Plot for Head TSL CENTER 2 300.000 000 MHz SPAN 400.000 000 MHz ## Impedance & Return-Loss Measurement Plot for Body TSL CENTER 2 300.000 000 MHz SPAN 400.000 000 MHz #### Calibration Laboratory of Schmid & Partner Engineering AG Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D2450V2-797_Sep17 | | CERTIFICATI | | • | |---|---|--|--| | Object | D2450V2 - SN:7 | 97 | | | Callbration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | (o)60J | |
Callbration date: | September 11, 2 | 017 | Extended PMV
9/20/2 | | The measurements and the unce | rtainties with confidence p | ional standards, which realize the physical un
probability are given on the following pages ar | ilts of measurements (SI). BNV
ad are part of the certificate. | | All camprations have been conduc | cted in the closed laborato | ry facility: environment temperature (22 \pm 3)°(| C and humidity < 70%. | | | | | | | Calibration Equipment used (M& | TE critical for calibration) | | | | | FE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards
Power meler NRP | | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) | Scheduled Calibration Apr-18 | | Primary Standards
Power meler NRP | 1D # | | Apr-18 | | Primary Standards
Power meler NRP
Power sensor NRP-Z91 | ID #
SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521) | Apr-18
Apr-18 . î.
Apr-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522) | Apr-18
Apr-18 a | | Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528) | Apr-18
Apr-18 :
Apr-16
Apr-18 | | Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Apr-18
Apr-18 : a
Apr-18
Apr-18
Apr-18 | | Primary Standards Power meier NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) | Apr-18 Apr-18 Apr-16 Apr-16 Apr-18 Apr-18 Apr-18 May-18 May-18 | | Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) | Apr-18 Apr-18 Apr-16 Apr-16 Apr-18 Apr-18 May-18 May-18 Mar-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 | | Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104779 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meler NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-08 Network Analyzer HP 8753E | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02529) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 | Issued: September 11, 2017 Certificate No: D2450V2-797_Sep17 Katja Pokovic This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Approved by: Technical Manager ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerlscher Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result, The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the
coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | - | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | Mhana | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | N.S. o. o. | 7 | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 W/kg ± 17.0 % (k≃2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.8 Ω + 7.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.7 Ω + 9.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20,9 dB | #### General Antenna Parameters and Design | | <u>,</u> | |------------------------------------|--------------| | | | | I Floatrical Delay (one direction) | l 1.152 ns l | | Electrical Delay (one direction) | I 1.152 ns I | | | ******* | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 24, 2006 | -در در در #### **DASY5 Validation Report for Head TSL** Date: 11.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 11.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 28.03.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 20.3 W/kg 0 dB = 20.3 W/kg = 13.07 dBW/kg # Impedance Measurement Plot for Body TSL