

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High--Tech Park, Longhua District, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

T	ES	ΓR	EP	ORT	

Report No. GTI20191783E

FCC ID 2AJ9K-74497

Applicant······ UTONG (HK) Commercial Limited

Address······ Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok,

Hong Kong

Manufacturer UTONG (HK) Commercial Limited

Address·····: Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok,

Hong Kong

Product Name Mini Speaker

Trade Mark·····: N/A

 Model/Type reference
 74497

 Listed Model(s)
 N/A

Standard-----: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-GEN Issue 5 RSS-247 Issue 2

ANSI C63.10-2013

Date of receipt of test sample...: 2019-08-05

Date of testing...... 2019-08-06 to 2019-08-13

Result...... PASS

Compiled by:

(Printed name+signature) Torny Fang

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name...... CTC Laboratories, Inc.

High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Torny Fang Triczhang

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

			Table of Contents	rage
1.	TEST	SUMMARY		
	1.1.	TEST STANDARDS		3
	1.2.			
	1.3.	TEST DESCRIPTION		
	1.4.	TEST FACILITY		
	1.5.	MEASUREMENT UNCERTAINTY		
	1.6.	ENVIRONMENTAL CONDITIONS		6
2.	GEN	ERAL INFORMATION		
	2.1.	CLIENT INFORMATION		-
	2.2.	GENERAL DESCRIPTION OF EUT		
	2.3.	OPERATION STATE		8
	2.4.	MEASUREMENT INSTRUMENTS LIST		
3.	TEST	ITEM AND RESULTS		11
	3.1.	CONDUCTED EMISSION		1
	3.2.	RADIATED EMISSION		14
	3.3.			
	3.4.			
	3.5.			
	3.6.	DWELL TIME		38
	3.7.	PEAK OUTPUT POWER		42
	3.8.	ANTENNA REQUIREMENT		45
4.	EUT	TEST PHOTOS		46
5.	РНО	TOGRAPHS OF EUT CONSTRUCTION	IAL	47

Page 3 of 47

Report No.: GTI20191783E

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	2019-08-14	Original

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.3. Test Description

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 5						
Test Item	Standard	l Section	Result	T / F		
rest item	FCC	IC	Result	Test Engineer		
Antenna Requirement	15.203	/	Pass	Terry Su		
Conducted Emission	15.207	RSS-GEN 7.2.2	Pass	Terry Su		
Restricted Bands	15.205	RSS-Gen 7.2.3	Pass	Terry Su		
Hopping Channel Separation	15.247(a)(1)	RSS 247 5.1 (2)	Pass	Terry Su		
Dwell Time	15.247(a)(1)	RSS 247 5.1 (4)	Pass	Terry Su		
Peak Output Power	15.247(b)(1)	RSS 247 5.4 (2)	Pass	Terry Su		
Number of Hopping Frequency	15.247(b)(1)	RSS 247 5.1 (4)	Pass	Terry Su		
Band Edge Emissions	15.247(d)	RSS 247 5.5	Pass	Terry Su		
Radiated Spurious Emission	15.247(c)&15.20 9	RSS 247 5.5	Pass	Terry Su		
99% Occupied Bandwidth & 20dB Bandwidth	15.247(a)	RSS 247 5.1 (1)	Pass	Terry Su		

Note: The measurement uncertainty is not included in the test result.

Page 5 of 47 Report No.: GTI20191783E

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High--Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: CN1208

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0029

The 3m alternate test site of CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0029 on Dec, 2018.

FCC-Registration No.: 951311

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen General Testing & Inspection Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for Shenzhen General Testing & Inspection Technology Co., Ltd.

(1)

Occupied Bandwidth

Test Items Measurement Uncertainty Notes 0.42 dB Transmitter power conducted (1) 2.14 dB Transmitter power Radiated (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.20 dB (1) Radiated Emissions 30~1000MHz 4.70 dB (1) Radiated Emissions 1~18GHz 5.00 dB (1) Radiated Emissions 18~40GHz 5.54 dB (1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	101kba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong
Manufacturer:	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong
Factory	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong

2.2. General Description of EUT

Product Name:	Mini Speaker			
Model/Type reference:	74497			
Listed Model(s):	N/A			
Model Difference:	N/A			
Power supply:	DC3.7V 300mAh by battery			
Hardware version:	N/A			
Software version:	N/A			
Bluetooth 2.1+EDR				
Modulation:	GFSK, π/4-DQPSK,			
Operation frequency:	2402MHz~2480MHz			
Max Peak Output Power:	-2.24dBm(π/4-DQPSK)			
Channel number:	79			
Channel separation:	1MHz			
Antenna type:	PCB Antenna			
Antenna gain:	-0.58dBi			

Page 8 of 47

Report No.: GTI20191783E

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

CD

2.4. Measurement Instruments List

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 28, 2019
2	LISN	R&S	ENV216	101113	Dec. 28, 2019
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 28, 2019
4	ISN CAT6	Schwarzbeck	NTFM 8158	8158-0046	Dec. 28, 2019

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28 2019
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28 2019
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 28 2019
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 28 2019
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 28 2019
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 28 2019
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 28 2019
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 28 2019
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 28 2019
10	Climate Chamber	ESPEC	MT3065		Dec. 28 2019
11	300328 v2.1.1 test system	TONSCEND	v2.6	1	/

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 28 2019
2	High pass filter	micro-tranics	HPM50111	142	Dec. 28 2019
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28 2019
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 28 2019
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 28 2019
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28 2019
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 28 2019
	Horn Antenna	Rohde & Schwarz	Sep-60	69483	Dec. 28 2019
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28 2019
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28 2019
10	Antenna Mast	UC	UC3000	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28 2019
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX102	DA1580	Dec. 28 2019

CTC Laboratories, Inc

Page 10 of 47 Report No.: GTI20191783E

14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28 2019
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 28 2019
16	RF Connection Cable	Chengdu E-Microwave			Dec. 28 2019
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28 2019
18	Attenuator	Chengdu E-Microwave	EMCAXX-10R NZ-3		Dec. 28 2019

Note:1. The Cal. Interval was one year.

^{2.} The cable loss has calculated in test result which connection between each test instruments.

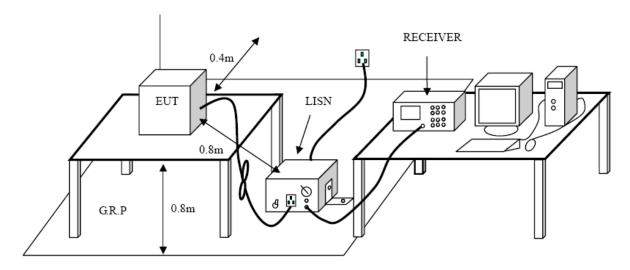
Page 11 of 47

Report No.: GTI20191783E

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

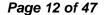
Limit


Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

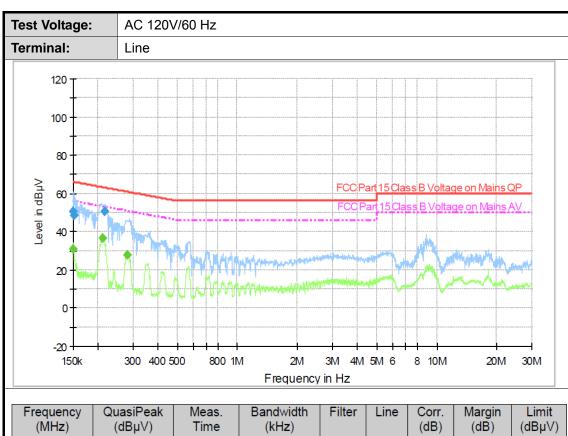
- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.


Test Configuration

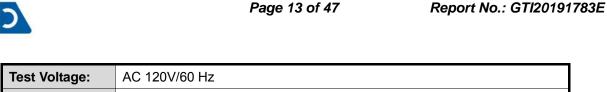
Test Procedure

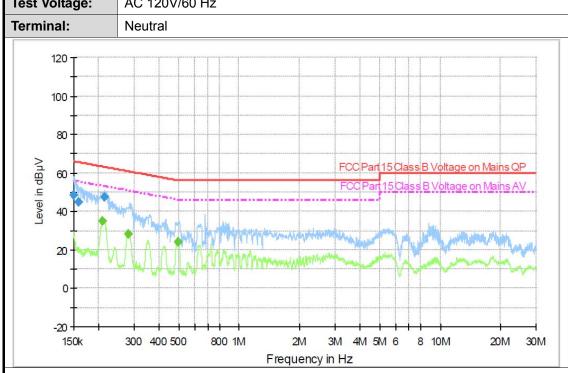
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.



Please refer to the clause 2.3.


Test Results


Only show worst adapter data.

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150300	50.5	1000.00	9.000	Off	L1	10.0	15.5	66.0
0.151510	48.7	1000.00	9.000	Off	L1	10.0	17.2	65.9
0.215780	50.3	1000.00	9.000	Off	L1	10.0	12.7	63.0
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	30.6	1000.00	9.000	Off	L1	10.0	25.4	56.0
0.211510	36.3	1000.00	9.000	Off	L1	10.0	16.8	53.1
0.279220	27.5	1000.00	9.000	Off	L1	10.0	23.3	50.8

Emission Level= Read Level+ Correct Factor

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ∀)
0.150000	48.4	1000.00	9.000	Off	N	9.5	17.6	66.0
0.158630	44.7	1000.00	9.000	Off	N	9.5	20.8	65.5
0.212790	47.5	1000.00	9.000	Off	N	9.5	15.6	63.1
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ∀)
0.209830	35.1	1000.00	9.000	Off	N	9.5	18.1	53.2
0.281460	28.3	1000.00	9.000	Off	N	9.5	22.5	50.8
0.497420	24.2	1000.00	9.000	Off	N	9.4	21.8	46.0

Emission Level= Read Level+ Correct Factor

Page 14 of 47

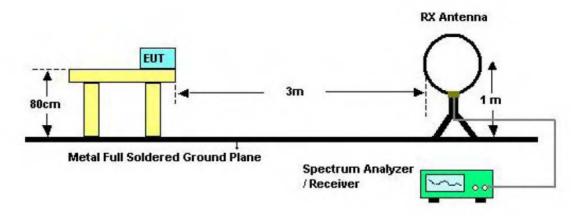
Report No.: GTI20191783E

3.2. Radiated Emission

Limit

Radiated Emission Limits (9 kHz~1000 MHz)

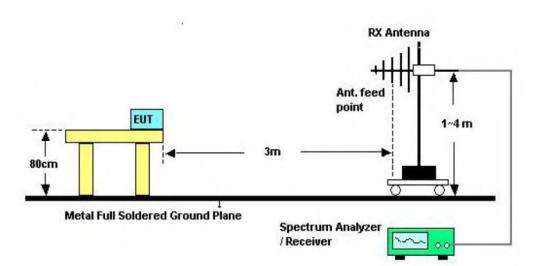
Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

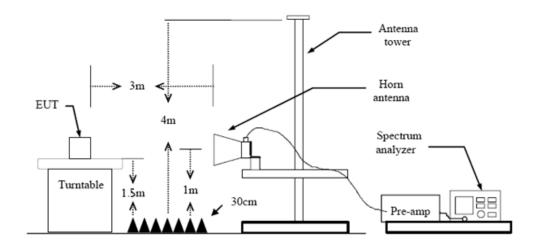

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Mete	rs(at 3m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration


Below 30MHz Test Setup

CTC Laboratories, Inc

Below Above 1GHz Test Setup

Above 1GHz Test Setup

Page 16 of 47

Report No.: GTI20191783E

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

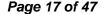
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

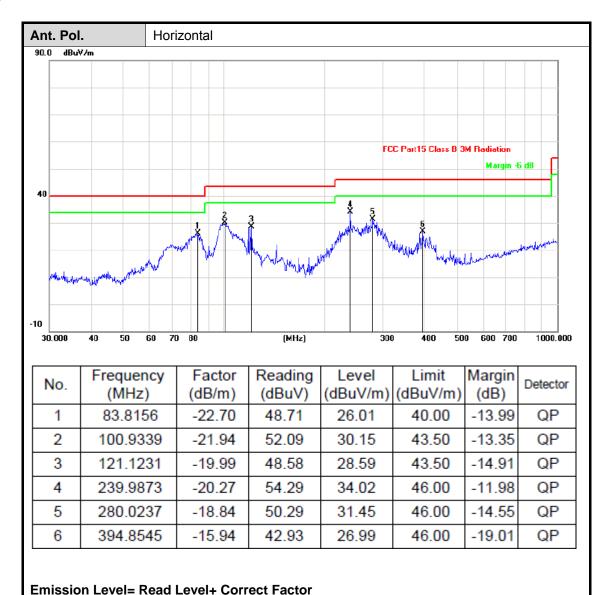
Test Mode

Please refer to the clause 2.3.

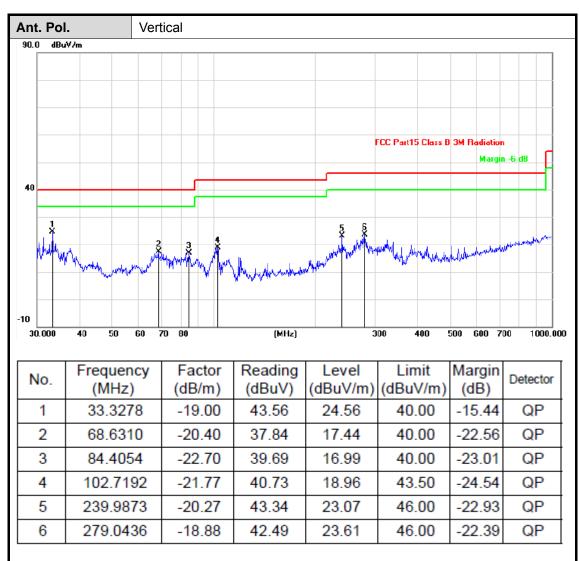
Test Result


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS


Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc


For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Only show worse case:GFSK

Emission Level= Read Level+ Correct Factor

Only show worse case:GFSK

No report for the emission which more than 10 dB below the prescribed limit.

Test Mode:	Test Mode: GFSK - 2402MHz										
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark				
4804	45.23	3.09	48.32	74	-25.68	V	peak				
7206	45.96	5.21	51.17	74	-22.83	V	peak				
4804	44.77	3.09	47.86	74	-26.14	Н	peak				
7206	44.96	5.21	50.17	74	-23.83	Н	peak				

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Test Mode: GFSK - 2441MHz										
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark			
4882	45.26	3.37	48.63	74	-25.37	V	peak			
7323	44.87	5.56	50.43	74	-23.57	V	peak			
4882	45.26	3.37	48.63	74	-25.37	Н	peak			
4882	44.95	3.37	48.32	74	-25.68	V	peak			

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

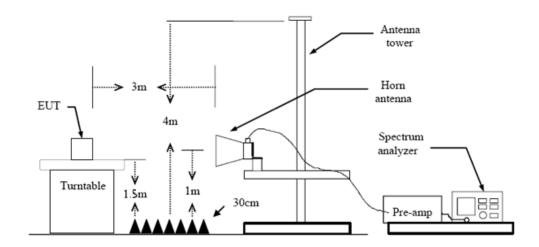
Test Mode: GFSK - 2480MHz										
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark			
4960	46.23	3.44	49.67	74	-24.33	V	peak			
7440	44.96	5.64	50.6	74	-23.4	V	peak			
4960	45.11	3.44	48.55	74	-25.45	Н	peak			
7440	44.69	5.64	50.33	74	-23.67	Н	peak			

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Page 20 of 47

Report No.: GTI20191783E


3.3. Band Edge Emissions

Limit

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

(1) Radiation Test
Only show worse case:GFSK

EDR			2402N	1Hz			
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2390	51.69	3.28	54.97	74	-19.03	Vertical	Peak
2400	50.96	3.85	54.81	74	-19.19	Vertical	Peak
2390	54.98	3.02	58	74	-16	Horizontal	Peak
2400	50.74	3.67	54.41	74	-19.59	Horizontal	Peak
2390	44.63	3.28	47.91	54	-6.09	Vertical	Average
2400	45.82	3.85	49.67	54	-4.33	Vertical	Average
2390	40.69	3.02	43.71	54	-10.29	Horizontal	Average
2400	44.23	3.67	47.9	54	-6.1	Horizontal	Average

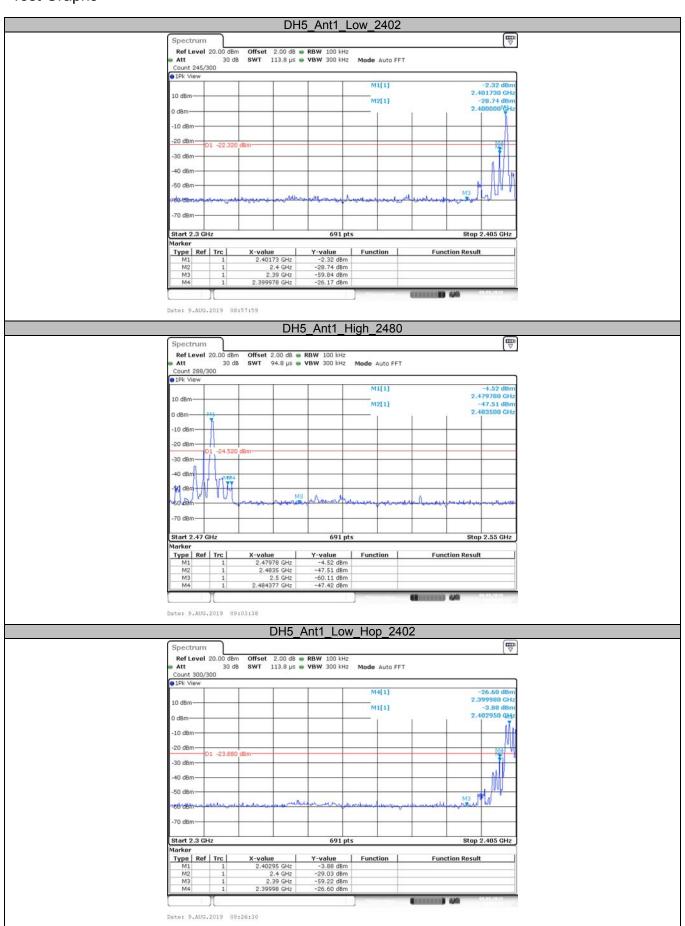
EDR			2480N	1Hz			
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2483.5	51.77	3.79	55.56	74	-18.44	Vertical	Peak
2500	51.23	4.09	55.32	74	-18.68	Vertical	Peak
2483.5	52.87	3.65	56.52	74	-17.48	Horizontal	Peak
2500	52.46	3.95	56.41	74	-17.59	Horizontal	Peak
2483.5	39.06	3.79	42.85	54	-11.15	Vertical	Average
2500	39.26	4.09	43.35	54	-10.65	Vertical	Average
2483.5	38.57	3.65	42.22	54	-11.78	Horizontal	Average
2500	42.63	3.95	46.58	54	-7.42	Horizontal	Average

Remark:

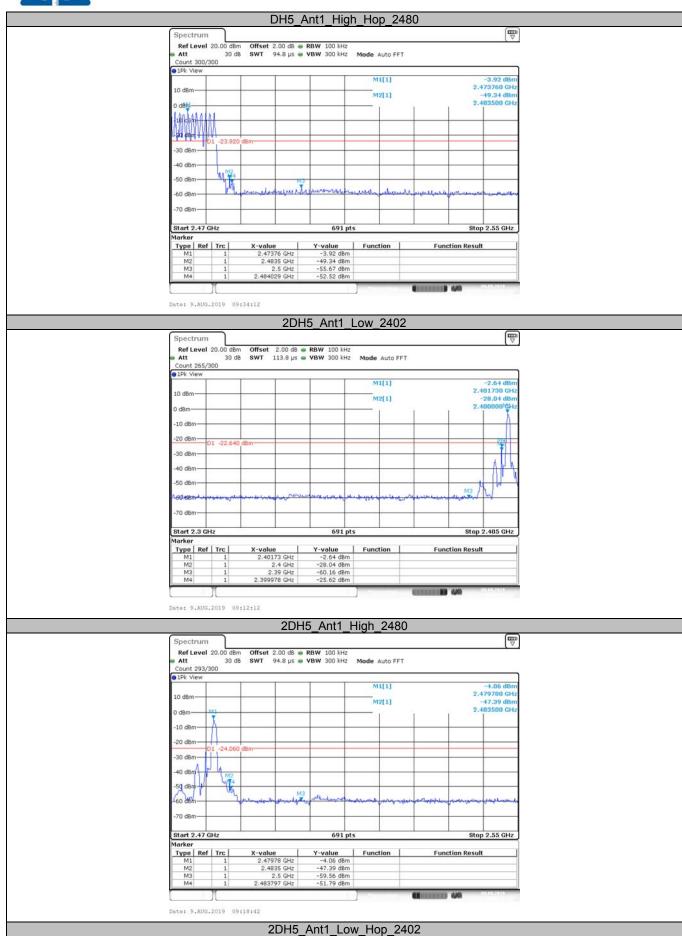
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

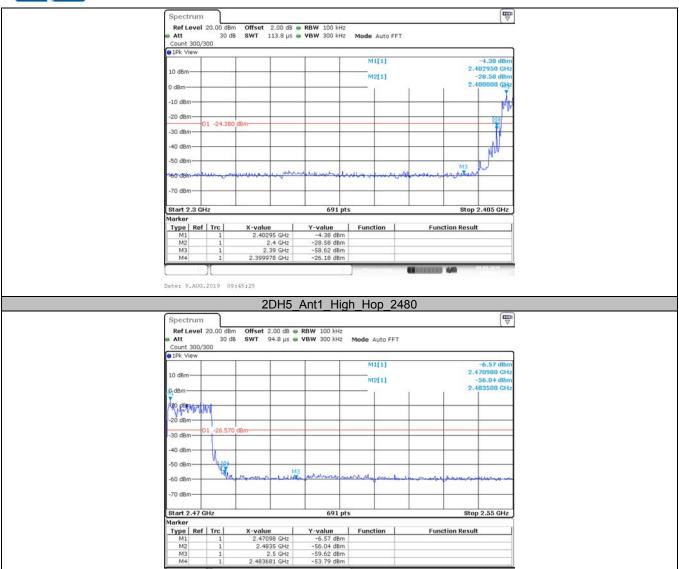
2.Margin value = Level -Limit value

(2) Conducted Test


Test Result

TestMode	Antenna	ChName	Channel	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
	DH5 Ant1	Low	2402	-2.32	-50.27	<=-14.4	PASS
DHE		High	2480	-4.52	-51.17	<=-14.18	PASS
פחט		Low	Hop_2402	-4.65	-55.93	-18.85	PASS
		High	Hop_2480	-3.92	-56.26	-19.26	PASS
		Low	2402	-2.64	-35.76	<=-15.56	PASS
2DH5	Ant1	High	2480	-4.06	-56.57	<=-16.32	PASS
ZDH5 AIILI	AIILI	Low	Hop_2402	-4.38	-49.54	-19.15	PASS
		High	Hop_2480	-6.57	-55.93	-20.3	PASS


Accreditation Administration of the People's Republic of China: yz.cnca.cn


Test Graphs

Date: 9.AUG.2019 10:01:05

中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 26 of 47

Report No.: GTI20191783E

3.4. Channel Separation and Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

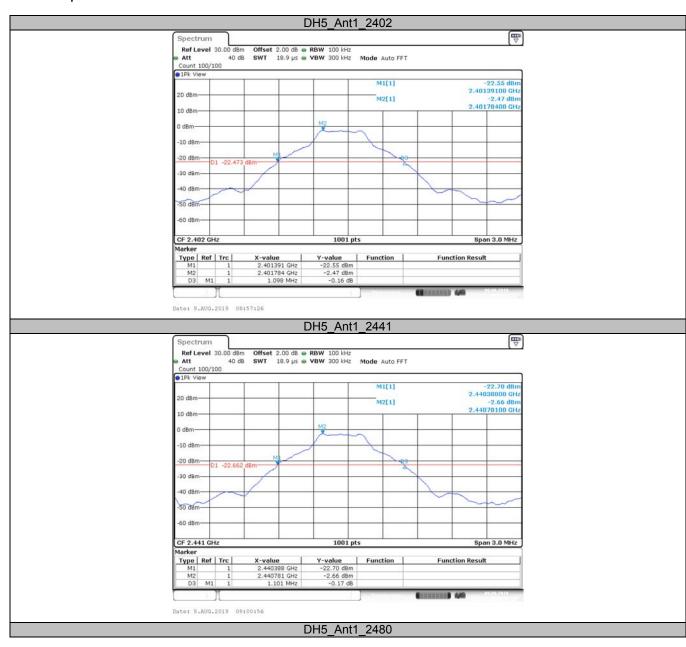
Test Mode

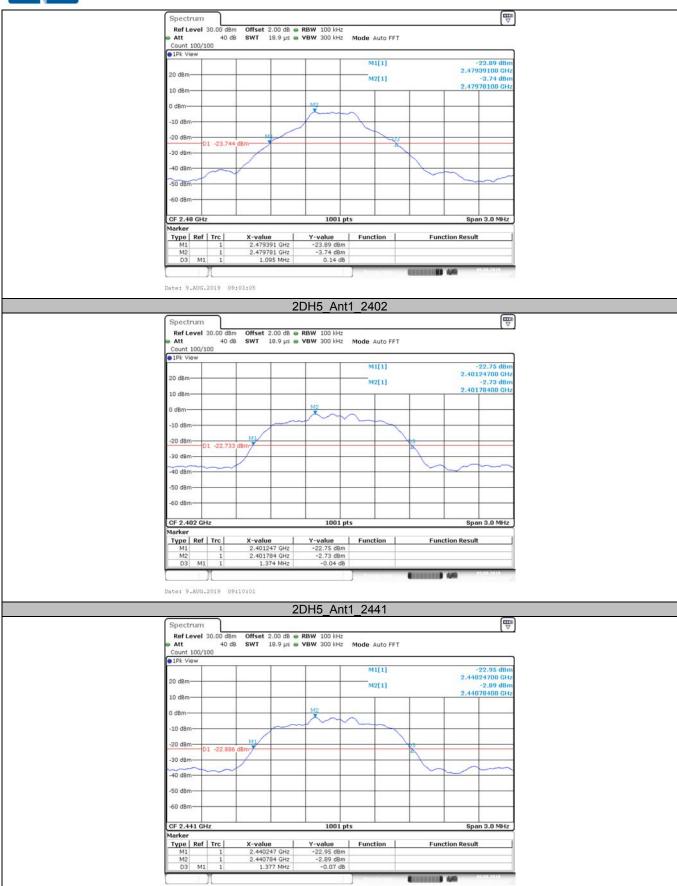
Please refer to the clause 2.3.

Test Results

CTC Laboratories, Inc

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

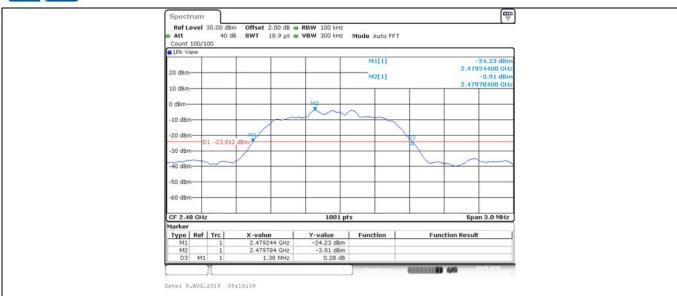



20dB Emission Bandwidth:

TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.098	2401.391	2402.489		PASS
DH5	Ant1	2441	1.101	2440.388	2441.489		PASS
		2480	1.095	2479.391	2480.486		PASS
		2402	1.374	2401.247	2402.621		PASS
2DH5	Ant1	2441	1.377	2440.247	2441.624		PASS
		2480	1.380	2479.244	2480.624		PASS

Test Graphs

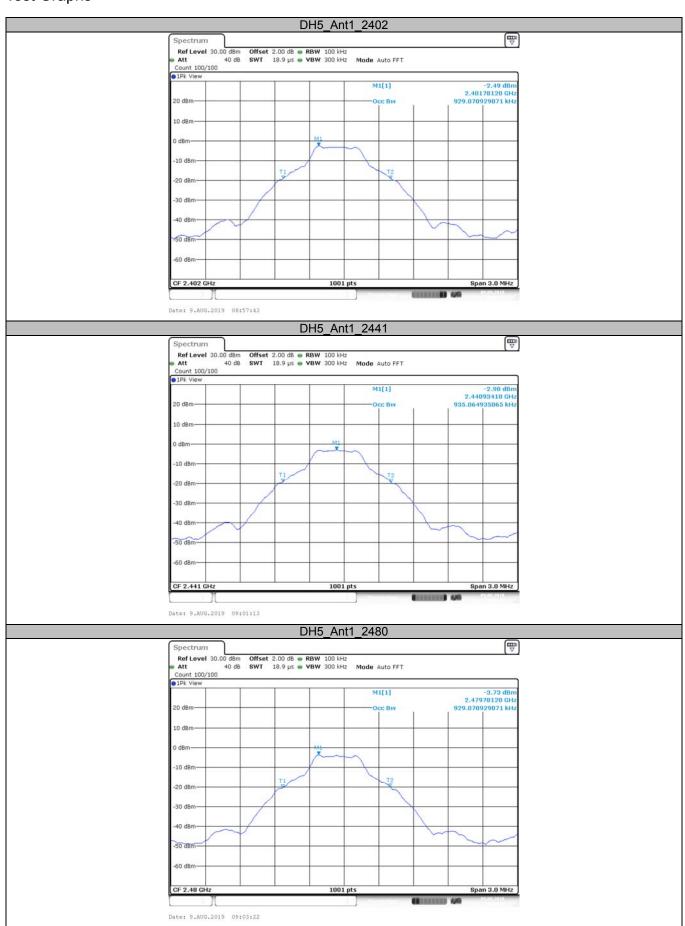
中国国家认证认可监督管理委员会



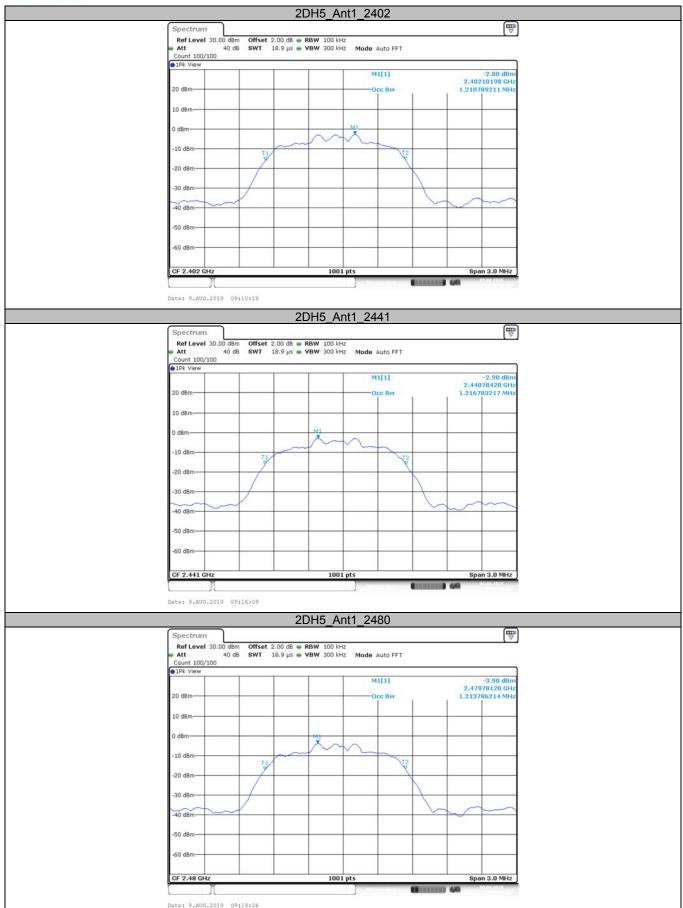
2DH5_Ant1_2480

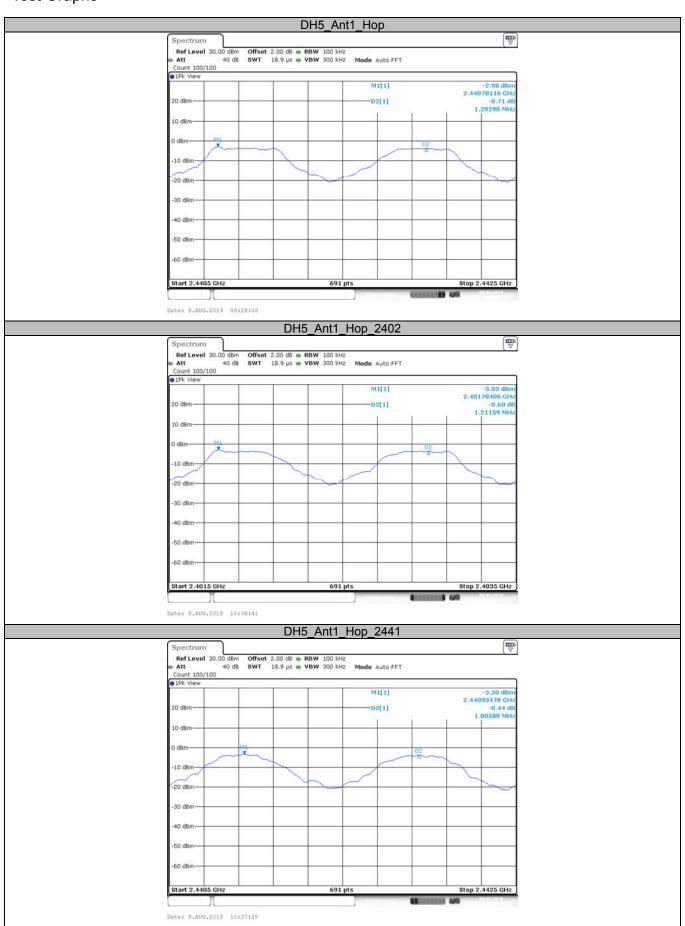
Date: 9.AUG.2019 09:15:52

99%Occupied Channel Bandwidth:

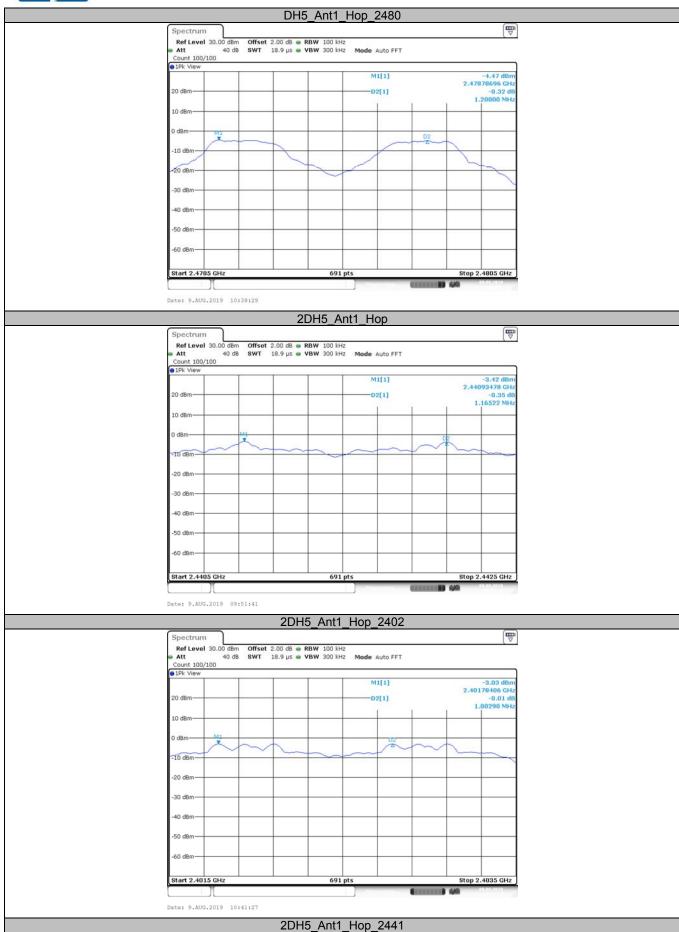

Test Result

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.929	2401.473	2402.402		PASS
DH5	Ant1	2441	0.935	2440.470	2441.405		PASS
		2480	0.929	2479.470	2480.399		PASS
		2402	1.211	2401.329	2402.539		PASS
2DH5	Ant1	2441	1.217	2440.326	2441.542		PASS
		2480	1.214	2479.326	2480.539		PASS

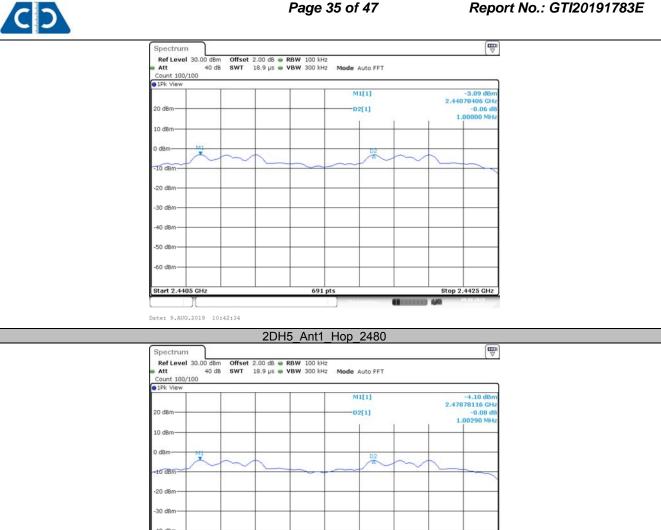

中国国家认证认可监督管理委员会


Carrier frequency separation:

Test Result


TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
		Нор	1.203	>=1.101	PASS
DH5	Ant1	Hop_2402	1.212	>=1.101	PASS
	AIILI	Hop_2441	1.006	>=0.734	PASS
		Hop_2480	1.2	>=1.101	PASS
2DH5	Ant1	Нор	1.165	>=0.920	PASS
		Hop_2402	1.003	>=0.920	PASS
		Hop_2441	1	>=0.920	PASS
		Hop_2480	1.003	>=0.920	PASS

Test Graphs



For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China: yz.cnca.cn

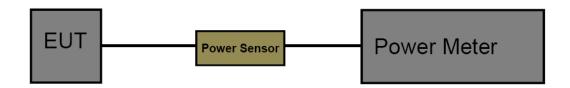
Date: 9.AUG.2019 10:43:07

Stop 2.4805 GHz

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 36 of 47

Report No.: GTI20191783E



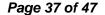
3.5. Number of Hopping Channel

<u>Limit</u>

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

Test Configuration

Test Procedure


- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

Test Mode

Please refer to the clause 2.3.

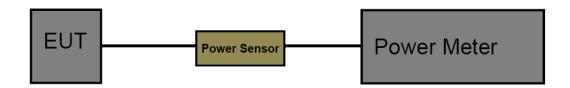
Test Result

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS

Test Graphs

Page 38 of 47

Report No.: GTI20191783E



3.6. Dwell Time

Limit

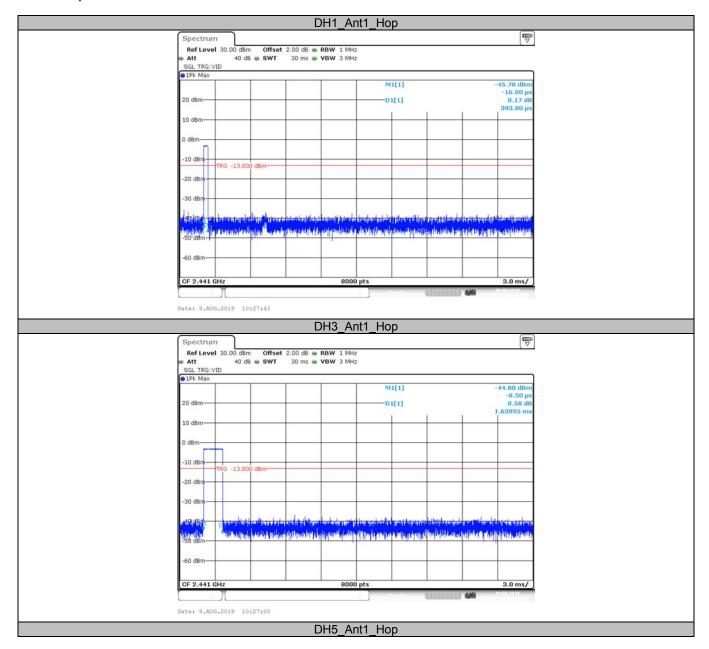
Section	Test Item	Limit	
15.247(a)(1)/ RSS-210 Annex 8(A8.1d)	Average Time of Occupancy	0.4 sec	

Test Configuration

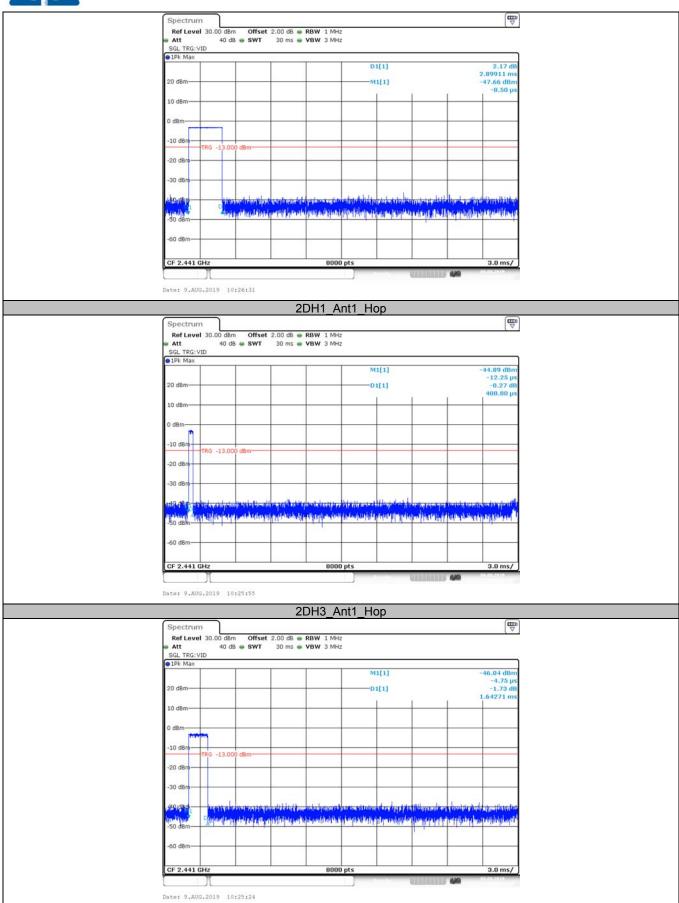
Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

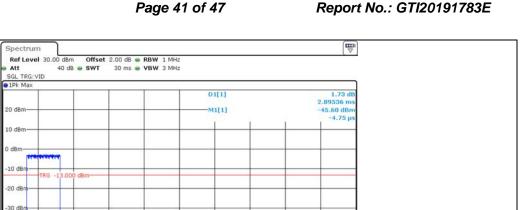
Test Mode


Please refer to the clause 2.2

Test Result


TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.39	140	0.058	<=0.4	PASS
DH3	Ant1	Нор	1.64	110	0.183	<=0.4	PASS
DH5	Ant1	Нор	2.90	80	0.233	<=0.4	PASS
2DH1	Ant1	Нор	0.41	170	0.072	<=0.4	PASS
2DH3	Ant1	Нор	1.64	120	0.2	<=0.4	PASS
2DH5	Ant1	Нор	2.90	110	0.321	<=0.4	PASS

Test Graphs


Accreditation Administration of the People's Republic of China: yz.cnca.cn

2DH5_Ant1_Hop

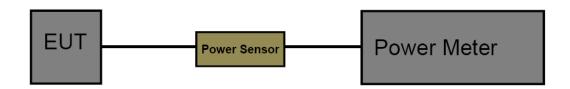
-10 de

Date: 9.AUG.2019 10:24:39

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 42 of 47

Report No.: GTI20191783E



3.7. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5	

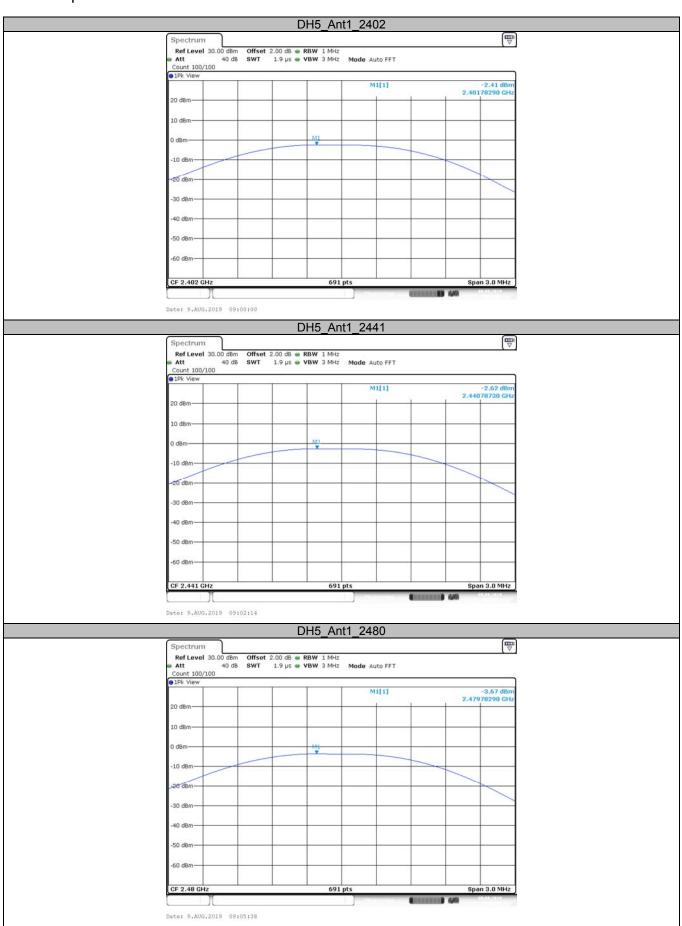
Test Configuration

Test Procedure

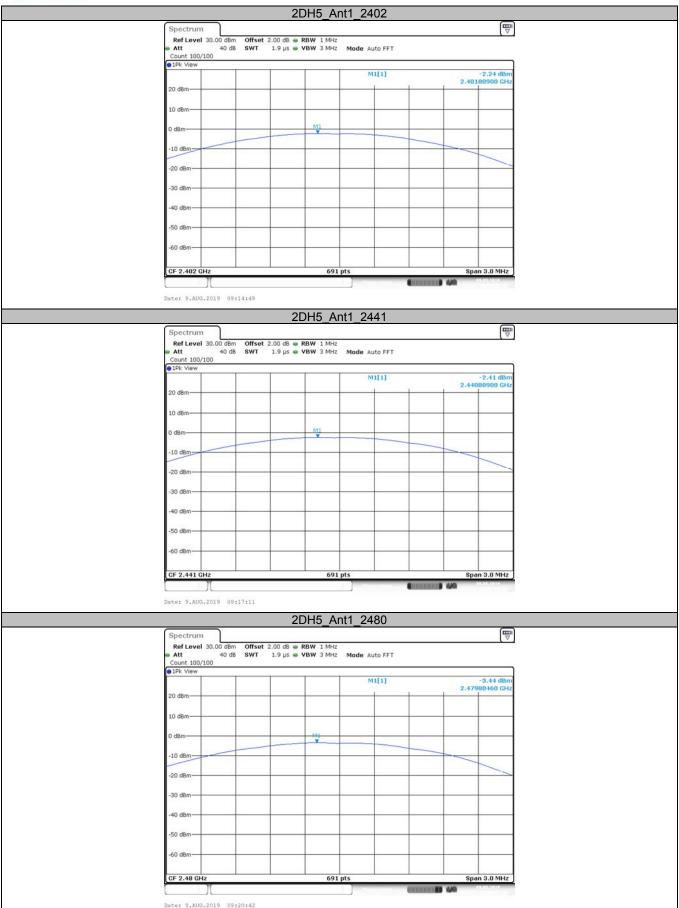
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

Test Mode


Please refer to the clause 2.2

Test Result


TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-2.41	<=20.97	PASS
DH5	Ant1	2441	-2.62	<=20.97	PASS
		2480	-3.67	<=20.97	PASS
		2402	-2.24	<=20.97	PASS
2DH5	Ant1	2441	-2.41	<=20.97	PASS
		2480	-3.44	<=20.97	PASS

Test Graphs

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 45 of 47

Report No.: GTI20191783E

3.8. Antenna requirement

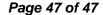
Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Test Result

The EUT's antenna is soldered to the PCB. The gain of the antenna is -0.58dBi. Meet the standards.

Please reference to the annex: Internal Photographs

Please refer to the Appendix: Test Photo

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the Appendix: External Photographs and Internal Photographs