TCT通测检测 TESTING CENTRE TECHNOLOGY					
	TEST REPOR	T			
FCC ID :	2BN8F-VDT50				
Test Report No:	TCT250314E062				
Date of issue:	Mar. 21, 2025				
Testing laboratory:	SHENZHEN TONGCE TESTIN	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Facto Fuhai Subdistrict, Bao'an Distric 518103, People's Republic of C	t, Shenzhen, Guangdong,			
Applicant's name::	NUMLAKE TECH LIMITED				
Address:	UNIT 1505, 15/F WORKINGPO HAU FOOK STREET TSIM SH	RT COMMERCIAL BUILDING 3 A TSUI HONG KONG, China			
Manufacturer's name :	NUMLAKE TECH LIMITED				
Address:	UNIT 1505, 15/F WORKINGPORT COMMERCIAL BUILDING 3 HAU FOOK STREET TSIM SHA TSUI HONG KONG, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.231				
Product Name::	Smart Wi-Fi Doorbell Camera				
Trade Mark:	N/A				
Model/Type reference :	T50, P10, P20, P30, T10, T20, U20, U30, U50, M10, M20, M30				
Rating(s):	Rechargeable Li-ion Battery DC	3.7V			
Date of receipt of test item	Mar. 14, 2025				
Date (s) of performance of test:	Mar. 14, 2025 ~ Mar. 21, 2025				
Tested by (+signature) :	Onnado YE				
Check by (+signature) :	Beryl ZHAO	Boyl 2 TCT			
Approved by (+signature):	Tomsin	Toms it's st			
General disclaimer:	oduced except in full, without the				

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.	General Product Information				
	1.1. EUT description				3
	1.2. Model(s) list				
2.	Test Result Summary				4
3.	General Information	\sim		\sim	5
	3.1. Test Environment and Mode				5
	3.2. Description of Support Units		<u>(</u> <u>(</u> <u>(</u>))		5
4.	Facilities and Accreditations				
	4.1. Facilities				6
	4.2. Location	<u>(S)</u>		<u>(S)</u>	6
	4.3. Measurement Uncertainty				6
5.	Test Results and Measurement Data				7
	5.1. Antenna Requirement		<u>v</u>		7
	5.2. Conducted Emission				
	5.3. Radiated Emission Measurement				
	5.4. Manually Activated Transmitter	\sim			22
	5.5. Occupied Bandwidth				24
Ap	pendix A: Photographs of Test Setup				
Ap	pendix B: Photographs of EUT				

1. General Product Information

1.1. EUT description

Product Name:	Smart Wi-Fi Doorbell Camera			
Model/Type reference:	т50			
Sample Number:	TCT250314E013-0101		<i>_</i> !.	
Operation Frequency:	433.92MHz			
Modulation Technology:	FSK			
Antenna Type:	Spring Antenna	(\mathcal{C})		(\mathcal{C})
Antenna Gain:	-1.74dBi			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.			Model No.			Test	ted with
1			T50				
Other models	P10, P20, P3	20, U30, U5	0, M10, M2	20, M30, M	60		
	t on the model nam						
						Pag	e 3 of 26
Hotline: 40	0-6611-140 Tel:	86-755-2767	3339 Fax:	86-755-2767	3332 http:	//www.tct-la	ab.com

Report No.: TCT250314E062

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
Conduction Emission, 0.15MHz to 30MHz	§15.207	PASS
Manually Activated Transmitter	§15.231(a)	PASS
Radiation Emission	§15.231(b), §15.205, §15.209, §15.35	PASS
Occupied Bandwidth	§15.231(c)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Condition	Conducted Emission	Radiated Emission
Temperature:	24.8 °C	22.7 °C
Humidity:	54 % RH	57 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Mode:		
Operation mode:	Keep the EUT in continuous	transmitting with modulation
• • • • • •	Bm below 1GHz, 1.5m above urements in both horizontal a	,

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBuV/m)	52.47	55.31	52.59

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo)

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 5 of 26

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB.

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

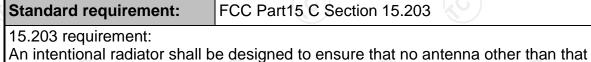
The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

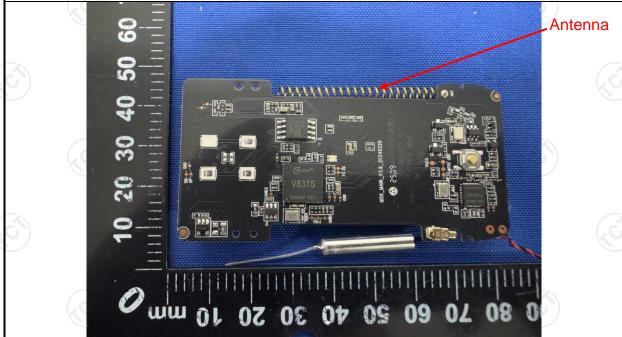
Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 1.08 dB
3	Spurious emissions, conducted	± 2.94 dB
4	Occupied Bandwidth	± 0.25 KHz
5	All emissions, radiated(<1 GHz)	± 4.56 dB
6	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
7	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB
8	Temperature	± 0.1°C
9	Humidity	± 1.0%
GÌ)		

5. Test Results and Measurement Data


5.1. Antenna Requirement

furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is spring antenna which permanently attached, and the best case gain of the antenna is -1.74dBi

Page 7 of 26

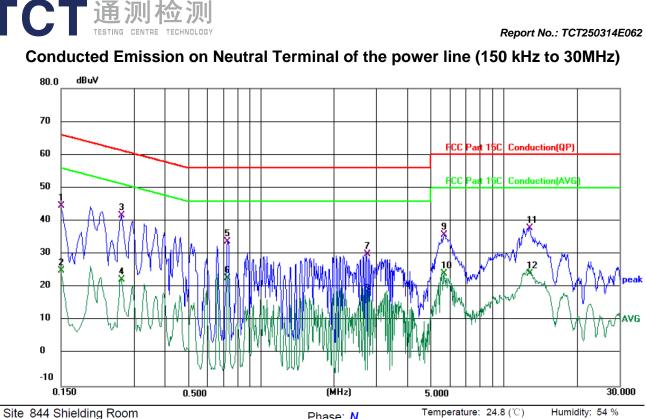
5.2. Conducted Emission

5.2.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2014				
Frequency Range:	150 kHz to 30 MHz	3	$\left(\begin{array}{c} c \end{array} \right)$		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup: Test Mode:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test Procedure:	 Charging + Transmitting Mode 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. 				

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	1	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1 60				


5.2.1. Test data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1500	36.90	9.96	46.86	66.00	-19.14	QP	
2		0.1500	20.21	9.96	30.17	56.00	-25.83	AVG	
3		0.2939	32.03	9.94	41.97	60.41	-18.44	QP	
4		0.2939	15.48	9.94	25.42	50.41	-24.99	AVG	
5		0.8059	21.78	9.92	31.70	56.00	-24.30	QP	
6		0.8059	10.31	9.92	20.23	46.00	-25.77	AVG	
7		3.5939	22.85	10.10	32.95	56.00	-23.05	QP	
8		3.5939	8.84	10.10	18.94	46.00	-27.06	AVG	
9		5.7980	28.96	10.17	39.13	60.00	-20.87	QP	
10		5.7980	14.83	10.17	25.00	50.00	-25.00	AVG	
11	*	12.6219	35.55	10.36	45.91	60.00	-14.09	QP	
12		12.6219	22.32	10.36	32.68	50.00	-17.32	AVG	

Note:

NO			
	Freq. = Emission frequency in MHz		
	Reading level ($dB\mu V$) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency ra	ange 150 kHz to 30MHz	

Limit: FCC Part 15C Conduction(QP)

 Phase: N
 Temperature: 24.8 (°C)

 Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Linne. 1 00								
No. Mk.	Freq.			Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Co

	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1500	34.71	9.94	44.65	66.00	-21.35	QP	
2	0.1500	15.15	9.94	25.09	56.00	-30.91	AVG	
3 *	0.2660	31.80	9.93	41.73	61.24	-19.51	QP	
4	0.2660	12.37	9.93	22.30	51.24	-28.94	AVG	
5	0.7300	23.84	9.94	33.78	56.00	-22.22	QP	
6	0.7300	12.76	9.94	22.70	46.00	-23.30	AVG	
7	2.7220	19.78	10.06	29.84	56.00	-26.16	QP	
8	2.7220	7.39	10.06	17.45	46.00	-28.55	AVG	
9	5.7060	25.57	10.18	35.75	60.00	-24.25	QP	
10	5.7060	14.01	10.18	24.19	50.00	-25.81	AVG	
11	12.7900	27.48	10.42	37.90	60.00	-22.10	QP	
12	12.7900	13.73	10.42	24.15	50.00	-25.85	AVG	

Note:

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

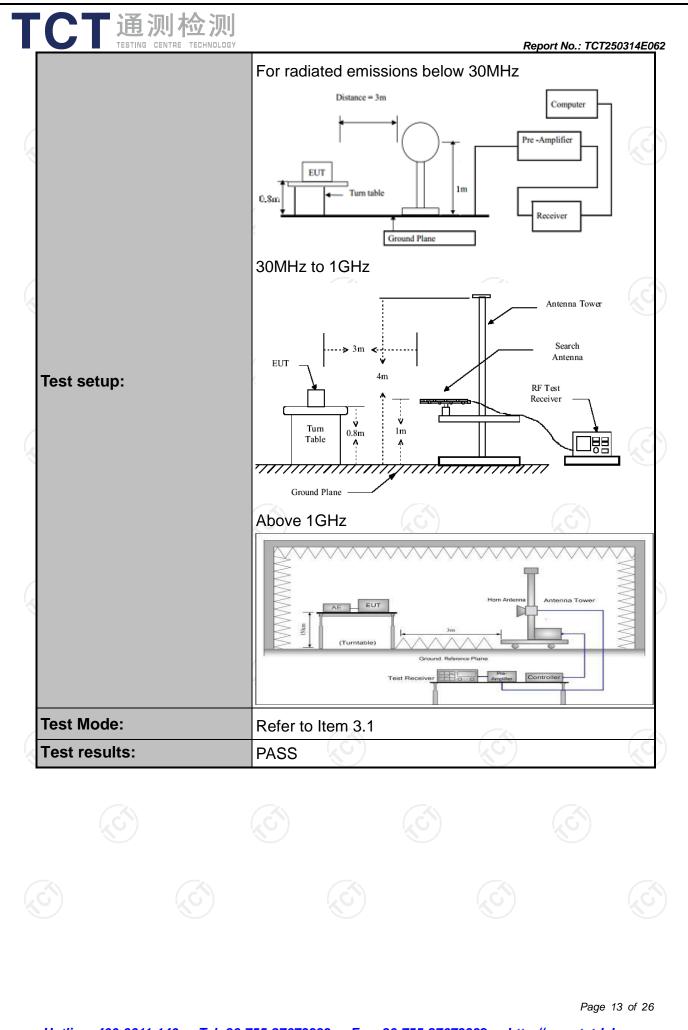
Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average


* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Radiated Emission Measurement

5.3.1. Test Specification

Test Requirement:	FCC Part15	C Section	15.231(a) and 15	.209			
Test Method:	ANSI C63.4:2014 and ANSI C63.10:2020							
Frequency Range:	9 kHz to 5 G	Hz	N.					
Measurement Distance:	3 m	N.	Ĵ.					
Antenna Polarization:	Horizontal & Vertical				D:2020 /BW Remark IkHz Quasi-peak Val 0kHz Quasi-peak Val 00KHz Quasi-peak Val MHz Peak Value			
	Frequency	Detector	RBW	VBW	Remark			
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Valu			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Valu			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		Peak	1MHz	10Hz	Average Value			
Test Procedure:	 1GHz. T determine The EU interferen on the top The anten meters at value of vertical pe the meas For each se to its wors heights fr table was find the m The test- Function Hold Mod If the emi 10dB lowe be stopped reported. 0 10dB marg 	he table the position T was succe-receiving of a varian of a varia	was rot on of the et 3 m ig antenri ble-heigh is varied ound to o strength s of the a emission d then th er to 4 m om 0 deg eading. ystem w ified Bar of the E limit spec beak valu the emis be re-ten average r	ated 36 highest eters a na, which it antenr from on determin . Both intenna a , the EU e antenr neters ar grees to as set t ndwidth EUT in p cified, the es of the sions the sted one method a	50 degrees to radiation. way from the h was mounted ha tower. he meter to foute the maximum horizontal and are set to make T was arranged ha was tuned to a was tuned to a d the rotatable 360 degrees to with Maximum beak mode wate an testing could			

5.3.2. Limit

Fundamental Frequency (MHz)	Filed Strength of Fundamental (microvolts/meter)	Filed Strength of Spurious Emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750*	125 to 375*
174-260	3750	375
260-470	3750 to 12500*	375 to 1250*
Above 470	12500	1250
Horn Antenna	Schwarzbeck	BBHA 9120D
*Linear interpolations		

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

For the band 130-174 MHz, $\mu V/m$ at 3 meters = 56.81818(F) - 6136.3636;

for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

For EUT

Fu	Indamental Frequency (MHz)		Strength of ental (dBµV/m)		ed Strength Spurious ssion(dBµV	
	433.92	No.	80.83		60.83	N.
lin me 2.Ac	tentional radiators operating units on the field strength of em easured emissions. cording to 15.35, on any frequ	issions, as shown in	the above table, ba	sed on the av	erage value of imits Shown ai	the
ba ma 3. Ac on av	n measuring equipment emplo andwidths, unless otherwise sp aximum permitted average en ccording to 15.231(b), The lim n the fundamental frequency o rerage (or, alternatively, CISPI ection 15.209, whichever limit	ying a CISPR quasi- pecified the limit on p nission limit applicab its on the field streng f the intentional radii R quasi-peak) limits	beak radio frequency le to the equipment gth of the spurious e ator. Spurious emiss shown in this table c	v emissions is under test. missions in th ions shall be a	20dB above the above the above table attenuated to table attenuated to the attenuate	ne is base he
ba ma 3. Ac on av	andwidths, unless otherwise sp aximum permitted average en ccording to 15.231(b), The lim a the fundamental frequency o verage (or, alternatively, CISPI	ying a CISPR quasi- pecified the limit on p nission limit applicab its on the field streng f the intentional radii R quasi-peak) limits	beak radio frequency le to the equipment gth of the spurious e ator. Spurious emiss shown in this table c	v emissions is under test. missions in th ions shall be a	20dB above the above the above table attenuated to table attenuated to the attenuate	ne is baseo he

Page 14 of 26

Frequencies in restricted band are complied to limit on Paragraph 15.209

Frequency Range (MHz)	Distance (m)	Field strength (dBµV/m)
0.009-0.490	3	20log 2400/F (kHz) + 80
0.490-1.705	3	20log 24000/F (kHz) + 40
1.705-30	3	20log 30 + 40
30-88	3 (0)	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

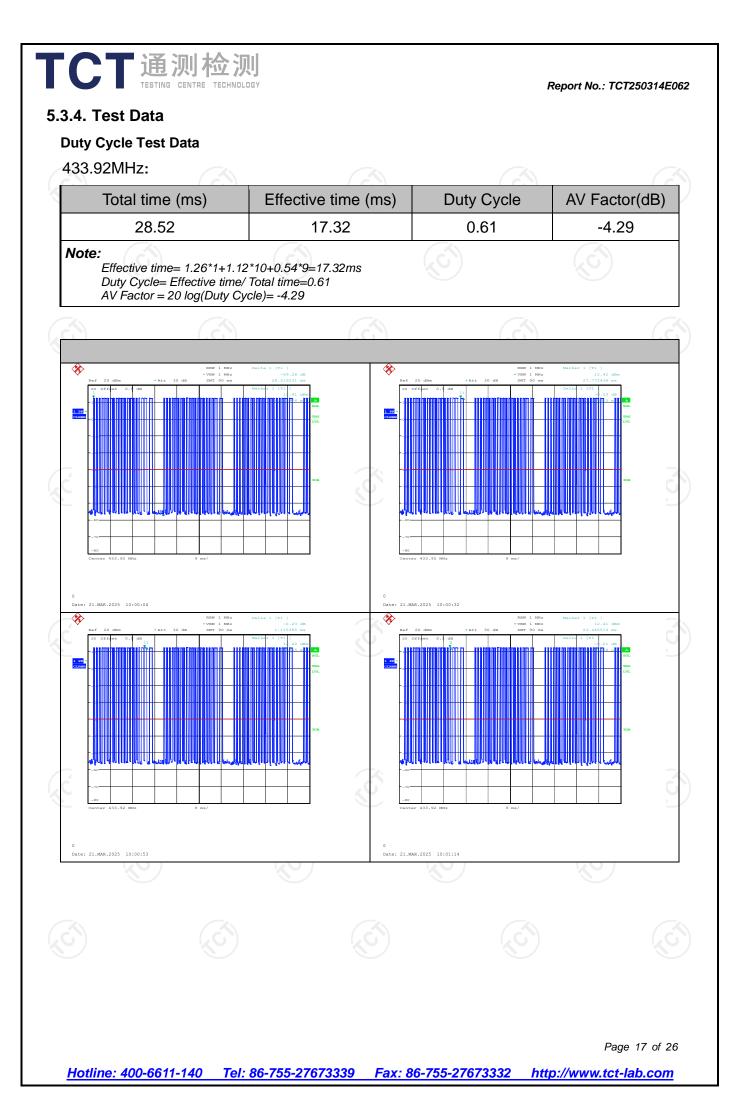
Note:

1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

4. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.


5. If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)

Page 15 of 26

5.3.3. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M) /	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025
Coaxial cable	SKET	RE-04-M		Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

(MHz)	(dBuV/m)	Factor(dB)	/Vertical	(dBuV/m)
433.92	71.45	-4.29	к С) Н	67.16
433.92	71.82	-4.29	V	67.53

71.82

AV

Harmonics and Spurious Emissions

Emission PK

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
KC) (KC)	(유민)	(vo.) (vo
		-7
		KO)

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Н

V

Horizontal

Page 18 of 26

Report No.: TCT250314E062

Margin

(dB)

-29.38

-29.01

Margin

(dB)

-13.67

-13.30

Limits AV

(dBuV/m)

80.83

80.83

Limits PK

(dBuV/m)

100.83

100.83

Emission

AVG

Field Strength of Fundamental

433.92

Frequency

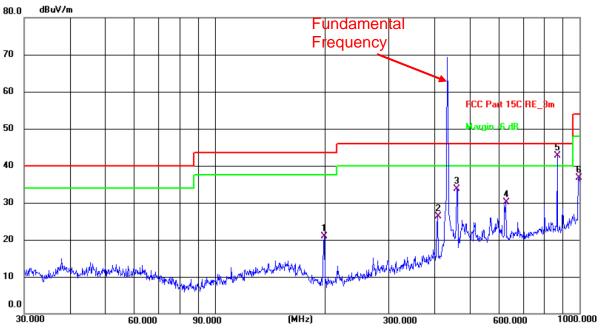
70 60 50 40

Limit: FCC Part 15C RE 3m Frequency Reading Factor Level Limit Margin

	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	Remark
	1	199.9855	42.13	-21.32	20.81	43.50	-22.69	QP	Ρ	
	2	408.9459	40.96	-14.72	26.24	46.00	-19.76	QP	Ρ	
Γ	3	460.7271	47.16	-13.38	33.78	46.00	-12.22	QP	Ρ	
	4	627.2737	39.52	-9.34	30.18	46.00	-15.82	QP	Ρ	
	5 *	869.1302	49.11	-6.39	42.72	46.00	-3.28	QP	Ρ	
	6	996.4995	41.59	-4.88	36.71	54.00	-17.29	QP	Ρ	

Polarization: Horizontal

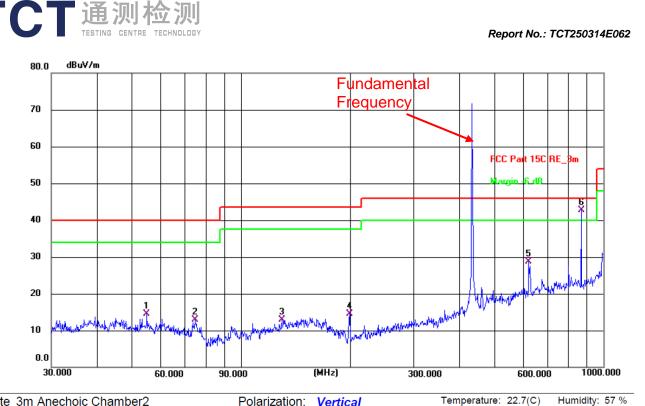
Power: DC 3.7 V


Т Т

Page 19 of 26

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Below 1GHz


Site 3m Anechoic Chamber2

Report No.: TCT250314E062

Temperature: 22.7(C) Humidity: 57 %

Site 3m Anechoic Chamber2 Polarization: Vertical

Limit: FCC Part 15C RE 3m

Power: DC 3.7 V

- 1 I I		 %	n 1		1.48.1				1	1.45.1
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	55.0274	33.39	-18.96	14.43	40.00	-25.57	QP	Р		
2	74.6568	33.74	-20.89	12.85	40.00	-27.15	QP	Р		
3	129.9225	31.27	-18.39	12.88	43.50	-30.62	QP	Р		
4	199.9855	35.84	-21.32	14.52	43.50	-28.98	QP	Ρ		
5	622.8900	38.11	-9.45	28.66	46.00	-17.34	QP	Р		
6 *	869.1302	49.16	-6.39	42.77	46.00	-3.23	QP	Ρ		

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Freq. = Emission frequency in MHz Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit $(dB\mu V/m) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

* is meaning the worst frequency has been tested in the test frequency range second harmonic

3. The limit value of the fundamental frequency is 100.83dBuV/m.

Above 1GHz (PK value)

Frequency PK Value (MHz)	Read Level PK (dBuV)	Correction Factor (dB/m)	Level PK (dBuV/m)	Limit Line PK (dBuV/m)	Over Limit (dB)	Polarization
1301.76	60.50	-18.59	41.91	74.00	-32.09	Vertical
1735.68	51.27	-18.14	33.13	80.83	-47.70	Vertical
2169.60	49.56	-17.61	31.95	80.83	-48.88	Vertical
2603.52	47.05	-16.45	30.60	80.83	-50.23	Vertical
3037.44	46.75	-14.84	31.91	80.83	-48.92	Vertical
3471.36	44.46	-14.17	30.29	80.83	-50.54	Vertical
1301.76	60.18	-18.59	41.59	74.00	-32.41	Horizontal
1735.68	50.60	-18.14	32.46	80.83	-48.37	Horizontal
2169.60	49.44	-17.61	31.83	80.83	-49.00	Horizontal
2603.52	46.62	-16.45	30.17	80.83	-50.66	Horizontal
3037.44	46.13	-14.84	31.29	80.83	-49.54	Horizontal
3471.36	44.07	-14.17	29.90	80.83	-50.93	Horizontal

Note:

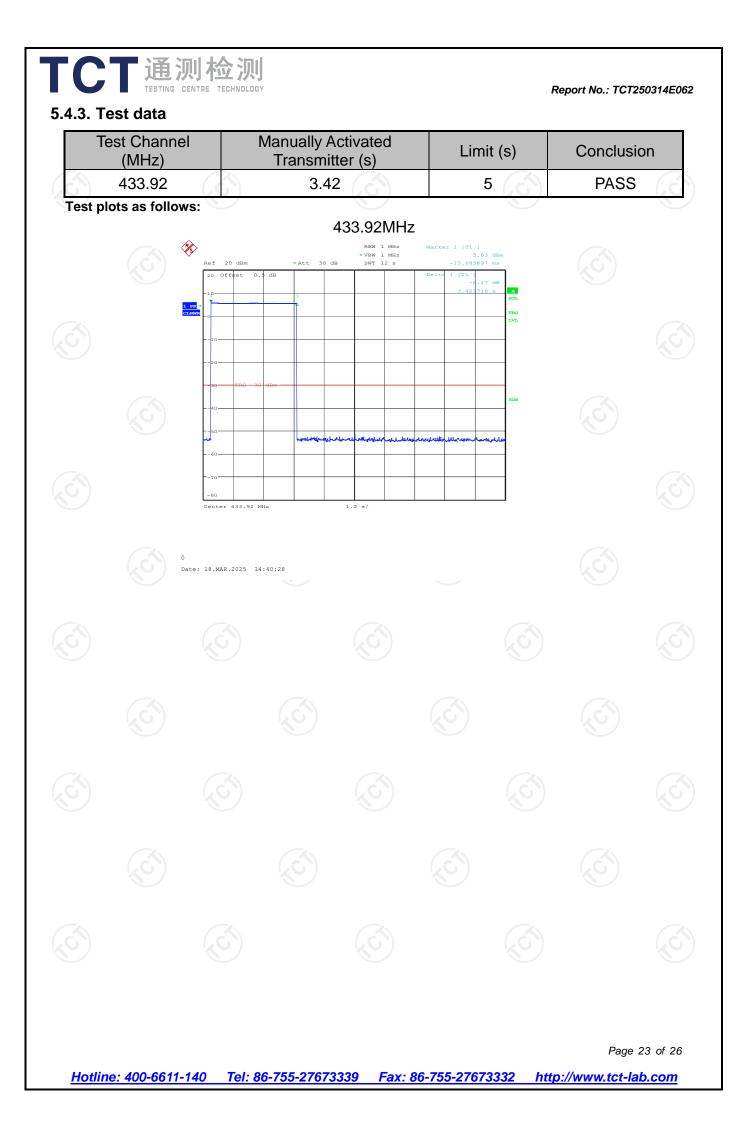
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown " * " in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


5.4. Manually Activated Transmitter

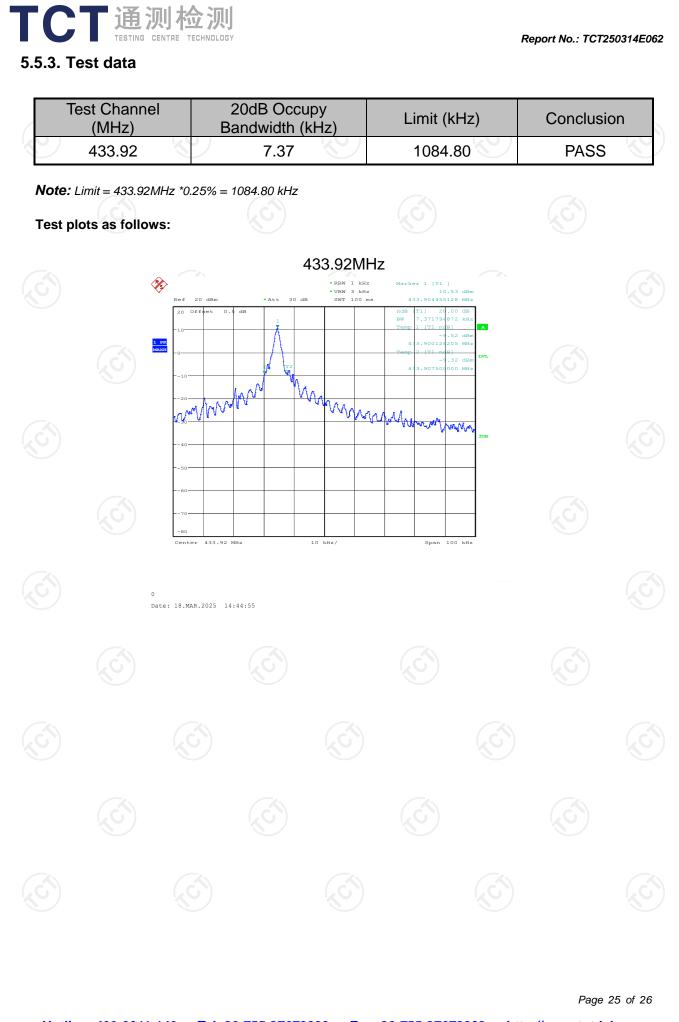
5.4.1. Test Specification

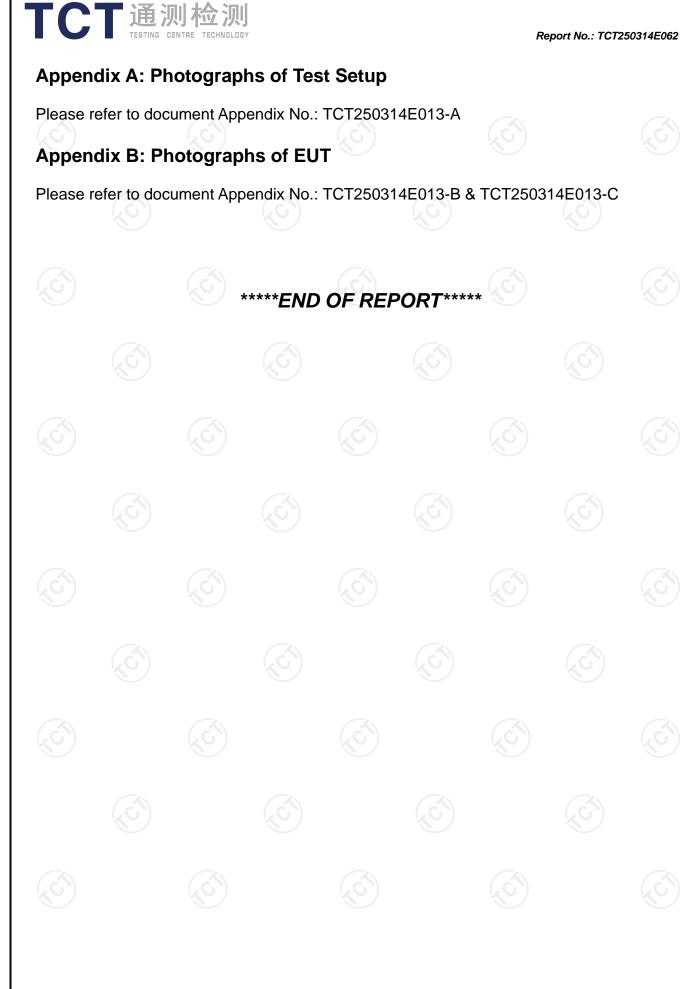
Test Requirement:	FCC Part15 C Section 15.231(a)(1)				
Test Method:	ANSI C63.10:2020				
Limit:	According to 15.231(a), A manually operated transmitter shall employ a switch that will automatically deactivat the transmitter within not more than 5 seconds of bein released.				
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings. RBW = 100KHz, VBW≥RBW; Span = 0; Sweep Time > T(on)+5S; Detector function = peak; Measure and record the results in the test report. 				
Test setup:	Spectrum Analyzer EUT				
Test Mode:	Refer to Item 3.1				
Test results:	PASS				

5.4.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Jun. 26, 2025	
y x				× ×	
				Page 22 of 26	
Hotline: 400-6611-140	Tel: 86-755-27673	339 Fax: 8	6-755-27673332 htt	tp://www.tct-lab.com	

5.5. Occupied Bandwidth


5.5.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.231C				
Test Method:	ANSI C63.10:2020				
Limit:	According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.				
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = 50KHz, centered on a hopping channel; RBW = 3KHz; VBW = 10KHz; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test setup:	Spectrum Analyzer EUT				
Test Mode:	Refer to Item 3.1				
Test results:	PASS				
	FA00				

5.5.2. Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Jun. 26, 2025	
(\mathcal{S})	(G)		(\mathcal{O})	(\mathcal{O})	

Page 24 of 26

Page 26 of 26