

FCC Test Report

Applicant	:	GuangDong SINOY Smart Technology CO., LTD
Address	:	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, DongGuan 523000, China
Product Name	:	Smart Projector
Report Date	:	Nov. 22, 2024

Contents

1. General Information	6
 1.1. Client Information	
2. Conducted Emission at AC power line	14
2.1. EUT Operation2.2. Test Setup2.3. Test Data3. Duty Cycle	14 15
3.1. EUT Operation 3.2. Test Setup	17 17
3.3. Test Data4. Emission bandwidth and occupied bandwidth	
 4.1. EUT Operation	
5. Maximum conducted output power	21
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	
6. Power spectral density	23
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	
7. Channel Move Time, Channel Closing Transmission Time	25
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	
8. DFS Detection Thresholds	27
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	
9. Band edge emissions (Conducted)	29
9.1. EUT Operation 9.2. Test Setup 9.3. Test Data	

Shenzhen Anbotek Compliance Laboratory Limited

32
34 35 36
43
45 45 46
48 50
56 56
-

Shenzhen Anbotek Compliance Laboratory Limited

TEST REPORT

Test Standard(s)	:	47 CFR Part 15E ANSI C63.10-2020 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 905462 D03 Client Without DFS New Rules v01r02
Rating(s)	:	Input: 110V-240V~, 2.5A, 40W
Trade Mark	:	N/A
Model No.	:	HY320Mini, HY320MiniA, HY320MiniB, HY320MiniC, HY320MiniD, HY320MiniE, HY320MiniF, HY320MiniG, HY320MiniH, HY320MiniI, HY260, HY260Pro, HY300, HY300Pro, GM300, HY320, HY320Pro, HY450, HY450Pro, HY200, HY200Pro, L018, GM600 NTV, HY350, HY350 NTV, HY450 NTV, HY320N, HY320 NTV, HY260 N, HY260 NTV
Product Name	:	Smart Projector
Manufacturer	:	GuangDong SINOY Smart Technology CO., LTD
Applicant	:	GuangDong SINOY Smart Technology CO., LTD

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Oct. 08, 2024

Date of Test:

Prepared By:

Oct. 08, 2024 to Nov. 11, 2024

Nian xiu Chen

(Nianxiu Chen)

(KingKong Jin)

Approved & Authorized Signer:

Shenzhen Anbotek Compliance Laboratory Limited

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Nov. 22, 2024

Shenzhen Anbotek Compliance Laboratory Limited

1. General Information

1.1. Client Information

Applicant	:	GuangDong SINOY Smart Technology CO., LTD	
Address	•	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, DongGuan 523000, China	
Manufacturer	:	GuangDong SINOY Smart Technology CO., LTD	
Address	•	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, DongGuan 523000, China	
Factory	:	GuangDong SINOY Smart Technology CO., LTD	
Address	•	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, DongGuan 523000, China	

1.2. Description of Device (EUT)

Product Name	:	Smart Projector	
Model No.	:	HY320Mini, HY320MiniA, HY320MiniB, HY320MiniC, HY320MiniD, HY320MiniE, HY320MiniF, HY320MiniG, HY320MiniH, HY320MiniI, HY260, HY260Pro, HY300, HY300Pro, GM300, HY320, HY320Pro, HY450, HY450Pro, HY200, HY200Pro, L018, GM600 NTV, HY350, HY350 NTV, HY450 NTV, HY320N, HY320 NTV, HY260 N, HY260 NTV (Note: All samples are the same except the model name, so we prepare "HY320Mini" for test only.)	
Trade Mark	:	N/A	
Test Power Supply	:	AC 120V/60Hz	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter	:	N/A	
RF Specification			
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz	
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 2C: 11; U-NII Band 3: 5 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 2A: 2;	

Shenzhen Anbotek Compliance Laboratory Limited

		U-NII Band 3: 2	
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)	
Device Type	:	Client Devices	
DFS Type	:	Slave without radar detection	
TPC Function	:	Without TPC	
Antenna Type	:	FPC Antenna	
Antenna Gain(Peak) WiFi 5.2G: 4.45dBi WiFi 5.3G: 5.40dBi WiFi 5.6G: 3.46dBi WiFi 5.8G: 2.51dBi WiFi 5.8G: 2.51dBi			
Remark: (1) All of the RF specification are provided by customer. (2) For a more detailed features description, please refer to the manufacturer's specifications or the			

User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC ID: MSQ RTAX5D00 IC: 3568A-RTAX5D00)	RAIG5D2020695NL

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190
40	5200	46	5230
44	5220	1	1
48	5240	1	1

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270
56	5280	62	5310
60	5300	1	/
64	5320	1	/

Operation Band: U-NII Band 2C

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510
104	5520	110	5550
108	5540	118	5590
112	5560	126	5630
116	5580	134	5670
120	5600	/	1
124	5620	/	1
128	5640	/	1
132	5660	/	/
136	5680	/	/

Shenzhen Anbotek Compliance Laboratory Limited

140	5700	/	1
-----	------	---	---

Operation Band: U-NII Band 3

•			
Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755
153	5765	159	5795
157	5785	1	1
161	5805	1	/
165	5825	/	/

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5	Keep the EUT works in normal operating mode and connect to companion device

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Dwell Time	2%
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB
The measurement uncertainty and decision risk e	valuated according to AB/WI-RE-E-032

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Mode1,2,3,4	
100001,2,0,4	P
Mode1,2,3,4	Р
Mode5	Р
Mode5	Р
Mode1,2,3,4	Р
	Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode5 Mode5 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

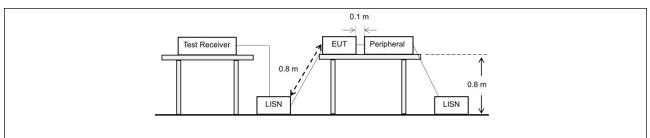
Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Duty Cycle
Emission bandwidth and occupied bandwidth
Maximum conducted output power
Power spectral density
Channel Move Time, Channel Closing Transmission Time
DFS Detection Thresholds
Band edge emissions (Conducted)

	<u> </u>	/				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

	Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Unde	Undesirable emission limits (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

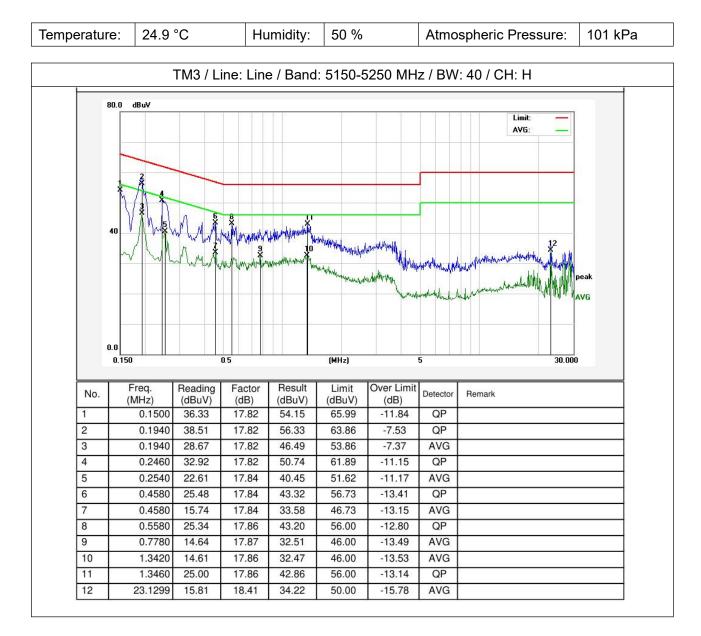

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)			
	Frequency of emission (MHz)	Conducted limit (dBµV)		
Test Limit:		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the frequency.			
Test Method:	ANSI C63.10-2020 section 6.2			

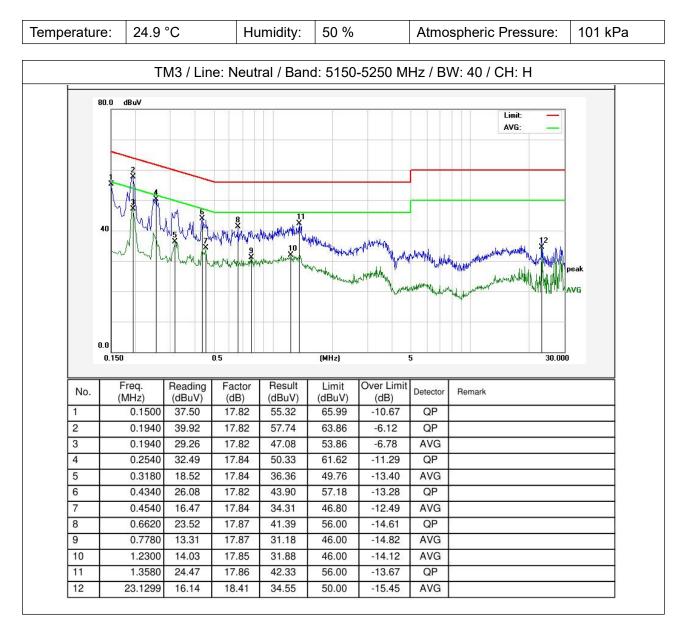
2.1. EUT Operation

Operating Envi	Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 				

2.2. Test Setup



2.3. Test Data



Shenzhen Anbotek Compliance Laboratory Limited

Note: Only the worst case data was showed in the report.

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.	
Test Limit:	No limits, only for report use.	
Test Method:	ANSI C63.10-2020 section 12.2 (b)	
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100. 	

3.1. EUT Operation

Operating Environment:			
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 		

3.2. Test Setup

EUT	Spectrum Analyzer

3.3. Test Data

Temperature: 24.3 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method: ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2	
	 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
Procedure:	 Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points,

 display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize.
 be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99%

4.1. EUT Operation

Operating Environment:			
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 		

4.2. Test Setup

	EUT	Spectrum Analyzer
4.3. Test Data		

Temperature:24.3 °CHumidity:50 %Atmospheric Pressure:101 kPa

Please Refer to Appendix for Details.

5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Toot Limit.	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to- point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Environment:		
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac mode to AC power line and works in continuously transmitting mode with 802.11ac mode to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in 	

continuously transmitting mode with 802.11ax modulation type. All bandwidth and
data rates has been tested and found the data rate @ MCS0 is the worst case. Only
the data of worst case is recorded in the report.

5.2. Test Setup

EUT	Spectrum Analyzer

5.3. Test Data

	24.3 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
--	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	 For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Environment:					
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.				

6.2. Test Setup

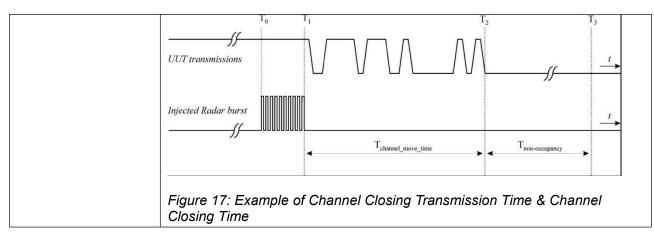
	EUT Spectrum Analyzer	
6.3. Test Data		

.J. TESI Dala

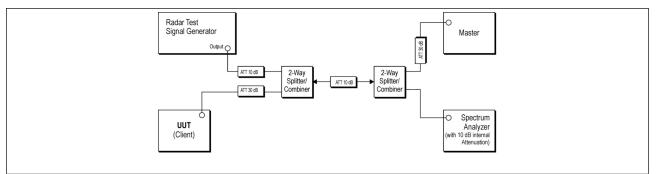
Temperature: 24.3 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

7. Channel Move Time, Channel Closing Transmission Time


Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Test Limit:	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of
Test Method:	control signals will not count quiet periods in between transmissions.) KDB 905462 D02, Clause 7.8.3
Procedure:	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Aster Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Client Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> . In case the UUT is a <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and record the <i>Channel Move Time</i> and <i>Channel Closing Transmission Time</i> . 5. When operating an <i>Anster Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform th

Shenzhen Anbotek Compliance Laboratory Limited



7.1. EUT Operation

7.2. Test Setup

7.3. Test Data

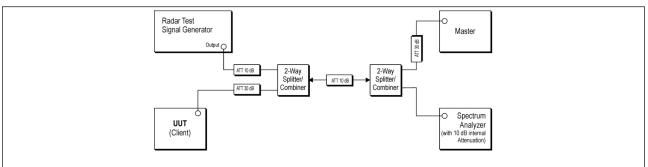
Temperature: 24.3 °C Hum	lity: 50 %	Atmospheric Pressure:	101 kPa
--------------------------	------------	-----------------------	---------

Please Refer to Appendix for Details.

8. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3				
	Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection Table 3: DFS Detection Thresholds for Master Devices and Client Devices and Client Devices with Radar Detection				
Test Limit:	Maximum Transmit Power EIRP ≥ 200 milliwatt EIRP < 200 milliwatt and	Value (See Notes 1, 2, and 3) -64 dBm -62 dBm -64 dBm			
Test Method:	KDB 905462 D02, Clause 7.4.1.1				
Procedure:	 KDB 905462 D02, Clause 7.4.1.1 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master 2) The interference Radar Detection Threshold Level is TH+ 0dBi +1dB that had been taken into account the output power range and antenna gain. 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process, there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB. 4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was TH + 0dBi +1dB = -63dBm. Capture the spectrum analyzer plots on short pulse radar waveform. Note: TH=-64 dBm or -62 dBm 				

8.1. EUT Operation


Operating Environment:			
Test mode:	5: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device		

8.2. Test Setup

8.3. Test Data

Temperature: 24.3 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

9. Band edge emissions (Conducted)

	47 CFR Part 15.407(b	N(1)				
	47 CFR Part 15.407(b					
Test Requirement:		, , ,				
rest Nequilement.	47 CFR Part 15.407(b)(3) 47 CFR Part 15.407(b)(4)					
	47 CFR Part 15.407(b	, , ,				
	· ·					
	For transmitters opera of the 5.15-5.35 GHz					
	For transmitters opera of the 5.15-5.35 GHz					
	For transmitters opera of the 5.47-5.725 GHz					
	For transmitters opera	ating solely in the 5.72	25-5.850 GHz ba	ind:		
	All emissions shall be					
	above or below the ba					
	above or below the ba					
	edge increasing linear					
	below the band edge,					
	increasing linearly to a					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
Fest Limit:	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(²)		
	13.36-13.41					
	¹ Until February 1, 199 ² Above 38.6	99, this restricted ban	d shall be 0.490·	0.510 MHz.		

	1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:Frequency (MHz)Field strength (microvolts/meter)0.009-0.4902400/F(kHz)0.009-0.4902400/F(kHz)0.490-1.70524000/F(kHz)3030			
	1.705-30.0 30-88	30 100 **	30	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
	frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and these three bands are base detector.	e, the tighter limit applies at the b in the above table are based on peak detector except for the free above 1000 MHz. Radiated emis ed on measurements employing	470-806 MHz. ted under other pand edges. measurements juency bands 9– ssion limits in	
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7			
Procedure:	 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest 			

channel.	
h. The radiation measurements are performed in X, Y, Z axis posit	
Transmitting mode, and found the X axis positioning which it is the	worst
case.	
i. Repeat above procedures until all frequencies measured was co	mplete.
Remark:	
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Fact	or
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was	
The points marked on above plots are the highest emissions could	
when testing, so only above points had been displayed. The ampli	
spurious emissions from the radiator which are attenuated more th	
below the limit need not be reported.	
3. As shown in this section, for frequencies above 1GHz, the field	stronath
limits are based on average limits. However, the peak field strengt	
emission shall not exceed the maximum permitted average limits s	
above by more than 20 dB under any condition of modulation. For	
emissions whose peak level is lower than the average limit, only the	е реак
measurement is shown in the report.	
4. The disturbance above 18GHz were very low and the harmonic	
highest point could be found when testing, so only the above harm	ionics had
been displayed.	

9.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

EUT	Spectrum Analyzer
-----	-------------------

9.3. Test Data

Temperature: 24.3 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

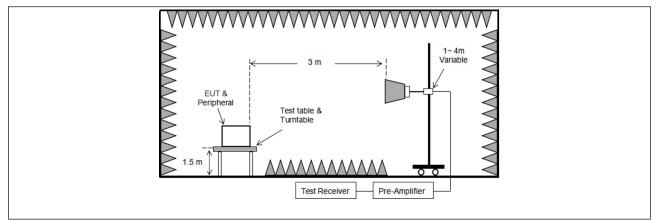
10. Band edge emissions (Radiated)

	47 CFR Part 15.407(b 47 CFR Part 15.407(b						
Test Requirement:	47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(3)						
root i toquii officia	47 CFR Part 15.407(b)(3) 47 CFR Part 15.407(b)(4)						
	47 CFR Part 15.407(b						
	For transmitters opera of the 5.15-5.35 GHz I						
	For transmitters opera of the 5.15-5.35 GHz I						
	For transmitters opera of the 5.47-5.725 GHz						
	For transmitters opera All emissions shall be above or below the ba above or below the ba edge increasing linear below the band edge, increasing linearly to a	limited to a level of – ind edge increasing li ind edge, and from 2 ly to a level of 15.6 d and from 5 MHz abo	27 dBm/MHz at nearly to 10 dBr 5 MHz above or Bm/MHz at 5 MI ve or below the	75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75			
est Limit:	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
Test Littit.	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(2)			
	13.36-13.41						
	¹ Until February 1, 199 ² Above 38.6	9, this restricted ban	d shall be 0.490	-0.510 MHz.			
	The field strength of e not exceed the limits s						

	1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:Frequency (MHz)Field strength (microvolts/meter)Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0 30 30					
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	 intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 					
Test Method:	ANSI C63.10-2020, section	ח 12.7.4, 12.7.6, 12.7.7				
Procedure:	 ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest 					

channel. h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete. Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation


Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

10.3. Test Data

Temperature:24.3 °CHumidity:50 %Atmospheric Pressure:101 kPa						
	Temperature:	24.3 0	Humidity:	50 %	Atmospheric Pressure:	101 kPa

	TM1 / Band: 5150-5350 MHz / BW: 20 / L						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.12	15.99	53.11	68.20	-15.09	Н	Peak
5150.00	39.21	15.99	55.20	68.20	-13.00	V	Peak
5150.00	27.02	15.99	43.01	54.00	-10.99	Н	AVG
5150.00	29.11	15.99	45.10	54.00	-8.90	V	AVG
TM1 / Band: 5150-5350 MHz / BW: 20 / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.53	16.43	53.96	68.20	-14.24	Н	Peak
5350.00	40.56	16.43	56.99	68.20	-11.21	V	Peak
5350.00	28.90	16.43	45.33	54.00	-8.67	Н	AVG
5350.00	29.75	16.43	46.18	54.00	-7.82	V	AVG

Remark: 1. Result=Reading + Factor

TM2 / Band: 5150-5350 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.01	15.99	52.00	68.20	-16.20	Н	Peak
5150.00	37.44	15.99	53.43	68.20	-14.77	V	Peak
5150.00	26.73	15.99	42.72	54.00	-11.28	Н	AVG
5150.00	27.71	15.99	43.70	54.00	-10.30	V	AVG
TM2 / Band: 5150-5350 MHz / BW: 20 / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.86	16.43	54.29	68.20	-13.91	Н	Peak
5350.00	38.87	16.43	55.30	68.20	-12.90	V	Peak
5350.00	27.90	16.43	44.33	54.00	-9.67	Н	AVG
5350.00	29.39	16.43	45.82	54.00	-8.18	V	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek	
Product Safety	

TM2 / Band: 5150-5350 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	36.62	15.99	52.61	68.20	-15.59	Н	Peak		
5150.00	38.46	15.99	54.45	68.20	-13.75	V	Peak		
5150.00	27.20	15.99	43.19	54.00	-10.81	Н	AVG		
5150.00	28.81	15.99	44.80	54.00	-9.20	V	AVG		
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5350.00	38.18	16.43	54.61	68.20	-13.59	Н	Peak		
5350.00	37.01	16.43	53.44	68.20	-14.76	V	Peak		
5350.00	28.45	16.43	44.88	54.00	-9.12	Н	AVG		
5350.00	29.68	16.43	46.11	54.00	-7.89	V	AVG		
Remark 1 F	Result=Readi	na + Factor							

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5350 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	37.09	15.99	53.08	68.20	-15.12	Н	Peak			
5150.00	38.87	15.99	54.86	68.20	-13.34	V	Peak			
5150.00	26.64	15.99	42.63	54.00	-11.37	Н	AVG			
5150.00	28.89	15.99	44.88	54.00	-9.12	V	AVG			
		TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.96	16.43	54.39	68.20	-13.81	Н	Peak			
5350.00	38.20	16.43	54.63	68.20	-13.57	V	Peak			
5350.00	27.90	16.43	44.33	54.00	-9.67	Н	AVG			
5350.00	28.51	16.43	44.94	54.00	-9.06	V	AVG			

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

TM3 / Band: 5150-5350 MHz / BW: 40 / L									
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
36.03	15.99	52.02	68.20	-16.18	Н	Peak			
36.43	15.99	52.42	68.20	-15.78	V	Peak			
26.27	15.99	42.26	54.00	-11.74	Н	AVG			
26.95	15.99	42.94	54.00	-11.06	V	AVG			
	TM3 / B	and: 5150-53	350 MHz / BV	V: 40 / H					
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
38.15	16.43	54.58	68.20	-13.62	Н	Peak			
37.26	16.43	53.69	68.20	-14.51	V	Peak			
27.57	16.43	44.00	54.00	-10.00	Н	AVG			
27.66	16.43	44.09	54.00	-9.91	V	AVG			
	(dBuV) 36.03 36.43 26.27 26.95 Reading (dBuV) 38.15 37.26 27.57	Reading (dBuV) Factor (dB/m) 36.03 15.99 36.43 15.99 26.27 15.99 26.95 15.99 26.95 15.99 26.95 15.99 38.15 16.43 37.26 16.43 27.57 16.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 36.03 15.99 52.02 36.43 15.99 52.42 26.27 15.99 42.26 26.95 15.99 42.94 TM3 / Band: 5150-53 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.15 16.43 54.58 37.26 16.43 44.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 36.03 15.99 52.02 68.20 36.43 15.99 52.42 68.20 26.27 15.99 42.26 54.00 26.95 15.99 42.94 54.00 TM3 / Band: 5150-5350 MHz / BW Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.15 16.43 54.58 68.20 37.26 16.43 53.69 68.20 27.57 16.43 44.00 54.00	Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Over limit (dB)36.0315.9952.0268.20-16.1836.4315.9952.4268.20-15.7826.2715.9942.2654.00-11.7426.9515.9942.9454.00-11.06TM3 / Band: 5150-5350 MHz / BW: 40 / HReading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Over limit (dB)38.1516.4354.5868.20-13.6237.2616.4353.6968.20-14.5127.5716.4344.0054.00-10.00	Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Over limit (dB)Antenna Pol.36.0315.9952.0268.20-16.18H36.4315.9952.4268.20-15.78V26.2715.9942.2654.00-11.74H26.9515.9942.9454.00-11.06VTM3 / Band: 5150-5350 MHz / BW: 40 / HReading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Over limit (dBuV/m)Antenna Pol.38.1516.4354.5868.20-13.62H37.2616.4353.6968.20-14.51V27.5716.4344.0054.00-10.00H			

Remark: 1. Result=Reading + Factor

	TM4 / Band: 5150-5350 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	35.96	15.99	51.95	68.20	-16.25	Н	Peak			
5150.00	37.37	15.99	53.36	68.20	-14.84	V	Peak			
5150.00	26.68	15.99	42.67	54.00	-11.33	Н	AVG			
5150.00	27.67	15.99	43.66	54.00	-10.34	V	AVG			
		TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.79	16.43	54.22	68.20	-13.98	Н	Peak			
5350.00	38.82	16.43	55.25	68.20	-12.95	V	Peak			
5350.00	27.83	16.43	44.26	54.00	-9.74	Н	AVG			
5350.00	29.30	16.43	45.73	54.00	-8.27	V	AVG			

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek	
Product Safety	

TM4 / Band: 5150-5350 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	36.53	15.99	52.52	68.20	-15.68	Н	Peak		
5150.00	38.38	15.99	54.37	68.20	-13.83	V	Peak		
5150.00	27.11	15.99	43.10	54.00	-10.90	Н	AVG		
5150.00	28.77	15.99	44.76	54.00	-9.24	V	AVG		
		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5350.00	38.12	16.43	54.55	68.20	-13.65	Н	Peak		
5350.00	36.97	16.43	53.40	68.20	-14.80	V	Peak		
5350.00	28.36	16.43	44.79	54.00	-9.21	Н	AVG		
5350.00	29.57	16.43	46.00	54.00	-8.00	V	AVG		
Remark 1 F	Result=Readi	na + Factor							

Remark: 1. Result=Reading + Factor

	TM1 / Band: 5470-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5460.00	38.18	16.37	54.55	68.20	-13.65	Н	Peak			
5460.00	39.56	16.37	55.93	68.20	-12.27	V	Peak			
5470.00	39.11	16.70	55.81	68.20	-12.39	Н	Peak			
5470.00	39.85	16.70	56.55	68.20	-11.65	V	Peak			
5460.00	28.77	16.37	45.14	54.00	-8.86	Н	AVG			
5460.00	28.64	16.37	45.01	54.00	-8.99	V	AVG			
5470.00	29.04	16.70	45.74	54.00	-8.26	Н	AVG			
5470.00	30.15	16.70	46.85	54.00	-7.15	V	AVG			
		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	39.13	17.21	56.34	68.20	-11.86	Н	Peak			
5850.00	39.49	17.21	56.70	68.20	-11.50	V	Peak			
5850.00	29.11	17.21	46.32	54.00	-7.68	Н	AVG			
5850.00	29.12	17.21	46.33	54.00	-7.67	V	AVG			

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5470-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5460.00	38.15	16.37	54.52	68.20	-13.68	Н	Peak			
5460.00	38.73	16.37	55.10	68.20	-13.10	V	Peak			
5470.00	38.26	16.70	54.96	68.20	-13.24	Н	Peak			
5470.00	38.68	16.70	55.38	68.20	-12.82	V	Peak			
5460.00	27.16	16.37	43.53	54.00	-10.47	Н	AVG			
5460.00	27.59	16.37	43.96	54.00	-10.04	V	AVG			
5470.00	27.60	16.70	44.30	54.00	-9.70	н	AVG			
5470.00	28.13	16.70	44.83	54.00	-9.17	V	AVG			
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	37.37	17.21	54.58	68.20	-13.62	Н	Peak			
5850.00	37.98	17.21	55.19	68.20	-13.01	V	Peak			
5850.00	27.64	17.21	44.85	54.00	-9.15	Н	AVG			
5850.00	28.46	17.21	45.67	54.00	-8.33	V	AVG			

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5470-5850 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5460.00	37.73	16.37	54.10	68.20	-14.10	Н	Peak				
5460.00	38.61	16.37	54.98	68.20	-13.22	V	Peak				
5470.00	38.56	16.70	55.26	68.20	-12.94	Н	Peak				
5470.00	39.22	16.70	55.92	68.20	-12.28	V	Peak				
5460.00	26.85	16.37	43.22	54.00	-10.78	Н	AVG				
5460.00	28.72	16.37	45.09	54.00	-8.91	V	AVG				
5470.00	27.05	16.70	43.75	54.00	-10.25	Н	AVG				
5470.00	28.40	16.70	45.10	54.00	-8.90	V	AVG				
		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	38.09	17.21	55.30	68.20	-12.90	Н	Peak				
5850.00	38.47	17.21	55.68	68.20	-12.52	V	Peak				
5850.00	28.27	17.21	45.48	54.00	-8.52	Н	AVG				
5850.00	29.36	17.21	46.57	54.00	-7.43	V	AVG				

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

	TM3 / Band: 5470-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5460.00	37.38	16.37	53.75	68.20	-14.45	Н	Peak			
5460.00	37.53	16.37	53.90	68.20	-14.30	V	Peak			
5470.00	37.96	16.70	54.66	68.20	-13.54	Н	Peak			
5470.00	38.33	16.70	55.03	68.20	-13.17	V	Peak			
5460.00	28.02	16.37	44.39	54.00	-9.61	Н	AVG			
5460.00	28.64	16.37	45.01	54.00	-8.99	V	AVG			
5470.00	28.30	16.70	45.00	54.00	-9.00	Н	AVG			
5470.00	29.10	16.70	45.80	54.00	-8.20	V	AVG			
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	38.12	17.21	55.33	68.20	-12.87	Н	Peak			
5850.00	39.00	17.21	56.21	68.20	-11.99	V	Peak			
5850.00	27.99	17.21	45.20	54.00	-8.80	Н	AVG			
5850.00	29.06	17.21	46.27	54.00	-7.73	V	AVG			

Remark: 1. Result=Reading + Factor

TM3 / Band: 5470-5850 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5460.00	36.32	16.37	52.69	68.20	-15.51	Н	Peak		
5460.00	37.84	16.37	54.21	68.20	-13.99	V	Peak		
5470.00	36.75	16.70	53.45	68.20	-14.75	Н	Peak		
5470.00	38.18	16.70	54.88	68.20	-13.32	V	Peak		
5460.00	27.33	16.37	43.70	54.00	-10.30	Н	AVG		
5460.00	27.45	16.37	43.82	54.00	-10.18	V	AVG		
5470.00	27.58	16.70	44.28	54.00	-9.72	Н	AVG		
5470.00	28.26	16.70	44.96	54.00	-9.04	V	AVG		
		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	37.67	17.21	54.88	68.20	-13.32	Н	Peak		
5850.00	38.50	17.21	55.71	68.20	-12.49	V	Peak		
5850.00	27.67	17.21	44.88	54.00	-9.12	Н	AVG		
5850.00	27.29	17.21	44.50	54.00	-9.50	V	AVG		

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

TM4 / Band: 5470-5850 MHz / BW: 20 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5460.00	37.42	16.37	53.79	68.20	-14.41	Н	Peak	
5460.00	37.55	16.37	53.92	68.20	-14.28	V	Peak	
5470.00	38.00	16.70	54.70	68.20	-13.50	Н	Peak	
5470.00	38.35	16.70	55.05	68.20	-13.15	V	Peak	
5460.00	28.05	16.37	44.42	54.00	-9.58	Н	AVG	
5460.00	28.70	16.37	45.07	54.00	-8.93	V	AVG	
5470.00	28.33	16.70	45.03	54.00	-8.97	Н	AVG	
5470.00	29.16	16.70	45.86	54.00	-8.14	V	AVG	
		TM4 / B	and: 5470-58	350 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5850.00	38.16	17.21	55.37	68.20	-12.83	Н	Peak	
5850.00	39.03	17.21	56.24	68.20	-11.96	V	Peak	
5850.00	28.02	17.21	45.23	54.00	-8.77	Н	AVG	
5850.00	29.12	17.21	46.33	54.00	-7.67	V	AVG	

Remark: 1. Result=Reading + Factor

TM4 / Band: 5470-5850 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5460.00	36.36	16.37	52.73	68.20	-15.47	Н	Peak		
5460.00	37.87	16.37	54.24	68.20	-13.96	V	Peak		
5470.00	36.79	16.70	53.49	68.20	-14.71	Н	Peak		
5470.00	38.21	16.70	54.91	68.20	-13.29	V	Peak		
5460.00	27.36	16.37	43.73	54.00	-10.27	Н	AVG		
5460.00	27.48	16.37	43.85	54.00	-10.15	V	AVG		
5470.00	27.61	16.70	44.31	54.00	-9.69	Н	AVG		
5470.00	28.29	16.70	44.99	54.00	-9.01	V	AVG		
TM4 / Band: 5470-5850 MHz / BW: 40 / H									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	37.70	17.21	54.91	68.20	-13.29	Н	Peak		
5850.00	38.56	17.21	55.77	68.20	-12.43	V	Peak		
5850.00	27.71	17.21	44.92	54.00	-9.08	Н	AVG		
5850.00	27.35	17.21	44.56	54.00	-9.44	V	AVG		
			•		•				

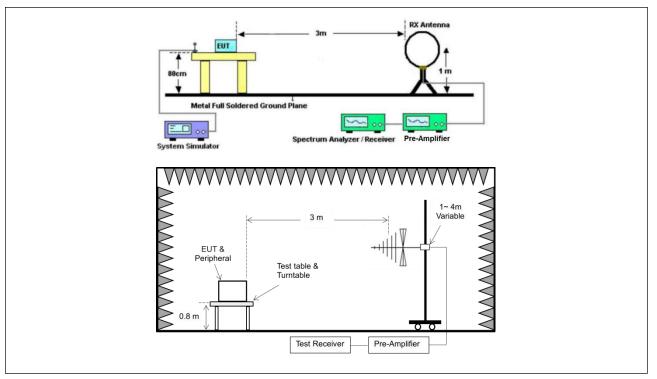
Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(3)					
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the						
	following table: Frequency (MHz)	Measurement distance (meters)					
Test Limit:	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	paragraph (g), fundamental e	3				
	 However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.5						
Procedure:	ANSI C63.10-2020, section 12.7.4, 12.7.5 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest						

 channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the
 maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
 Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak



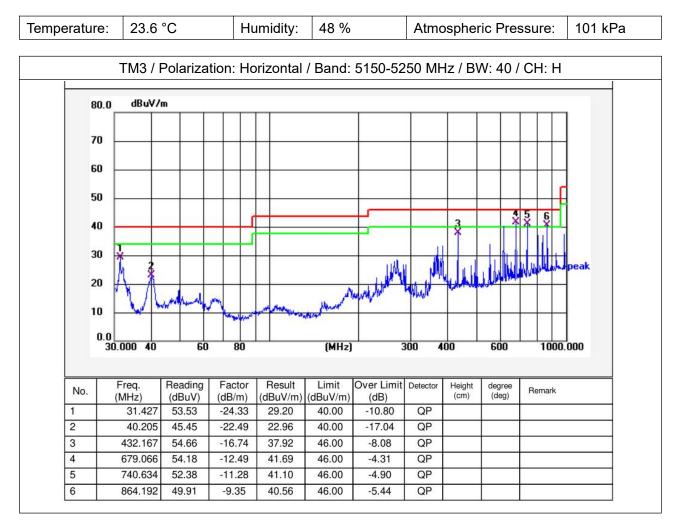
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

Operating Envi	Operating Environment:						
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 						

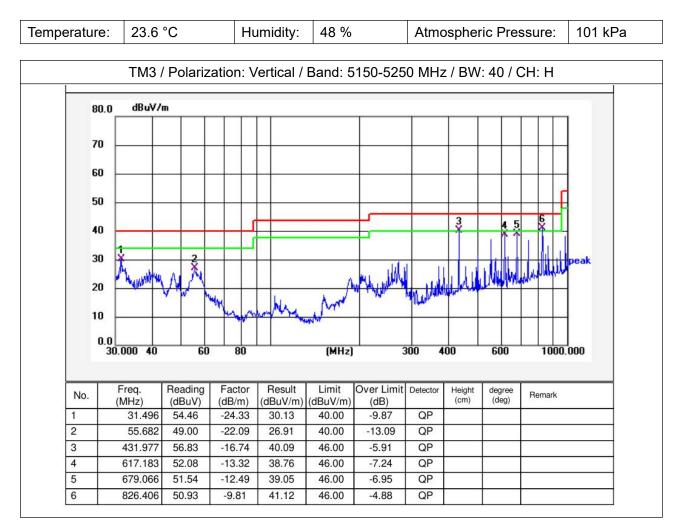
11.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited



11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.



Shenzhen Anbotek Compliance Laboratory Limited

Note: Only the worst case data was showed in the report.

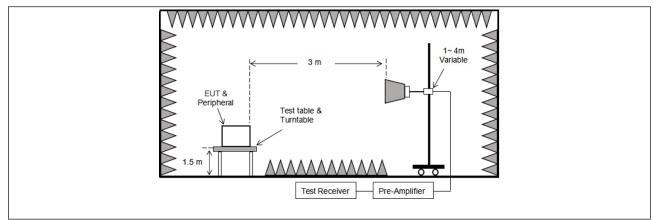
12. Undesirable emission limits (above 1GHz)

5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge,)(2))(3))(4)	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the l	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside 27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge	
Part 15.407 (b Part 15.407 (b Part 15.407 (b mitters opera 5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	(3) (4) (10) (10) (10) (10) (10) (10) (10) (10	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the lz at the band ed MHz 399.9-410 608-614	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
Part 15.407(b Part 15.407(b mitters opera 5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	()(4) ()(10) (iting in the 5.15-5.25 band shall not excee (ting in the 5.25-5.35 band shall not excee (ting in the 5.47-5.72 c band shall not excee (ting solely in the 5.7 limited to a level of - ind edge, and from 2 ly to a level of 15.6 c and from 5 MHz abc a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the lz at the band ed MHz 399.9-410 608-614	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
Part 15.407 (b mitters opera 5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	ting in the 5.15-5.25 band shall not excee sting in the 5.25-5.35 band shall not excee ating in the 5.47-5.72 band shall not excee ating solely in the 5.7 limited to a level of - limited to - limited to a level of - limited to - limited to a leve	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the lz at the band ed MHz 399.9-410 608-614	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
mitters opera 5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	ting in the 5.15-5.25 band shall not excee ting in the 5.25-5.35 band shall not excee ting in the 5.47-5.72 band shall not excee ting solely in the 5.7 limited to a level of - ind edge increasing and edge, and from 2 ty to a level of 15.6 c and from 5 MHz abc a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the lz at the band ed MHz 399.9-410 608-614	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
5-5.35 GHz I mitters opera 5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	ting in the 5.25-5.35 band shall not exceed ting in the 5.25-5.35 band shall not exceed ting in the 5.47-5.72 band shall not exceed ting solely in the 5.7 limited to a level of - ind edge increasing and edge, and from 2 ly to a level of 15.6 c and from 5 MHz above a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	d an e.i.r.p. of -2 GHz band: All er d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH ove or below the lz at the band ed MHz 399.9-410 608-614	27 dBm/MHz. missions outside 27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
5-5.35 GHz I mitters opera 7-5.725 GHz mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	band shall not excee ting in the 5.47-5.72 band shall not excee ting solely in the 5.7 limited to a level of - ind edge increasing l ind edge, and from 2 iy to a level of 15.6 c and from 5 MHz abc a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	d an e.i.r.p. of -2 5 GHz band: All e ed an e.i.r.p. of - 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 25 MHz above or dBm/MHz at 5 MH bye or below the 12 at the band ed MHz 399.9-410 608-614	27 dBm/MHz. emissions outside -27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
mitters opera ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	ting solely in the 5.7 limited to a level of - ind edge increasing and edge, and from 2 ly to a level of 15.6 c and from 5 MHz abo a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	ed an e.i.r.p. of – 25-5.850 GHz ba -27 dBm/MHz at linearly to 10 dBr 5 MHz above or dBm/MHz at 5 MH bye or below the dz at the band ed MHz 399.9-410 608-614	-27 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
ions shall be below the ba below the ba reasing linear band edge, g linearly to a .110 0.505 2.1905	limited to a level of - and edge increasing l and edge, and from 2 ly to a level of 15.6 c and from 5 MHz abc a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.80425-	-27 dBm/MHz at linearly to 10 dBr 25 MHz above or dBm/MHz at 5 MH bye or below the dz at the band ed MHz 399.9-410 608-614	75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge ge. GHz 4.5-5.15 5.35-5.46	
g linearly to a .110 0.505 2.1905	a level of 27 dBm/MH MHz 16.42-16.423 16.69475- 16.69525 16.80425-	Iz at the band ed MHz 399.9-410 608-614	ge. GHz 4.5-5.15 5.35-5.46	
.110 0.505 2.1905	MHz 16.42-16.423 16.69475- 16.69525 16.80425-	MHz 399.9-410 608-614	GHz 4.5-5.15 5.35-5.46	
0.505 2.1905	16.42-16.423 16.69475- 16.69525 16.80425-	399.9-410 608-614	4.5-5.15 5.35-5.46	
0.505 2.1905	16.69475- 16.69525 16.80425-	608-614	5.35-5.46	
2.1905	16.69525 16.80425-			
		960-1240	7.25-7.75	
.128	10.00473			
	25.5-25.67	1300-1427	8.025-8.5	
5-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
5-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5	
.218	74.8-75.2		10.6-12.7	
5-6.26825	108-121.94	1718.8-	13.25-13.4	
-6.31225	123-138		14.47-14.5	
.294	149.9-150.05	2310-2390	15.35-16.2	
.366	156.52475- 156.52525	2483.5-2500	17.7-21.4	
5-8.38675	156.7-156.9	2690-2900	22.01-23.12	
5-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
2.293	167.72-173.2	3332-3339	31.2-31.8	
75-12.52025	240-285	3345.8-3358	36.43-36.5	
75-12.57725	322-335.4	3600-4400	(²)	
3.41				
	218 -6.26825 -6.31225 294 366 -8.38675 -8.41475 2.293 5-12.52025 5-12.57725 3.41 bruary 1, 199 8.6	218 74.8-75.2 -6.26825 108-121.94 -6.31225 123-138 294 149.9-150.05 366 156.52475- 156.52525 -8.38675 156.7-156.9 -8.41475 162.0125-167.17 2.293 167.72-173.2 5-12.52025 240-285 5-12.57725 322-335.4 3.41 54	1646.5 218 74.8-75.2 1660-1710 -6.26825 108-121.94 1718.8- 1722.2 123-138 2200-2300 -6.31225 123-138 2200-2300 294 149.9-150.05 2310-2390 366 156.52475- 2483.5-2500 -8.38675 156.7-156.9 2690-2900 -8.41475 162.0125-167.17 3260-3267 2.293 167.72-173.2 3332-3339 5-12.52025 240-285 3345.8-3358 5-12.57725 322-335.4 3600-4400 3.41	

	 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: 						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30						
	1.705-30.0 30 30 30-88 100 ** 3 88-216 150 ** 3						
	88-216 150 m 3 216-960 200 ** 3 Above 960 500 3						
	intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7						
Procedure:	 ANOT COS. 10-2020, section 12.7.9, 12.7.9, 12.7.1 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest 						

channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst
case.
i. Repeat above procedures until all frequencies measured was complete.
Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low.
The points marked on above plots are the highest emissions could be found
when testing, so only above points had been displayed. The amplitude of
spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength
limits are based on average limits. However, the peak field strength of any
emission shall not exceed the maximum permitted average limits specified
above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

12.1. EUT Operation


Operating Environment:						
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.					

12.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

12.3. Test Data

Temperature:	24.6 °C	Hu	midity:	56 %	, 0	At	mospheric Pr	essure:	10	1 kPa
TM3 / Band: 5150-5250 MHz / BW: 40 / CH: L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)			Limit (dBuV/n	n)	Over limit (dB)	Antenn Pol.	a	Detector
10380.00	29.50	23.81	53.3	31	68.20		-14.89	V		Peak
15570.00	30.74	28.91	59.6	65	68.20		-8.55	V		Peak
10380.00	30.53	23.81	54.3	34	68.20		-13.86	Н		Peak
15570.00	31.42	28.91	8.91 60.3		68.20		-7.87	Н		Peak
10380.00	20.20	23.81	3.81 44.0		54.00		-9.99	V		AVG
15570.00	20.65	28.91	1 49.56		54.00		-4.44	V		AVG
10380.00	20.48	23.81	44.2	29	54.00		-9.71	Н		AVG
15570.00	20.74	28.91	49.6	49.65			-4.35	Н		AVG
TM3 / Band: 5150-5250 MHz / BW: 40 / CH: H										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Res (dBu∖		Limit (dBuV/n	n)	Over limit (dB)	Antenn Pol.	а	Detector
10460.00	29.78	23.80	53.5	58	68.20		-14.62	V		Peak
15690.00	30.97	30.03	61.0	00	68.20		-7.20	V		Peak
10460.00	30.40	23.80	54.2	54.20			-14.00	Н		Peak
15690.00	31.59	30.03	61.6	52	68.20		-6.58	Н		Peak
10460.00	20.37	23.80	44.1	17	54.00		-9.83	V		AVG
15690.00	20.58	30.03	50.6	51	54.00		-3.39	V		AVG
10460.00	20.42	23.80	44.2	22	54.00		-9.78	Н		AVG
15690.00	20.54	30.03	50.5	57	54.00		-3.43	Н		AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(VHT40)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

TM4 / Band: 5250-5350 MHz / BW: 40 / CH: L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10540.00	27.40	23.83	51.23	68.20	-16.97	V	Peak	
15810.00	29.17	30.70	59.87	68.20	-8.33	V	Peak	
10540.00	27.76	23.83	51.59	68.20	-16.61	Н	Peak	
15810.00	29.15	30.70	59.85	68.20	-8.35	Н	Peak	
10540.00	17.01	23.83	40.84	54.00	-13.16	V	AVG	
15810.00	18.31	30.70	49.01	54.00	-4.99	V	AVG	
10540.00	17.56	23.83	41.39	54.00	-12.61	Н	AVG	
15810.00	18.49	30.70	49.19	54.00	-4.81	Н	AVG	
TM4 / Band: 5250-5350 MHz / BW: 40 / CH: H								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10620.00	28.15	23.90	52.05	68.20	-16.15	V	Peak	
15930.00	27.84	31.83	59.67	68.20	-8.53	V	Peak	
10620.00	28.56	23.90	52.46	68.20	-15.74	Н	Peak	
15930.00	28.62	31.83	60.45	68.20	-7.75	Н	Peak	
10620.00	18.37	23.90	42.27	54.00	-11.73	V	AVG	
15930.00	17.63	31.83	49.46	54.00	-4.54	V	AVG	
10620.00	18.58	23.90	42.48	54.00	-11.52	Н	AVG	
15930.00	17.77	31.83	49.60	54.00	-4.40	Н	AVG	

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW40)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

TM4 / Band: 5470-5725 MHz / BW: 40 / CH: L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
11020.000	27.58	24.12	51.70	68.20	-16.50	V	Peak			
16530.000	27.88	32.96	60.84	68.20	-7.36	V	Peak			
11020.000	28.71	24.12	52.83	68.20	-15.37	Н	Peak			
16530.000	27.53	32.96	60.49	68.20	-7.71	Н	Peak			
11020.000	17.31	24.12	41.43	54.00	-12.57	V	AVG			
16530.000	18.00	32.96	50.96	54.00	-3.04	V	AVG			
11020.000	16.91	24.12	41.03	54.00	-12.97	Н	AVG			
16530.000	17.63	32.96	50.59	54.00	-3.41	Н	AVG			
TM4 / Band: 5470-5725 MHz / BW: 40 / CH: H										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
11180.000	26.92	23.86	50.78	68.20	-17.42	V	Peak			
16770.000	28.10	32.25	60.35	68.20	-7.85	V	Peak			
11180.000	27.45	23.86	51.31	68.20	-16.89	Н	Peak			
16770.000	27.67	32.25	59.92	68.20	-8.28	Н	Peak			
11180.000	16.55	23.86	40.41	54.00	-13.59	V	AVG			
16770.000	16.71	32.25	48.96	54.00	-5.04	V	AVG			
11180.000	16.48	23.86	40.34	54.00	-13.66	Н	AVG			
16770.000	17.17	32.25	49.42	54.00	-4.58	Н	AVG			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW40)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

TM2 / Band: 5725-5850 MHz / BW: 40 / CH: L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
11510.000	28.62	23.36	51.98	68.20	-16.22	V	Peak			
17265.000	29.20	32.02	61.22	68.20	-6.98	V	Peak			
11510.000	29.50	23.36	52.86	68.20	-15.34	Н	Peak			
17265.000	29.44	32.02	61.46	68.20	-6.74	Н	Peak			
11510.000	18.35	23.36	41.71	54.00	-12.29	V	AVG			
17265.000	18.75	32.02	50.77	54.00	-3.23	V	AVG			
11510.000	18.72	23.36	42.08	54.00	-11.92	Н	AVG			
17265.000	19.22	32.02	51.24	54.00	-2.76	Н	AVG			
TM2 / Band: 5725-5850 MHz / BW: 40 / CH: H										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
11590.00	27.98	23.43	51.41	68.20	-16.79	V	Peak			
17385.00	29.15	32.23	61.38	68.20	-6.82	V	Peak			
11590.00	28.47	23.43	51.90	68.20	-16.30	Н	Peak			
17385.00	28.70	32.23	60.93	68.20	-7.27	Н	Peak			
11590.00	17.61	23.43	41.04	54.00	-12.96	V	AVG			
17385.00	17.76	32.23	49.99	54.00	-4.01	V	AVG			
11590.00	18.50	23.43	41.93	54.00	-12.07	Н	AVG			
17385.00	18.67	32.23	50.90	54.00	-3.10	Н	AVG			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11n(HT40)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report ------

Shenzhen Anbotek Compliance Laboratory Limited

