

TEST REPORT

FCC/ISED 77 GHz Radar Test for MAR326

Certification

APPLICANT HYUNDAI MOBIS CO., LTD.

REPORT NO. HCT-RF-2402-FI005-R1

DATE OF ISSUE April 5, 2024

> Tested by Kwang Il Yoon

Technical Manager Jong Seok Lee

HCT CO., LTD. BongJai Huh

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2402-FI005-R1

DATE OF ISSUE April 05, 2024

Applicant	HYUNDAI MOBIS CO., LTD. 203, Teheran-ro, Gangnam-gu, Seoul, South Korea (06141)
Product Name Model Name	UNIT ASSY-FR RADAR MAR326
FCC ID IC	TQ8-MAR326 5074A-MAR326
Date of Test	November 22, 2023~ December 13, 2023
Test Standard Used	Part 95(m), RSS-GEN issue 5, RSS-251 issue 2
Test Results	PASS
Frequency Range	76 GHz ~ 77 GHz
FCC Classification	Vehicular Radar Systems (VRD)
Max. RF Output Power	Peak: 39.98 dBm Aver: 28.32 dBm
Brand	HYUNDAI MOBIS
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea)

F-TP22-03 (Rev. 06) Page 2 of 31

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	February 28, 2024	Initial Release
1	April 05, 2024	 Modified all test configurations. Added a Measurement standards on page 5. Added a duty cycle on page 5. Modified the content of section 2.4. Revised the content regarding voltage information on page 27.

Notice

Content

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC/ISED Rules under normal use and maintenance.

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact $\underline{www.hct.co.kr}$

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 31

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
2.1 EUT CONFIGURATION	6
2.2 EUT EXERCISE	6
2.3 GENERAL TEST PROCEDURES	6
2.4 DESCRIPTION OF TEST MODES	6
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
4.1 FACILITIES	7
4.2 EQUIPMENT	7
5. MEASUREMENT UNCERTAINTY	8
6. SUMMARY TEST OF RESULTS	9
7. TEST RESULT	11
7.1 OCCUPIED BANDWIDTH MEASUREMENT	11
7.2 RADIATED POWER	14
7.3 UNWANTED EMISSIONS	17
7.4 FUNDAMENTAL EMISSIONS (FREQUENCY STABILITY)	27
8. LIST OF TEST EQUIPMENT	29
9. ANNEX A_TEST SETUP PHOTO	31

F-TP22-03 (Rev. 06) Page 4 of 31

1. EUT DESCRIPTION

Model	MAR326	
Additional Model	-	
EUT Type	UNIT ASSY-FR RADAR	
EUT Serial Number	N/A	
Power Supply	DC 9 V ~ 16 V	
Frequency Range	76 GHz ~ 77 GHz	
FIDD	Peak 39.98 dBm	
EIRP	Average 28.32 dBm	
Modulation Type	FMCW	
Duty Cycle	Max. 38 %	
Antenna Specification	Antenna type: PCB antenna	
Antenna Specification	Peak Gain(dBi): 16.08	
PMN (Product Marketing	MAR326	
Number)		
HVIN (Hardware Version	MAR326	
Identification Number)	MAK320	
FVIN (Firmware Version	N/A	
Identification Number)	N/A	
HMN (Host Marketing Name)	N/A	
Measurement standards	Part 95(m), RSS-GEN, RSS-251, KDB 653005 D01	

F-TP22-03 (Rev. 06) Page 5 of 31

2. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) Operating Under § 95(m)" were used in the measurement.

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on EIRP measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx Frequency that was for the purpose of the measurements.

2.3 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set far-field distance away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 of ANSI C63.10. (Version: 2013)

2.4 DESCRIPTION OF TEST MODES

The EUT was tested under normal operating conditions, and frequency stability measurements were performed over variations in input voltage and operating temperature.

F-TP22-03 (Rev. 06) Page 6 of 31

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna (Up to 40 GHz) for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2006).

4. FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 31, 2022 (CAB identifier: KR0032).

For ISED, test facility was accepted dated April 06, 2022 (CAB identifier: KR0032).

4.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 06) Page 7 of 31

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence.

Parameter	Expanded Uncertainty (± dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 8 of 31

6. SUMMARY TEST OF RESULTS

Test Description	FCC Part / ISED Section(s)	Test Limit	Test Condition	Test Result
Occupied Bandwidth	§ 2.1049 / RSS-GEN, Section 6.7	FCC: N/A ISED: 76-81 GHz		PASS
Radiated Power	§ 95.3367(a)(b) / RSS-251, Section 8.1, 9.1	< EIRP 50 dBm (Average) < EIRP 55 dBm (Peak)		PASS
Unwanted emissions	§ 95.3379(a)(1)(2) / RSS-GEN, Section 6.13 RSS-251, Section 10	0.009 – 0.490 MHz: 2400/F[kHz] 0.490 – 1.705 MHz: 24000/F[kHz] 1.705 – 30.0 MHz: 30 dBμV/m 30 – 88 MHz: 30.0 dBμV/m 88 – 216 MHz: 33.5 dBμV/m 216 – 960 MHz: 36.0 dBμV/m 960 – 40 000 MHz: 54 dBμV/m 40 – 200 GHz: -1.7 dBm 200 – 243 GHz: +0.5 dBm	Radiated	PASS
Fundamental Emissions(Frequency stability)	§ 95.3379(b) / RSS-GEN, Section 8.11 RSS-251, Section 11	76 – 81 GHz		PASS

F-TP22-03 (Rev. 06) Page 9 of 31

- All tests is performed by radiated measurement and applied below conditions.
- : Used measurement distance with far field of test such as EIRP, OBW and Band edge are as follow.

 $Wavelength = Speed\ of\ light/Measurement\ frequency = 30/7\ 700 = 0.0038$ $(2\ X\ (Max\ antenna\ length\ of\ EUT)^2)/Wavelength = 2\ X\ (0.04319)^2/0.0038 = 0.96\ m$

So, the measurement distance is 1.0 m

: Spurious emissions measurement distance is shown in table below. (Far field)

Frequency Rage (GHz)	Wavelength (cm)	Far Field Distance (m)	Measured Distance (m)
18 ~ 40	0.75	3.154	3.50
40 ~ 60	0.50	1.354	1.50
60 ~90	0.33	0.856	1.50
90 ~ 140	0.21	0.572	1.50
140 ~ 220	0.13	0.365	1.50
220 ~ 243	0.12	0.187	1.50

F-TP22-03 (Rev. 06) Page 10 of 31

7. TEST RESULT

7.1 OCCUPIED BANDWIDTH MEASUREMENT

■ TEST REQUIREMENTS AND LIMITS

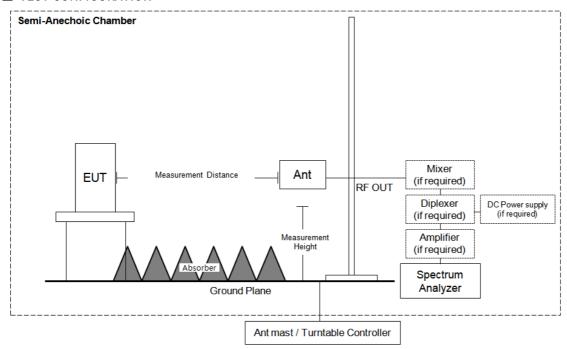
FCC Rule

§ 2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

ISED Rule

RSS-GEN,


6.7 Occupied bandwidth (or 99% emission bandwidth) and x dB bandwidth

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

F-TP22-03 (Rev. 06) Page 11 of 31

■ TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

RBW = 1% to 3% of the 99% bandwidth.

 $VBW \ge 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

Note: We tested Occupied Bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer.

F-TP22-03 (Rev. 06) Page 12 of 31



■ TEST RESULTS

TEST CON	IDITIONS:	Occupied Channel Bandwidth [MHz]
T nom	V nom	288.85

RESULT PLOTS

Occupied Bandwidth plot

F-TP22-03 (Rev. 06) Page 13 of 31

7.2 RADIATED POWER

■ TEST REQUIREMENTS AND LIMITS

FCC Rules

§ 95.3367 76-81 GHz Band Radar Service radiated power limits.

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

- (a) The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).
- (b) The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

ISED Rules

RSS-251.

8. Average equivalent isotropically radiated power (e.i.r.p.)

8.1 Measurement method

The average e.i.r.p. measurement shall be performed using a power averaging detector with a 1 MHz resolution bandwidth (RBW). The power shall be integrated over the occupied bandwidth.

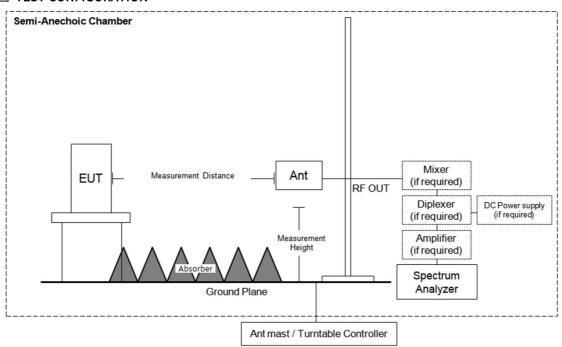
8.2 Limit

The radar device's total average e.i.r.p. shall not exceed 50 dBm over the occupied bandwidth.

9. Peak e.i.r.p. spectral density

9.1 Measurement method

The peak e.i.r.p. measurement shall be performed by sweeping the transmitted occupied bandwidth with a positive peak power detector, using a peak hold display mode, and a 1 MHz resolution bandwidth. The power integration is not to be used in performing this measurement.

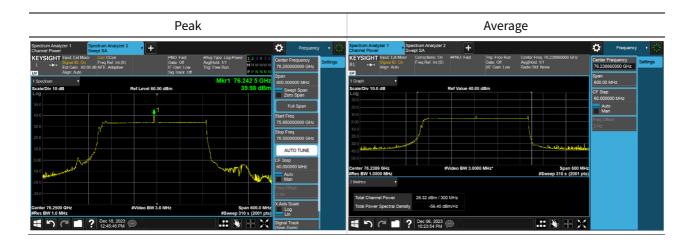

9.2 Limit

The radar device's peak e.i.r.p. spectral density shall not exceed 55 dBm/MHz.

F-TP22-03 (Rev. 06) Page 14 of 31

■ TEST CONFIGURATION

F-TP22-03 (Rev. 06) Page 15 of 31


■ TEST RESULTS

Frequency	Measured Level	Measurement
[GHz]	[dBm]	Туре
76.239	39.98	PK
76.239	28.32	AV

Note:

1. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

■ RESULT PLOTS

F-TP22-03 (Rev. 06) Page 16 of 31

7.3 UNWANTED EMISSIONS

■ TEST REQUIREMENTS AND LIMITS

FCC Rules

§ 95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

- (a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:
 - (1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meter)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

- (i) In the emissions table in paragraph (a)(1) of this section, the tighter limit applies at the band edges.
- (ii) The limits in the table in paragraph (a)(1) of this section are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (iii) The emissions limits shown in the table in paragraph (a)(1) of this section are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.
- (2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:
 - (i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm2 at a distance of 3 meters from the exterior surface of the radiating structure.
 - (ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm2 at a distance of 3 meters from the exterior surface of the radiating structure.

F-TP22-03 (Rev. 06) Page 17 of 31

(3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum shall be investigated up to 231.0 GHz.

ISED Rules

RSS-251,

10. Unwanted emissions

10.1 Measurement method

In addition to the requirements specified in RSS-Gen and the method of measurement of ANSI C63.10, the spectrum shall be investigated up to 162 GHz.

10.2 Limit

The radar device's unwanted emissions outside the 76-81 GHz frequency band shall comply with the limits in table 1, below.

Table 1: Unwanted emissions limits outside the 76-81 GHz frequency band		
Emission frequency range	Limit	Applicable detector
	RSS-Gen general field strength	
Below 40 GHz	limits for licence-exempt radio	RSS-Gen requirements
	apparatus	
40-162 GHz [#]	-30 dBm/MHz(e.i.r.p.)	RMS detector

Note:

RSS-GEN,

7.3 Receiver radiated emission limits

Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna ports. The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver or 30 MHz, whichever is higher, to at least five times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz. Spurious emissions from receivers shall not exceed the radiated emissions limits shown in Table3.

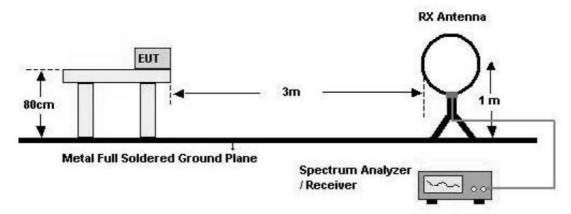
F-TP22-03 (Rev. 06) Page 18 of 31

[#] For radar devices that operate solely in the 76-77 GHz band (i.e. the occupied bandwidth is entirely contained in the 76-77 GHz band), an unwanted emissions limit of 0 dBm/MHz shall apply for the unwanted emission that fall in the 73.5-76 GHz band. Outside of the 73.5-76 GHz band, the unwanted emission limits prescribed in table 1 shall apply.

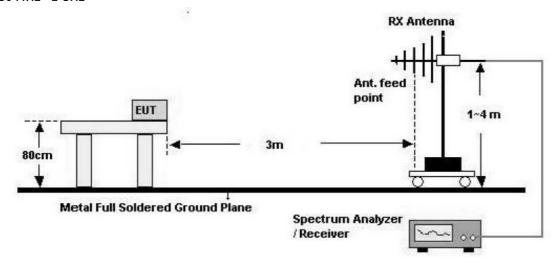
Table 3 – Receiver radiated emissions limits		
Frequency (MHz)	Field Strength (μv/m at 3 metres) [#]	
30-88	100	
88-216	150	
216-960	200	
Above 960	500	
30-88	100	
88-216	150	

Note: *Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with section 6.6.

■ TEST PROCEDURE

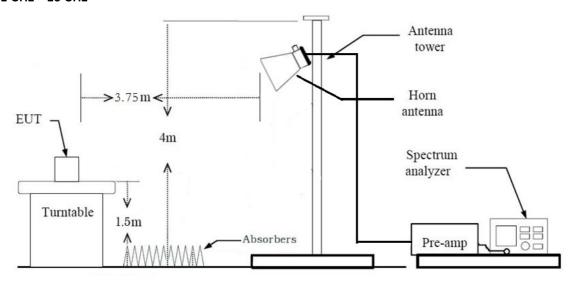

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until the measurements for all frequencies are complete.

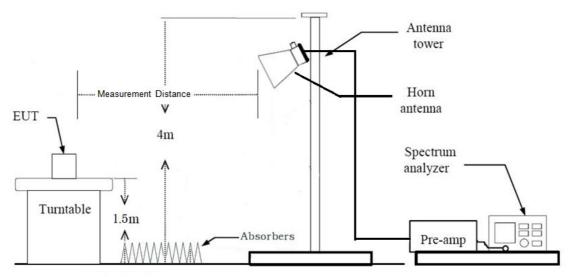
F-TP22-03 (Rev. 06) Page 19 of 31



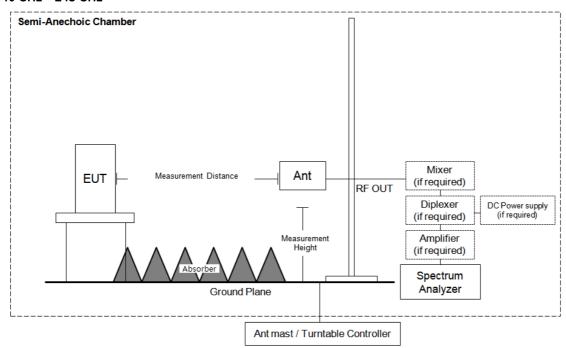
■ TEST CONFIGURATION

Below 30 MHz


30 MHz - 1 GHz


F-TP22-03 (Rev. 06) Page 20 of 31

1 GHz - 18 GHz


18 GHz - 40 GHz

F-TP22-03 (Rev. 06) Page 21 of 31

40 GHz - 243 GHz

F-TP22-03 (Rev. 06) Page 22 of 31

■ TEST RESULTS

9 kHz - 30MHz

Frequency	Measured Level	Ant. factor	Cable loss	Ant. Pol.	Total	Limit	Margin
No Critical peaks found							

Notes:

- 1. Measuring frequencies from 9 kHz to the 30 MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor
- 5. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- The test results for below 30 MHz is correlated to an open site.
 The result on OFTS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

Below 1 GHz

Frequency	Measured Level	Ant. factor	Cable loss	Ant. Pol.	Total	Limit	Margin
No Critical peaks found							

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev. 06) Page 23 of 31

1 GHz - 18 GHz

Frequency	Measured Level	Ant. factor	Cable loss	Amp. Gain	Ant. Pol.	Total	Limit	Margin
No Critical peaks found								

Notes:

- 1. Measuring frequencies from 1 GHz to the 18 GHz.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 3. Total = Measured Level + Antenna Factor + Cable Loss Amplifier Gain + Distance Factor
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

18 GHz - 40 GHz

Frequency	Measured Level	A.F. + C.L A.G. + D.F.	Ant. Pol.	Total	Limit	Margin
[MHz]	[dB _µ V]	[dB/m]	(H/V)	[dB _µ V/m]	[dB _µ V/m]	[dB]
25 367.8	49.51	-3.33	Н	46.18	54.00	7.82

Note:

- 1. Measuring frequencies from 18 GHz to the 40 GHz.
- 2. Total = Measured Value + Antenna Factor + Cable Loss Amplifier Gain + Distance Factor
- 3. Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. Worst case is y plane and vertical polarization.

F-TP22-03 (Rev. 06) Page 24 of 31

40 GHz - 90 GHz

Frequency	Measured	Ant.	Cable	Mixer	Amp.	Ant.	Total	Limit	Margin
	Level	factor	loss	Loss	Gain	Pol.	Total	Lillic	margin
No Critical peaks found									

Note:

- 1. Measuring frequencies from 40 GHz to the 90 GHz.
- 2. Total = Measured Value + Antenna Factor + Cable Loss + Mixer Loss Amplifier Gain
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

90 GHz - 243 GHz

Frequency	Measured Level	Ant. factor	Cable loss	Mixer Loss	Amp. Gain	Ant. Pol.	Total	Limit	Margin
No Critical peaks found									

Notes:

- 1. Measuring frequencies from 90 GHz to the 243 GHz.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Total = Measured Value + Antenna Factor + Cable Loss + Mixer Loss Amplifier Gain
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-TP22-03 (Rev. 06) Page 25 of 31

■ RESULT PLOTS

Unwanted Emission Plot

Note: Only the worst case plots for Radiated Spurious Emissions.

F-TP22-03 (Rev. 06) Page 26 of 31

7.4 FUNDAMENTAL EMISSIONS (FREQUENCY STABILITY)

■ TEST REQUIREMENTS AND LIMITS

FCC Rules

§ 95.3379 76 ~ 81 GHz Band Radar Service unwanted emissions limits.

(b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range −20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

ISED Rules

RSS-GEN,

8.11 Frequency stability

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer.

RBW = 1% to 3% of the 99% bandwidth.

 $VBW \ge 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

Allow the trace to stabilize

The frequency drift was investigated for every 10 °C increment until the unit is stabilized then recorded the reading in tabular format with the temperature range of -40 to 85 °C.(Manufacturer declaration)

Voltage supplied to EUT is 12 V reference temperature was done at 20°C.

Tested it with the voltage provided by the manufacturer.

F-TP22-03 (Rev. 06) Page 27 of 31

■ TEST RESULTS

Reference: 12 V at 20°C **Freq.** = 76.250 GHz

Voltage	Temp. Low Frequency		High Frequency	Limit	Result
(V)	(°C)	(°C) (GHz)		Hz) (GHz)	
	+20(Ref)	76.0942	76.3829		Pass
	-40	76.0972	76.3864		Pass
	-30	76.0961	76.3859		Pass
	-20	76.0966	76.3855		Pass
	-10	76.0959	76.3849		Pass
	0	76.0957	76.3843	76 ~ 81	Pass
10	10	76.0952	76.3836		Pass
12	30	76.0943	76.3827		Pass
	40	76.0944	76.3825	76~81	Pass
	50	76.0944	76.3825		Pass
	60	76.0952	76.3826		Pass
	70	76.0961	76.3829		Pass
	80	76.0964	76.3837		Pass
	85	76.0972	76.3839		Pass
9	20	76.0943	76.3828		Pass
16	20	76.0943	76.3829		Pass

F-TP22-03 (Rev. 06) Page 28 of 31

8. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
PXA Signal Analyzer	N9030B	Keysight	MY55480110	07/13/2024	Annual
PXA Signal Analyzer	N9030A	Keysight	MY55410714	02/13/2025	Annual
Spectrum Analyzer	FSW85	Rohde & Schwarz	101256	10/13/2024	Annual
Controller (Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Temperature and Humidity Chamber	PL-4KP	ESPEC	14021890	09/27/2024	Annual
Spectrum Analyzer	FSP40	Rohde & Schwarz	100843	10/30/2024	Annual
Turn Table	DS2000-S	Innco system	N/A	N/A	N/A
Turn Table	Turn Table	Ets	N/A	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-175	01/16/2025	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/16/2024	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	02296	05/18/2024	Biennial
Horn Antenna	BBHA 9170	Schwarzbeck	BBHA9170541	11/01/2025	Biennial
Horn Antenna	WR-19 Horn Antenna	OML INC.	M19RH-180423-1	03/14/2024	Biennial
Horn Antenna	WR-19 Horn Antenna	OML INC.	M19RH-180423-2	03/14/2024	Biennial
Horn Antenna	WR-12 Horn Antenna	OML INC.	M12RH-180423-1	03/14/2024	Biennial
Horn Antenna	WR-12 Horn Antenna	OML INC.	M12RH-180423-2	03/14/2024	Biennial
Horn Antenna	WR-08 Horn Antenna	OML INC.	M08RH-180501-1	03/15/2024	Biennial
Horn Antenna	WR-08 Horn Antenna	OML INC.	M08RH-180501-2	03/15/2024	Biennial
Horn Antenna	WR-05 Horn Antenna	OML INC.	M05RH-180501-1	03/15/2024	Biennial
Horn Antenna	WR-05 Horn Antenna	OML INC.	M05RH-180501-2	03/15/2024	Biennial
Spectrum Analyzer Extension Module	WR19SAX-M	VDI	SAX 771	03/14/2024	Annual
Spectrum Analyzer Extension Module	WR15SAX	VDI	SAX 936	07/19/2024	Annual
Spectrum Analyzer Extension Module	WR12SAX-M	VDI	SAX 773	03/22/2024	Annual
Spectrum Analyzer Extension Module	WR8.0SAX-M	VDI	SAX 779	03/14/2024	Annual
Spectrum Analyzer Extension Module	WR5.1SAX-M	VDI	SAX 774	03/14/2024	Annual
Source Module	WR-19	OML INC.	S19MS-A-160516-1	07/19/2024	Annual
Source Module	WR-12	OML INC.	S12MS-A-160419-1	07/19/2024	Annual
Source Module	WR-08	OML INC.	S08MS-A-160419-1	07/19/2024	Annual
Source Module	WR-05	OML INC.	S05MS-A-160419-1	07/19/2024	Annual
Signal Generator	SMB100A	Rohde & Schwarz	177633	06/22/2024	Annual
Oscilloscope	RTO2024	Rohde & Schwarz	300090	06/12/2024	Annual
Horn Antenna	SAR-2309-15-S2	ERAVANT	08394-01	12/23/2024	Biennial
Waveguide Detector	SFD-503753-15SF-P1	ERAVANT	08395-01	01/09/2025	Annual

F-TP22-03 (Rev. 06) Page 29 of 31

Note:

- 1. All equipment is calibrated with traceable calibrations.
- 2. Each calibration is traceable to the national or international standards.
- 3. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 4. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date, or will be test after the calibration is completed.

F-TP22-03 (Rev. 06) Page 30 of 31

9. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2402-FI005-P

F-TP22-03 (Rev. 06) Page 31 of 31