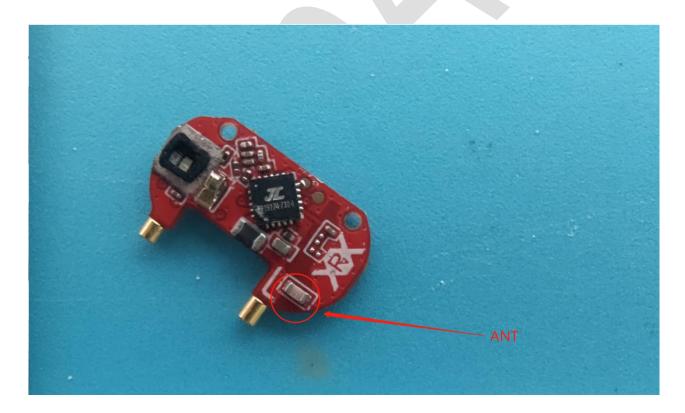


Page 41 of 88

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

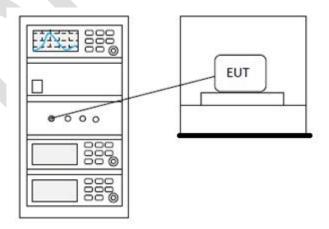
Page 42 of 88

19 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Charlie					
Temperature	25℃					
Humidity	60%					

19.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread

19.2 BLOCK DIAGRAM OF TEST SETUP

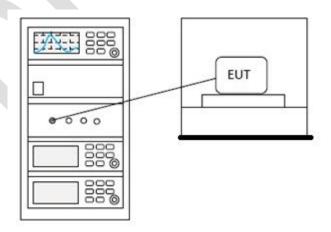
Page 43 of 88

19.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 44 of 88

20 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Charlie				
Temperature	25℃				
Humidity	60%				

20.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

20.2 BLOCK DIAGRAM OF TEST SETUP

Page 45 of 88

20.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 46 of 88

21 APPENDIX

Appendix1

21.1 MAXIMUM CONDUCTED OUTPUT POWER

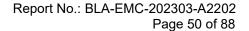
Condition	Mode	Frequency	Antenna Conducted Power		Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	1-DH1	2402	Ant1	-0.1	21	Pass
NVNT	1-DH1	2441	Ant1	1.929	21	Pass
NVNT	1-DH1	2480	Ant1	2.256	21	Pass
NVNT	2-DH1	2402	Ant1	0.762	21	Pass
NVNT	2-DH1	2441	Ant1	2.722	21	Pass
NVNT	2-DH1	2480	Ant1	3.092	21	Pass

Power NVNT 1-DH1 2402MHz Ant1

Power NVNT 1-DH1 2441MHz Ant1

Power NVNT 1-DH1 2480MHz Ant1

Power NVNT 2-DH1 2402MHz Ant1


Power NVNT 2-DH1 2441MHz Ant1

Power NVNT 2-DH1 2480MHz Ant1

| April | Spectrum | Analyzer | Swept | SA | Sense | NT | | A AUGNAUTONORF | 12:48:32 PM Mar 14, 2023 | Sense | NT | | A AUGNAUTONORF | 12:48:32 PM Mar 14, 2023 | Sense | NT | Sense | NT

21.2 -20DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	1-DH1	2402	Ant1	0.861	0	Pass
NVNT	1-DH1	2441	Antl	0.868	0	Pass
NVNT	1-DH1	2480	Antl	0.86	0	Pass
NVNT	2-DH1	2402	Ant1	1.242	0	Pass
NVNT	2-DH1	2441	Ant1	1.215	0	Pass
NVNT	2-DH1	2480	Antl	1.205	0	Pass

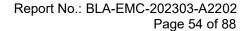
-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

ALIGN AUTO/I
Center Freq: 2.402000000 GHz
Trig: Free Run Avg
#Atten: 30 dB 12:45:29 PM Mar 14, 2023 Center Freq 2.402000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Mkr3 2.402625 GHz Ref Offset 3.01 dB Ref 23.01 dBm -21.267 dBm 10 dB/div Span 2 MHz Sweep 2.667 ms Center 2.402 GHz #Res BW 30 kHz **#VBW 100 kHz Total Power** 5.67 dBm Occupied Bandwidth 1.1627 MHz **Transmit Freq Error** 4.276 kHz **OBW Power** 99.00 % x dB Bandwidth 1.242 MHz x dB -20.00 dB


-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1

Center Freq: 2.480000000 GHz
Trig: Free Run Avg
#Atten: 30 dB 12:48:44 PM Mar 14, 2023 Radio Std: None Center Freq 2.480000000 GHz Avg|Hold: 100/100 #IFGain:Low Radio Device: BTS Mkr3 2.480603 GHz -23.395 dBm Ref Offset 3.08 dB Ref 23.08 dBm 10 dB/div Span 2 MHz Sweep 2.667 ms Center 2.48 GHz #Res BW 30 kHz **#VBW 100 kHz** Occupied Bandwidth **Total Power** 8.10 dBm 1.1481 MHz 205 Hz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 1.205 MHz x dB -20.00 dB

21.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH1	2402	Ant1	0.81179
NVNT	1-DH1	2441	Ant1	0.79710
NVNT	1-DH1	2480	Ant1	0.80079
NVNT	2-DH1	2402	Ant1	1.1653
NVNT	2-DH1	2441	Ant1	1.1567
NVNT	2-DH1	2480	Ant1	1.1582

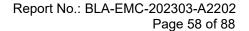
OBW NVNT 1-DH1 2402MHz Ant1

OBW NVNT 1-DH1 2441MHz Ant1

Center Freq: 2.441000000 GHz
Trig: Free Run Avg
#Atten: 30 dB 12:42:38 PM Mar 14, 2023 Center Freq 2.441000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 3.03 dB Ref 23.03 dBm 10 dB/div Span 3 MHz Sweep 3.333 ms Center 2.441 GHz #Res BW 30 kHz **#VBW 100 kHz Total Power** 8.09 dBm Occupied Bandwidth 797.10 kHz **Transmit Freq Error** 3.195 kHz **OBW Power** 99.00 % x dB Bandwidth 855.1 kHz x dB -20.00 dB

OBW NVNT 1-DH1 2480MHz Ant1

OBW NVNT 2-DH1 2402MHz Ant1


OBW NVNT 2-DH1 2441MHz Ant1

OBW NVNT 2-DH1 2480MHz Ant1

21.4 BAND EDGE

Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	No-Hopping	-52.48	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-47.48	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-52.47	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-48.25	-20	Pass

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission