MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE ! BALTIMORE, MARYLAND 21230-3432 ! PHONE (410) 354-3300 ! FAX (410) 354-3313 33439 WESTERN AVENUE ● UNION CITY, CALIFORNIA 94587 ● PHONE (510) 489-6300 ● FAX (510) 489-6372 3162 BELICK STREET ● SANTA CLARA, CALIFORNIA 95054 ● PHONE (408 748-3585 ● FAX (510) 489-6372 # SAR Test Report for the ### Viavi Solutions FCC Part 2.1093 RSS-102 Issue 5 Prepared for Viavi Solutions Inc Jaryk Kuzel 20250 Century Blvd. Germantown, MD 20874 **Engineering Statement:** The measurements shown in this report were made in accordance with the procedures specified in KDB447498 of the Federal Communications Commission and Industry Canada RSS-102 Issue 5 for controlled exposure. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment evaluated is capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1999. # SAR Evaluation Certificate of Compliance APPLICANT: Viavi Solutions Inc **Applicant Name and Address**: Viavi Solutions Inc – Jaryk Kuzel 20250 Century Blvd. Germantown, MD 20874 **Test Location:** MET Laboratories, Inc. 3162 Belick Street Santa Clara, CA 95054 **USA** | EUT: | TB/MTS-5882 | | | | | |----------------------------|--|--------|--|--|--| | Test Dates: | February 12 th – February 15 th 2018 | | | | | | RF exposure environment: | Uncontrolled Exposure/General Population | | | | | | RF exposure category: | Portable | | | | | | Power supply: | Internal battery | | | | | | Antenna: | Internal | | | | | | Production/prototype: | Production | | | | | | Modes of operation tested: | 2.4 GHz (802.11b, g, n) | | | | | | Modulation tested: | DSSS | | | | | | Duty Cycle tested: | 99% | | | | | | TX Range: | 2412-2462 MHz WiFi
2402-2480MHz Bluetooth | | | | | | Max SAR Measured | SAR 1g (W/kg) | | | | | | Wax SAN Weasured | Phantom Body Setion(0cm) | 0.0692 | | | | John Mason, Director, Electromagnetic Compatibility Lab Jun Qi EMC Test Engineer Viavi Solutions Inc # **Table of Contents** | 1 | IN | ITRODUCTION | ε | |----|--------------|---|----| | | 1.1 | SAR DEFINITION | 6 | | | 1.2 | DESCRIPTION OF DEVICE UNDER TEST (EUT) | | | | 1.3 | SAR MEASUREMENT SYSTEM | 8 | | 2 | SA | AR MEASUREMENT SUMMARY | 9 | | 3 | cc | ONDUCTED POWER MEASUREMENT SUMMARY | 10 | | 4 | DE | ETAILS OF SAR EVALUATION | 12 | | | 4.1 | FLOWCHART OF THE RECOMMENDED PRACTICES AND PROCEDURES | 10 | | | 4.1
4.2 | EAR REFERENCE POINTS | | | | 4.3 | EVALUATION PROCEDURES | | | | 4.4 | DATA EVALUATION PROCEDURES | | | | 4.5 | SAR SAFETY LIMITS | 21 | | 5 | SY | /STEM PERFORMANCE CHECK | 27 | | 6 | SII | MULATED EQUIVALENT TISSUE | 27 | | 7 | RC | OBOT SYSTEM SPECIFICATIONS | 24 | | | 7.1 | Specifications | 24 | | | 7.2 | DATA ACQUISITION ELECTRONIC (DAE) SYSTEM: | | | | 7.3 | PHANTOM(S): | | | | 7.4 | RX90BL ROBOT | 25 | | | 7.5 | ROBOT CONTROLLER | | | | 7.6 | LIGHT BEAM SWITCH | | | | 7.7 | DATA ACQUISITION ELECTRONICS | | | | 7.8 | ELECTO-OPTICAL CONVERTER (EOC) | | | | 7.9 | MEASUREMENT SERVER | | | | 7.10
7.11 | DOSIMETRIC PROBESAM PHANTOM | | | | 7.11 | PLANAR PHANTOM | | | | 7.13 | VALIDATION PLANAR PHANTOM | | | | 7.14 | | | | | 7.15 | | | | 8 | TE | EST EQUIPMENT LIST | 33 | | | 8.1 | MEASUREMENT UNCERTANTIES | 34 | | | 8.2 | UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK | 35 | | 9 | RE | EFERENCES | 36 | | 10 | EL | JT TEST SETUP PHOTOS | 37 | | ΑN | NEX. | A 2.4 GHZ SAR MEASUREMENT DATA | 39 | | ΑN | NEX | B 2.4 GHZ SYSTEM PERFORMANCE CHECK | 42 | | ΑN | NEX | C 2.4 DIPOLE CALIBRATION CERTIFICATE | 44 | | ΔN | NFX | D PROBE CALIBRATION CERTIFICATE | 53 | | ANNEX E DAE CALIBRATION CERTIFICATE | 65 | |--|----| | ANNEX F 2.4 GHZ MEASURED FLUID DIELECTRIC PARAMETERS | 71 | | ANNEX G PHANTOM CERTIFICATE OF CONFORMITY | 74 | Viavi Solutions Inc # **List of Figures** | FIGURE 2: FLOWCHART OF THE RECOMMENDED PRACTICES AND PROCEDURES | 16 | |---|----| | FIGURE 3: FRONT, BACK AND SIDE VIEW OF SAM TWIN PHANTOM | 17 | | FIGURE 4: SIDE VIEW OF ERPS | 17 | | FIGURE 5: SYSTEM PERFORMANCE CHECK COMPONENTS | 22 | | FIGURE 6: SAR MEASUREMENT SYSTEM | 24 | | FIGURE 7: LIGHT BEAM SWITCH | 26 | | FIGURE 8: DATA ACQUISITION ELECTRONICS | 27 | | FIGURE 9: ELECTRO OPTICAL CONVERTER | 27 | | FIGURE 10: DASY4 MEASUREMENT SERVER | 28 | | FIGURE 11: ELECTRIC FIELD PROBE | 28 | | FIGURE 12: SPECIFIC ANTHROPOMORPHIC MANNEQUIN TWIN PHANTOM | 29 | | FIGURE 13: PLANNER PHANTOM | 30 | | FIGURE 14: DEVICE HOLDER | 31 | | FIGURE 15: SYSTEM VALIDATION USING DIPOLE ANTENNA | 32 | | FIGURE 16: 2.4GHz BODY TISSUE SIMULATING FLUID | 37 | | FIGURE 17: EUT LEFT EDGE, SIDE AGAINST PHANTOM | 37 | | FIGURE 18: EUT WITH FACE OF EUT AGAINST PHANTOM | 38 | | List of Tables | | | TABLE 1: DESCRIPTION OF DEVICE UNDER TEST. | 7 | | TABLE 2: 2.4GHz SAR HEAD MEASUREMENT RESULTS | 9 | | TABLE 3: 802.11B, N, G 2.4 GHz CONDUCTED POWER MEASUREMENTS | 10 | | TABLE 4: BLUETOOTH CONDUCTED POWER MEASUREMENTS. | | | TABLE 5: SAR SAFETY LIMITS FOR FCC. | 21 | | TABLE 6: SYSTEM PERFORMANCE AND HEAD SIMULATING FLUID PARAMETER CHECK RESULTS | 22 | | Table 7: Recipe for head tissue simulating fluid for 2450 MHz. | 23 | | TABLE 8: TEST EQUIPMENT LIST DETAILS. | 33 | | TABLE 9: WORST-CASE UNCERTAINTY FOR DASY4 ASSESSED ACCORDING TO IEEE P1528 | 34 | #### 1 INTRODUCTION This measurement report demonstrates that Viavi Solutions Inc. TB/MTS-5882 unit as described within this report complies with the Specific Absorption Rate (SAR) RF exposure requirements specified in ANSI/IEEE Std. C95.1-1999, FCC 47 CFR §2.1093 and Industry Canada RSS-102 for the Uncontrolled Exposure/General population environment. The test procedures described in IEEE 1528-2013, IEC 62209-2 and KDB 447498 were employed. A description of the device under test, device operating configuration and test conditions, measurement and site description, methodology and procedures used in the evaluation, equipment used, detailed summary of the test results and the various provisions of the rules are included in this dosimetric assessment test report. #### 1.1 SAR DEFINITION Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) . It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1). $$SAR = \frac{d}{dt}(\frac{dU}{dm}) = \frac{d}{dt}(\frac{dU}{\rho dv})$$ SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \sigma E^2 / \rho$$ where: σ - conductivity of the tissue - simulant material (S/m) ρ - mass density of the tissue - simulant material (kg/m3) E - Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. # 1.2 DESCRIPTION OF DEVICE UNDER TEST (EUT) | Applicant: | Viavi Solutions Inc | |--|---| | Description of Test Item: | The TB/MTS-5882 is a handheld networking device for verification of multiple protocol transmission. While monitoring the selected protocols, the EUT saves error files on its onboard disk drives or through a network connection. It is intended to be used by IT professionals within an office building. | | Supply Voltage: | Internal Battery | | Antenna Type(s) Tested: | Integral | | Accessories: | none | | Modes of Operation: | 2.4 GHz b, n, g (20MHz)
Bluetooth | | Duty Cycles: 99% | | | Application Type: | Evaluation for aggregated SAR levels | | Exposure Category: | Uncontrolled Exposure/General Population | | FCC and IC Rule Part(s): FCC 47 CFR §2.1093, Industry Canada RSS-102 | | | Test Standards: | IEEE Std. 1528-2013, KDB447498 | Table 1: Description of device under test. #### 1.3 SAR MEASUREMENT SYSTEM MET Laboratories, Inc SAR measurement facility utilizes the DASY4 Professional Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAGTM) of Zurich, Switzerland for performing SAR compliance tests. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). The Cell controller system contain the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. Figure 1: Staubli Robotic Arm #### 2 SAR MEASUREMENT SUMMARY | | SAR BODY MEASUREMENT RESULTS | | | | | | | | | |---|------------------------------|---------|-------|------|-------|--------|--|--|--| | Channel # Frequency (MHz) mode Position Power Drift Measured SAR Worst case tune-up corrected SAR 1g (W/kg) | | | | | | | | | | | 1 | 2412 | 802.11b | Front | 3.23 | 0.037 | 0.0466 | | | | | 1 | 2412 | 802.11b | Back | NA | NA | NA | | | | | 1 | 2412 | 802.11b | Left | 1.67 | 0.055 | 0.0692 | | | | Table 2: 2.4GHz SAR head measurement results **Note 1:** Duty cycle correction is not required for both 2.4 GHz because the duty cycles is 99%. **Note 2:** Power drift correction is only applicable if it is more than 5% Note 3: Worst case tune up tolerance corrected SAR = [(Target Power + 1dBm) / (Conducted Power)] x Measured SAR **Note 4:** The back position is excluded because the antenna port is far away from the back surface and the worst case, left position, is too low. #### 2412MHz Front Measured Power = 6.80 dBm = 4.786 mW Target = 6.80 dBm + 1 dBm = 7.80 dBm = 6.03 mW Worst case tune up tolerance corrected SAR = $[(6.03 \text{ mW} / (4.786 \text{ mW}))] \times 0.037 = 0.0466$ #### 2412MHz Left side Measured Power = 6.80dBm = 4.786 mW Target = 6.80 dBm + 1 dBm = 7.80 dBm = 6.03 mW Worst case tune up tolerance corrected SAR = $[(6.03 \text{ mW} / (4.786 \text{ mW}))] \times 0.055 = 0.0692$ #### 3 CONDUCTED POWER MEASUREMENT SUMMARY Since the EUT is capable of communicating via a large number of channels in various 802.11 modes, SAR testing for all the configurations is not desirable. KDB 248227 which is the SAR guidance for IEEE 802.11 WiFi transmitters was consulted to reduce the number of SAR tests without compromising the validity of the tested channel's applicability to the whole range of EUT supported channels. So according to the KDB 248227, channels with the highest output conducted power were tested for SAR first. If the SAR number was greater than 1.2 W/kg then the next highest power channel was test for SAR. Below are the measured conducted output powers from the EUT for the 2.4 GHz channels. As highlighted below, channel 1 was first selected. Since the SAR value was less than 1.2 W/kg, further testing for other modes was not necessary. The main goal of SAR test reduction method as prescribed in KDB 248227 is to save time and not test unnecessarily for a very large number of channels. | Band
(GHz) | Mode | Data Rate | Channel
Number | Frequency (MHz) | Measured
Avg.
Pwr.
(dBm) | Max
Output
Power
(dBm) | SAR Test
(Yes/No) | |---------------|-------------------|-----------|-------------------|-----------------|-----------------------------------|---------------------------------|----------------------| | | | | 1 | 2412 | 6.80 | 7.0 | Yes | | | 802.11b | 1 Mbps | 6 | 2437 | 6.61 | 7.0 | No | | | | | 11 | 2462 | 6.71 | 7.0 | No | | | | | 1 | 2412 | 6.21 | 7.0 | No | | 2.4 | 802.11g | 6 Mbps | 6 | 2437 | 6.53 | 7.0 | No | | | | | 11 | 2462 | 6.44 | 7.0 | No | | | 002.11 | 6.5 Mbps | 1 | 2412 | 6.05 | 7.0 | No | | | 802.11n
(HT20) | | 6 | 2437 | 5.80 | 7.0 | No | | | (11120) | | 11 | 2462 | 6.55 | 7.0 | No | **Table 3:** 802.11b, n, g 2.4 GHz conducted power measurements # 2.4GHz BT Conducted Power | Channel | Mode | Conducted Power(dBm) | |------------|------|----------------------| | Channel 0 | BR | 4.128 | | Chamilero | DN | 4.120 | | Channel 39 | BR | 3.317 | | Channel 78 | BR | 1.588 | | Channel 0 | EDR2 | 3.275 | | Channel 39 | EDR2 | 2.234 | | Channel 78 | EDR2 | 0.37 | | Channel 0 | EDR3 | 3.852 | | Channel 39 | EDR3 | 2.899 | | Channel 78 | EDR3 | 1.128 | **Table 4:** Bluetooth conducted power measurements. The highest power for 2.4 GHz is 4.36 mW. Below is the SAR exclusion equation from KDB 447498: $$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$ For BT Basic (1 mbps): Target = $$4.128 \text{ dBm} + 1 \text{dBm} = 5.128 \text{ dBm} = 3.257 \text{ mW}$$ (3.257 mW/ 6.65mm)* $\sqrt{2.4} = 0.759$ Therefore BT channels are exempt from SAR testing. #### 4 DETAILS OF SAR EVALUATION The Viavi Solutions Inc Tablet PC was determined to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below. - 1. The Viavi Solutions Inc Corporation Tablet PC contains a pre-approved module FCC ID: TFB-TIWI1-01. - 2. The EUT was tested for SAR against the planar section of the phantom in three different orientations. The front and back sides as well as the lower bottom edge were placed at 0.0cm separation from the phantom surface. - 3. The EUT was placed into Test Mode at maximum duty cycle transmissions using software commands provided by Viavi. First channel was tested in 802.11b modes. - 4. All SAR evaluations were performed with a fully charged battery. - 5. The dielectric parameters of the simulated body fluid were measured prior to the evaluation using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer. - 6. The fluid and air temperature was measured prior to and after each SAR evaluation to ensure the temperature remained within ±2 deg C of the temperature of the fluid when the dielectric properties were measured. - 7. During the SAR evaluations if a distribution produced several hotspots over the course of the area scan, each hotspot was evaluated separately. # **EUT Photographs:** # **Antenna Location:** #### 4.1 FLOWCHART OF THE RECOMMENDED PRACTICES AND PROCEDURES Figure 2: Flowchart of the recommended practices and procedures #### 4.2 EAR REFERENCE POINTS Figure 12.1 shows the front, back and side views of the SAM Twin Phantom. The point M is the reference point for the center of the mouth, LE is the left ear reference point (ERP), and RE is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 12.2. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting. Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. B RE ERP B N EEC ERP - ear reterence point EEC - entrance to ear canal **Figure 3:** Front, back and side view of SAM Twin Phantom **Figure 4:** Side view of ERPs #### 4.3 EVALUATION PROCEDURES The evaluation was performed in the head area of the phantom in both left and right sides. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 10mm x 10mm. An area scan was determined as follows: Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans. #### A 1g and 10g spatial peak SAR was determined as follows: For frequencies \leq 4.5GHz a 32mm x 32mm x 34mm (7x7x7 data points) zoom scan was assessed at the position where the greatest V/m was detected. For frequencies \geq 4.5GHz a 28mm x 28mm x 24mm (7x7x9 data points) zoom scan was assessed at the position where the greatest V/m was detected. The data at the surface was extrapolated since the distance from the probes sensors to the surface is 3.9cm. A least squares fourth-order polynomial was used to generate points between the probe detector and the inner surface of the phantom. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points). #### Z-Scan was determined as follows: The Z-scan measures points along a vertical straight line. The line runs along a line normal to the inner surface of the phantom surface. #### 4.4 DATA EVALUATION PROCEDURES The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe Parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2} - Conversion Factor $ConvF_i$ - Dipole Compression Point dcp_i Device parameters: - Frequency f - Crest factor *cj* Media parameters: - Conductivity σ - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or can be imported into the software from the configuration files issued for the DASY components. In the direct
measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC - transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = Compensated signal of channel i (i = x, y, z) U_i = Input signal of channel i (i = x, y, z) cf = Crest factor of exciting field (DASY parameter) dcp_i = Diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E – field probes : $$E_i = \sqrt{\frac{V_1}{Norm_i \cdot ConvF}}$$ $$\mbox{H} - \mbox{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1} f + a_{i2} f^2}{f}$$ With V_i = Compensated signal of channel i (i = x, y, z) $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E-field probes ConvF = Sensitivity enhancement in solution a_{ij} = Sensor sensitivity factors for H-field probes f = Carrier frequency (GHz) E_i = Electric field strength of channel i in V/m H_i = Magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field as a free space field. $$P_{pwe} = \frac{E_{tot}^2}{3770} \qquad \text{or} \qquad P_{pwe} = H_{tot}^2 \cdot 37.7$$ With P_{pwe} = Equivalent power density of a plane wave in mW/cm2 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m #### 4.5 SAR SAFETY LIMITS | | SAR (W/kg) | | | | | |--|---|---|--|--|--| | EXPOSURE LIMITS | (General Population / Uncontrolled
Exposure Environment) | (Occupational / Controlled
Exposure Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak (averaged over any 1g of tissue) | 1.60 | 8.0 | | | | **Table 5:** SAR safety limits for FCC. #### **Notes:** - 1. Uncontrolled exposure environments are locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure. - 2. Controlled exposure environments are locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure. #### 5 SYSTEM PERFORMANCE CHECK Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450MHz dipole and 5000MHz dipole. The dielectric parameters of the simulated brain fluid and body were measured prior to the system performance check using an 85070D Dielectric Probe Kit and an 8722D Network Analyzer. A forward power of 250 mW for 2.4 GHz and 100 mW for 5GHz was applied to the dipole and the system was verified to a tolerance of ±10%. All results were normalized to 1W. | Test Date Fluid Type | | SAR 1g
(W/kg) | | Permittivity Constant εr | | Conductivity σ (mho/m) | | Ambient | Fluid
Temp. | Fluid | |----------------------|-----------|----------------------|----------|--------------------------|----------|------------------------|----------|--------------|----------------|---------------| | Test Date | (MHz) | Calibrated
Target | Measured | IEEE
Target | Measured | IEEE
Target | Measured | Temp.
(C) | (C) | Depth
(cm) | | 02/13/2018 | 2450 body | 12.9 ±5% | 13.4 | 52.7 ±5% | 52.134 | 1.95 ±10% | 2.04 | 23.0 | 22.0 | ≥15 | Table 6: System performance and head simulating fluid parameter check results Note1: The ambient temperature, 23°C, and the fluid temperatures, 22°C, were measured prior to the fluid parameter check and the system performance check and kept consistent during the measurement periods. Note2: Fluid Depth was ≥15 cm. Figure 5: System performance check components ### 6 SIMULATED EQUIVALENT TISSUE For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with 25 liters of homogeneous head simulating liquid. Target dielectric parameters for the head simulating liquid at 2450 MHz are defined in the standards for compliance testing (e.g CENELEC EN50361, IEEE P1528) | Liquid Type | M 24 | 450-В | | | |----------------------------|-----------------------|--------|--|--| | Ingredient | Weight (g) Weight (% | | | | | Water | 686.35 | 68.64 | | | | DGBE | 313.65 | 31.37 | | | | Salt | 0.00 | 0.00 | | | | Total amount | 1000.00 | 100.00 | | | | Goal Dielectric Parameters | Dielectric Parameters | | | | | Frequency (MHz) | 2450 | | | | | Relative Permittivity | 52.70 | | | | | Conductivity (S/m) | 1.95 | | | | **Table 7:** Recipe for head tissue simulating fluid for 2450 MHz. The 2.4 GHz fluids for head tissue simulation were prepared in-house. #### 7 ROBOT SYSTEM SPECIFICATIONS Figure 6: SAR Measurement System ## 7.1 Specifications Positioner: Robot: Staubli Unimation Corp. Robot Model: RX90 Repeatability: 0.02 mm No. of axis: 6 # 7.2 Data Acquisition Electronic (DAE) System: Cell Controller Processor: Compaq Evo Clock Speed: 2.4 GHz Operating System: Windows XP Professional #### Data Converter Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock Dasy4 Measurement Server Function: Real-time data evaluation for field measurements and surface detection Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface E-Field Probe Model: ET3DV6 Serial No.: 1793 Construction: Triangular core fiber optic detection system Frequency: 10 MHz to 6 GHz Linearity: $\pm 0.2 \text{ dB} (30 \text{ MHz to } 3 \text{ GHz})$ EX-Probe Model: EX3DV4 Serial No. 3511 Construction: Triangular core Frequency: 10 MHz to > 6 GHz Linearity: $\pm 0.2 \text{ dB} (30 \text{ MHz to } 3 \text{ GHz})$ 7.3 Phantom(s): Validation & Evaluation Phantom Type: SAM V4.0C Shell Material: Fiberglass Thickness: 2.0 ±0.1 mm Volume: Approx. 20 liters #### 7.4 RX90BL Robot The Stäubli RX90BL Robot is a standard high precision 6-axis robot with an arm extension for accommodating the data acquisition electronics (DAE). #### 7.5 Robot Controller The CS7MB Robot Controller system drives the robot motors. The system consists of a power supply, robot controller, and remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. #### 7.6 Light Beam Switch The Light Beam Switch (Probe alignment tool) allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. Figure 7: Light beam switch ### 7.7 Data Acquisition Electronics The Data Acquisition Electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16-bit A/D converter and a command decoder and control logic unit. Some of the task the DAE performs is signal amplification, signal multiplexing, A/D conversion, and offset measurements. The DAE also contains the mechanical probe-mounting device, which contains two different sensor systems for frontal and sideways probe contacts used for probe collision detection and mechanical surface detection for controlling the distance between the probe and the inner surface of the phantom shell. Transmission from the DAE to the measurement server, via the EOC, is through an optical downlink for data and status information as well as an optical uplink for commands and the clock. Figure 8: Data acquisition electronics ### 7.8 Electo-Optical Converter (EOC) The Electro-Optical Converter performs the conversion between the optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC connects to, and transfers data to, the DASY4 measurement server. The EOC also contains the fiber optical surface detection system for controlling the distance between the probe and the inner surface of the phantom shell. Figure 9: Electro optical converter #### 7.9 Measurement Server The Measurement Server performs time critical tasks such as signal filtering, all real-time data evaluation for field measurements and surface detection, controls robot movements, and handles safety operation. The PC-operating system cannot interfere with these time critical processes.
A watchdog supervises all connections, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Figure 10: DASY4 measurement server #### 7.10 Dosimetric Probe Dosimetric Probe is a symmetrical design with triangular core that incorporates three 3 mm long dipoles arranged so that the overall response is close to isotropic. The probe sensors are covered by an outer protective shell, which is resistant to organic solvents i.e. glycol. The probe is equipped with an optical multi-fiber line, ending at the front of the probe tip, for optical surface detection. This line connects to the EOC box on the robot arm and provides automatic detection of the phantom surface. The optical surface detection works in transparent liquids and on diffuse reflecting surfaces with a repeatability of better than ± 0.1 mm. Figure 11: Electric field probe #### 7.11 SAM Phantom The SAM (Specific Anthropomorphic Mannequin) twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm) integrated into a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left hand, right hand phone usage as well as body mounted usage at the flat phantom region. The flat section is also used for system validation and the length and width of the flat section are at least 0.75 λ O and 0.6 λ O respectively at frequencies of 824 MHz and above (λ O = wavelength in air). Figure 12: Specific anthropomorphic mannequin twin phantom Reference markings on the phantom top allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. A white cover is provided to cover the phantom during off-periods preventing water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. The phantom is filled with a tissue simulating liquid to a depth of at least 15 cm at each ear reference point. The bottom plate of the wooden table contains three pair of bolts for locking the device holder. #### 7.12 Planar Phantom The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld radio transceivers. The planar phantom is mounted on the wooden table of the DASY4 system. Figure 13: Planner phantom #### 7.13 Validation Planar Phantom The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted on the wooden table of the DASY4 system. #### 7.14 Device Holder The device holder is designed to cope with the different measurement positions in the three sections of the SAM phantom given in the standard. It has two scales, one for device rotation (with respect to the body axis) and one for device inclination (with respect to the line between the ear openings). The rotation center for both scales is the ear opening, thus the device needs no repositioning when changing the angles. The plane between the ear openings and the mouth tip has a rotation angle of 65°. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The dielectric properties of the liquid conform to all the tabulated values [2-5]. Liquids are prepared according to Annex A and dielectric properties are measured according to Annex B. Figure 14: Device holder #### 7.15 System Validation Kits Power Capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz) Construction: Symmetrical dipole with I/4 balun Enables measurement of feed point impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor. Frequency: 300, 450, 835, 1900, 2450 MHz, 5-6GHz Return loss: >20 dB at specified validation position Dimensions: 300 MHz Dipole: Length: 396mm; Overall Height: 430 mm; Diameter: 6 mm 450 MHz Dipole: Length: 270 mm; Overall Height: 347 mm; Diameter: 6 mm 835 MHz Dipole: Length: 161 mm; Overall Height: 270 mm; Diameter: 3.6 mm 1900 MHz Dipole: Length: 68 mm; Overall Height: 219 mm; Diameter: 3.6 mm 2450 MHz Dipole: Length: 51.5 mm; Overall Height: 300 mm; Diameter: 3.6 mm 5-6GHz Dipole: Length: 26.0 mm; Overall Height: 170 mm; Diameter: 3.6 mm Figure 15: System validation using dipole antenna # 8 TEST EQUIPMENT LIST | Test Equipment | Serial Number | Calibration Date | Calibration Due | |--|-----------------|-------------------------|-----------------| | DASY4 System Robot RX90 | FO3/SX19A1/A/01 | N/A | NA | | EX3DV4 | 3722 | 9/22/2017 | 9/22/2018 | | DAE | 584 | 9/18/2017 | 9/18/2018 | | 2450MHz Dipole | 857 | 9/19/2017 | 9/19/2018 | | SAM Phantom V4.0C | N/A | N/A | NA | | Keysight Vector Signal Generator | 1S3905 | 4/25/2017 | 4/25/2019 | | EMCO Horn Antenna | 1S2208 | Functiona | l Verification | | Agilent E4407B Spectrum Analyzer | 1S3892 | 11/11/2017 | 11/11/2018 | | Agilent 8722D Network Analyzer | 1S2272 | 4/20/1017 | 10/20/2018 | | Extech Power Supply (30 VDC) | 4S3771 | Functiona | l Verification | | Mini-Circuits power amplifier | 1S2447 | Functiona | al Verification | | Anritsu power meter | 1S2430 | 7/17/2017 | 7/17/2018 | | Mini-Circuits USB power sensor | 1S3838 | Functiona | l Verification | | Krytar Directional Coupler (1-20Ghz) | 1S2034 | Functiona | l Verification | | AR dual Directional Coupler (9Khz-1Ghz) | 1S2542 | Functiona | l Verification | | HP High Temperature Dielectric Probe
Kit 85070D Opt 1 (stand) | 1T4366 | Functional Verification | | Table 8: Test equipment list details. # 8.1 MEASUREMENT UNCERTANTIES UNCERTAINTY ASSESSMENT 300MHz-3GHz | Error Description | Tol.
±% | Prob.
Dist. | Div. | c _i
1g | c_i 10g | Std
Unc
±% (1g) | Std
Unc
±%
(10g) | v_i or v_{eff} | |---|------------|----------------|------------|----------------------|-----------|-----------------------|---------------------------|--------------------| | Measurement System | | | | | | | | | | Probe calibration | 4.8 | N | 1 | 1 | 1 | 4.8 | 4.8 | N/A | | Axial isotropy of the probe | 4.7 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.9 | 1.9 | N/A | | Spherical isotropy of the probe | 9.6 | R | $\sqrt{3}$ | 0.7 | 0.7 | 3.9 | 3.9 | N/A | | Boundary effects | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 4.8 | 4.8 | N/A | | Probe linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | N/A | | Detection limit | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | N/A | | Readout electronics | 1.0 | N | 1 | 1 | 1 | 1.0 | 1.0 | N/A | | Response time | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.5 | 0.5 | N/A | | Integration time | 2.6 | R | $\sqrt{3}$ | 1 | 1 | 0.8 | 0.8 | N/A | | RF ambient conditions | 3.0 | R | √3 | 1 | 1 | 0.43 | 0.43 | N/A | | Mech. constraints of robot | 0.4 | R | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | N/A | | Probe positioning | 2.9 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | N/A | | Extrapolation & integration | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | N/A | | Test Sample Related | | | | | | | | | | Device positioning | 2.9 | N | 1 | 1 | 1 | 2.23 | 2.23 | 145 | | Device holder uncertainty | 3.6 | N | 1 | 1 | 1 | 5.0 | 5.0 | 5 | | Power drift | 5.0 | R | $\sqrt{3}$ | | | 2.9 | 2.9 | N/A | | Phantom and Setup | | | | | | | | | | Phantom uncertainty | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | N/A | | Liquid conductivity (target) | 5.0 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8 | 1.2 | N/A | | Liquid conductivity (measured) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | N/A | | Liquid permittivity (target) | 5.0 | R | $\sqrt{3}$ | 0.6 | 0.5 | 1.7 | 1.4 | N/A | | Liquid permittivity (measured) | 2.5 | N | 1 | 0.6 | 0.5 | 1.5 | 1.2 | N/A | | Combined Standard Uncertainty (k=1) RSS Expanded Uncertainty (k=2) | | | | | | | 10.0 | | | Expa | 20.6 | 20.1 | | | | | | | **Table 9:** Worst-case uncertainty for DASY4 assessed according to IEEE P1528. The budget is valid for the frequency range 300MHz to 3GHz and represents a worst-case analysis. ## 8.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK | Error Description | Tol. | Prob.
Dist. | Div. | c _i
1g | c_i 10g | Std
Unc
±% (1g) | Std
Unc
±%
(10g) | v_i or v_{eff} | |---------------------------------|------|----------------|------------|----------------------|-----------|-----------------------|---------------------------|--------------------| | Measurement System | | | | | | ' | | | | Probe calibration | 5.9 | N | 1 | 1 | 1 | 5.9 | 5.9 | ∞ | | Axial Isotropy | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | ∞ | | Hemispherical Isotropy | 9.6 | R | $\sqrt{3}$ | 0 | 0 | 0 | 0 | ∞ | | Boundary effects | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection limit | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response time | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | Integration time | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | RF Ambient Noise | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Reflections | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | ∞ | | Probe Positioner | 0.4 | R | $\sqrt{3}$ | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe positioning | 2.9 | R | $\sqrt{3}$ | 1 | 1 | 1.7 | 1.7 | ∞ | | Algorithms for Max. SAR Eval. | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | ∞ | | Dipole | | 1 | |
| | • | | | | Dipole Axis to Liquid Distance | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.2 | 1.2 | ∞ | | Input power and SAR drift meas. | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | ∞ | | Phantom and Tissue Parameters | | 1 | | | | • | | | | Phantom uncertainty | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid conductivity (target) | 5.0 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid conductivity (measured) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | ∞ | | Liquid permittivity (target) | 5.0 | R | $\sqrt{3}$ | 0.6 | 0.5 | 1.7 | 1.4 | ∞ | | Liquid permittivity (measured) | 2.5 | N | 1 | 0.6 | 0.5 | 1.5 | 1.2 | ∞ | | Combined Standard Uncertainty | | | | | | 9.2 | 8.9 | | | Coverage Factor for 95% | | kp=2 | | | | 1 | | ı | | Expanded Uncertainty | | | | | | | 17.8 | | **Table 10:** Uncertainty of a system performance check with DASY4 system. The budget is valid for the frequency range 300MHz to 3GHz and represents a worst-case analysis. #### 9 REFERENCES [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Aug. 1992. - [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992. - [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001. - [5] IEEE Standards Coordinating Committee 34, IEEE 1528 (August 2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb.1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric Evaluation Of Mobile Communications Equipment With Known Precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz 300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgen ssische Technische Hoschschule Z rich, Dosimetric Evaluation of the Cellular Phone. - [20] Federal Communications Commission, Radiofrequency radiation exposure evaluation: portable devices, Rule Part 47 CFR 2.1093: 1999. - [21] Health Canada, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Safety Code 6. - [22] Industry Canada, Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields, Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999. # 10 EUT TEST SETUP PHOTOS Figure 16: 2.4GHz body tissue simulating fluid Figure 17: EUT Left Edge, Side against Phantom Figure 18: EUT with Face of EUT against Phantom # ANNEX A 2.4 GHz SAR MEASUREMENT DATA ## CH1 Body 2412MHz 1Mpbs Front Date/Time: 2/14/2018 3:41:45 PM DUT: Viavi; Type: Device Communication System: 1Mbps; ; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section - Probe: EX3DV4 - SN3722; ConvF(7.15, 7.15, 7.15); Calibrated: 9/22/2017 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn584; Calibrated: 9/18/2017 - Phantom: SAM with CRP; Type: SAM; Serial: TP 1310 - Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184 ## Ch-1 SAR Body/Area Scan (141x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.028 mW/g # Ch-1 SAR Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.60 V/m; Power Drift = 0.276 dB Peak SAR (extrapolated) = 0.041 W/kg SAR(1 g) = 0.037 mW/g; Maximum value of SAR (measured) = 0.041 mW/g # CH1 Body 2412MHz 1Mpbs Left side test Date/Time: 2/14/2018 2:33:52 PM DUT: Viavi; Type: Device Communication System: 1Mbps; ; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section - Probe: EX3DV4 - SN3722; ConvF(7.15, 7.15, 7.15); Calibrated: 9/22/2017 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn584; Calibrated: 9/18/2017 - Phantom: SAM with CRP; Type: SAM; Serial: TP 1310 - Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184 ## Ch-1 SAR Body/Area Scan (141x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.079 mW/g # Ch-1 SAR Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.91 V/m; Power Drift = 0.144 dB Peak SAR (extrapolated) = 0.099 W/kg SAR(1 g) = 0.055 mW/g; Maximum value of SAR (measured) = 0.077 mW/g # ANNEX B 2.4 GHz SYSTEM PERFORMANCE CHECK ## 2450MHz Body Validation Date/Time: 2/13/2018 11:11:47 AM DUT: D2450; Type: 1S2672 Communication System: CW; ; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: BSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section - Probe: EX3DV4 - SN3722; ConvF(7.15, 7.15, 7.15); Calibrated: 9/22/2017 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn584; Calibrated: 9/18/2017 - Phantom: SAM with CRP; Type: SAM; Serial: TP 1310 - Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184 ## d=10mm, Pin=250mW/Area Scan (81x51x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.4 mW/g # d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.3 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.4 mW/g; Maximum value of SAR (measured) = 15.2 mW/g # ANNEX C 2.4 DIPOLE CALIBRATION CERTIFICATE # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **MET Laboratories** 0-4/1 N DOJEOVO SEZ Con13 | Object | D2450V2 - SN:85 | 57 | |
---|--|---|---| | f. | | | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | September 19, 2 | 017 | | | The measurements and the uncer | rtainties with confidence p | onal standards, which realize the physical unirobability are given on the following pages an
ry facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | | | | | | Calibration Equipment used (M&T | E critical for calibration) | | | | EL AL MENTE | E critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | The state of s | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) | Scheduled Calibration Apr-18 | | Primary Standards Power meter NRP | ID# | | A DESCRIPTION OF THE PROPERTY | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | ID #
SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521) | Apr-18
Apr-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18
May-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18
May-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No.
217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17)
28-Mar-17 (No. DAE4-601_Mar17) | Apr-18
Apr-18
Apr-18
Apr-18
Apr-18
May-18
Mar-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # | 04-Apr-17 (No. 217-02521/02522)
04-Apr-17 (No. 217-02521)
04-Apr-17 (No. 217-02522)
07-Apr-17 (No. 217-02528)
07-Apr-17 (No. 217-02529)
31-May-17 (No. EX3-7349_May17)
28-Mar-17 (No. DAE4-601_Mar17)
Check Date (in house) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check | | Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. EX3-7349_May17) 28-Mar-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. EX3-7349_May17) 28-Mar-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) | Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured # N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # Viavi Solutions Inc ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250
mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 16.5 % (k=2) | D---0-40 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.1 Ω + 5.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.2 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $49.0 \Omega + 6.9 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.1 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.1 <mark>60 ns</mark> | |----------------------------------|------------------------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 23, 2010 | ## **DASY5 Validation Report for Head TSL** Date: 19.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:857 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 28.03.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.24 W/kg Maximum value of SAR (measured) = 21.3 W/kg 0 dB = 21.3 W/kg = 13.28 dBW/kg ## Impedance Measurement Plot for Head TSL 0 "" . N DOLENIO OFT 0--17 Dage & of 0 #### **DASY5 Validation Report for Body TSL** Date: 19.09.2017 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:825 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 28.03.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.1 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.05 W/kg Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg # ANNEX D PROBE CALIBRATION CERTIFICATE Viavi Solutions Inc Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **MET Laboratories** Certificate No: EX3-3722_Sep17 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3722 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 22, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Claudio Leubler Claudio Leubler Eunction Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 22, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3722_Sep17 Page 1 of 11 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only
intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3722_Sep17 Page 2 of 11 EX3DV4 - SN:3722 September 22, 2017 # Probe EX3DV4 SN:3722 Manufactured: August 14, 2009 September 22, 2017 Calibrated: Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3722_Sep17 Page 3 of 11 EX3DV4-SN:3722 September 22, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3722 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.52 | 0.49 | 0.56 | ± 10.1 % | | DCP (mV) ^B | 100.4 | 97.6 | 97.6 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 159.8 | ±2.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 146.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 145.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3722_Sep17 Page 4 of 11 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Viavi Solutions Inc EX3DV4-SN:3722 September 22, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3722 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 9.52 | 9.52 | 9.52 | 0.47 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.88 | 8.88 | 8.88 | 0.35 | 0.97 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 7.69 | 7.69 | 7.69 | 0.34 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.69 | 7.69 | 7.69 | 0.37 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.99 | 6.99 | 6.99 | 0.35 | 0.80 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.14 | 5.14 | 5.14 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.93 | 4.93 | 4.93 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.85 | 4.85 | 4.85 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.66 | 4.66 | 4.66 | 0.35 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAI frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: EX3-3722_Sep17 Page 5 of 11 At requercises below 3 GHz, the valuidity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if induic compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3722 September 22, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3722 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.20 | 9.20 | 9.20 | 0.42 | 0.81 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.12 | 9.12 | 9.12 | 0.45 | 0.80 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 7.52 | 7.52 | 7.52 | 0.41 | 0.80 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.59 | 7.59 | 7.59 | 0.31 | 0.94 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.15 | 7.15 | 7.15 | 0.32 | 0.89 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.51 | 4.51 | 4.51 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.32 | 4.32 | 4.32 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.04 | 4.04 | 4.04 | 0.40 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.07 | 4.07 | 4.07 | 0.40 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (s and or) can be relaxed to ± 10% if liquid compensation formula is applied to recovered SAB values. At frequencies above 3 GHz, the validity of tissue parameters (s and or) is restricted to ± 5%. The uncertainty is the RSS of the convergence of the second se Certificate No: EX3-3722_Sep17 Page 6 of 11 All requericles below 3 GHz, the Validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3722 September 22, 2017 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3722_Sep17 Page 7 of 11 EX3DV4- SN:3722 September 22, 2017 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3722_Sep17 Page 8 of 11 EX3DV4- SN:3722 September 22, 2017 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3722_Sep17 Page 9 of 11 EX3DV4-SN:3722 Viavi Solutions Inc September 22, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3722 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 90.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip
to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3722_Sep17 Page 11 of 11 # ANNEX E DAE CALIBRATION CERTIFICATE Viavi Solutions Inc # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **MET Laboratories** Certificate No: DAE3-584 Sep17 Accreditation No.: SCS 0108 C S ## **CALIBRATION CERTIFICATE** Object DAE3 - SD 000 D03 AA - SN: 584 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 18, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|-------------|--|--| | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-17 (No:21092) | Aug-18 | | ESC 165 ES 500 160 | Î | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards Auto DAE Calibration Unit | | Check Date (in house) 05-Jan-17 (in house check) | Scheduled Check In house check: Jan-18 | Calibrated by: Name Dominique Steffen Function Laboratory Technician Signature Approved by: Sven Kühn Deputy Manager Issued: September 18, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Viavi Solutions Inc Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.476 ± 0.02% (k=2) | 404.141 ± 0.02% (k=2) | 404.983 ± 0.02% (k=2) | | Low Range | 3.95886 ± 1.50% (k=2) | 3.94003 ± 1.50% (k=2) | 3.99627 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 142.5 ° ± 1 ° | |---|---------------| # Appendix (Additional assessments outside the scope of SCS0108) ### 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | | |-------------------|--------------|-----------------|-----------|--| | Channel X + Input | 199997.14 | 1.00 | 0.00 | | | Channel X + Input | 20002.64 | 0.84 | 0.00 | | | Channel X - Input | -19998.40 | 2.61 | -0.01 | | | Channel Y + Input | 199996.14 | 0.26 | 0.00 | | | Channel Y + Input | 20000.13 | -1.55 | -0.01 | | | Channel Y - Input | -20001.76 | -0.62 | 0.00 | | | Channel Z + Input | 199994.33 | -2.00 | -0.00 | | | Channel Z + Input | 20001.40 | -0.28 | -0.00 | | | Channel Z - Input | -20002.87 | -1.74 | 0.01 | | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.85 | 0.35 | 0.02 | | Channel X + Input | 201.77 | -0.06 | -0.03 | | Channel X - Input | -197.04 | 0.95 | -0.48 | | Channel Y + Input | 2001.72 | 0.22 | 0.01 | | Channel Y + Input | 201.48 | -0.35 | -0.17 | | Channel Y - Input | -198.80 | -0.82 | 0.41 | | Channel Z + Input | 2001.63 | 0.11 | 0.01 | | Channel Z + Input | 200.27 | -1.58 | -0.78 | | Channel Z - Input | -198.60 | -0.48 | 0.24 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.32 | -5.00 | | | - 200 | 7.23 | 5.54 | | Channel Y | 200 | -1.96 | -1.56 | | | - 200 | -0.62 | -0.90 | | Channel Z | 200 | 16.35 | 16.46 | | | - 200 | -17.40 | -17.56 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -0.65 | -4.02 | | Channel Y | 200 | 8.39 | | 1.43 | | Channel Z | 200 | 10.17 | 4.53 | | ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15762 | 16155 | | Channel Y | 15722 | 15459 | | Channel Z | 16045 | 14919 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 1.91 | 0.57 | 3.49 | 0.58 | | Channel Y | -0.43 | -1.89 | 1.14 | 0.57 | | Channel Z | 0.64 | -0.35 | 1.76 | 0.49 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | # ANNEX F 2.4 GHz MEASURED FLUID DIELECTRIC PARAMETERS # 2450MHz Body # 97842 February 13, 2018 11:01 AM | 1 cbidaly 15, 2010 11.01 AM | | | |-----------------------------|---------|---------| | Frequency | e' | e'' | | 2.400000000 GHz | 52.3824 | 14.7892 | | 2.402000000 GHz | 52.3631 | 14.7901 | | 2.404000000 GHz | 52.3631 | 14.8125 | | 2.406000000 GHz | 52.3639 | 14.8112 | | 2.408000000 GHz | 52.3485 | 14.8150 | | 2.410000000 GHz | 52.3613 | 14.8291 | | 2.412000000 GHz | 52.3489 | 14.8293 | | 2.414000000 GHz | 52.3395 | 14.8559 | | 2.416000000 GHz | 52.3316 | 14.8505 | | 2.418000000 GHz | 52.3220 | 14.8586 | | 2.420000000 GHz | 52.3139 | 14.8801 | | 2.422000000 GHz | 52.3013 | 14.8919 | | 2.424000000 GHz | 52.2858 | 14.8923 | | 2.426000000 GHz | 52.2733 | 14.8889 | | 2.428000000 GHz | 52.2673 | 14.9117 | | 2.430000000 GHz | 52.2715 | 14.9216 | | 2.432000000 GHz | 52.2388 | 14.9172 | | 2.434000000 GHz | 52.2384 | 14.9292 | | 2.436000000 GHz | 52.2174 | 14.9520 | | 2.438000000 GHz | 52.2125 | 14.9545 | | 2.440000000 GHz | 52.1915 | 14.9622 | | 2.442000000 GHz | 52.1868 | 14.9645 | | 2.444000000 GHz | 52.1706 | 14.9700 | | 2.446000000 GHz | 52.1557 | 14.9853 | | 2.448000000 GHz | 52.1438 | 14.9969 | | 2.450000000 GHz | 52.1345 | 15.0165 | | 2.452000000 GHz | 52.1365 | 15.0180 | |
2.454000000 GHz | 52.1144 | 15.0275 | | 2.456000000 GHz | 52.1004 | 15.0343 | | 2.458000000 GHz | 52.0939 | 15.0200 | | 2.460000000 GHz | 52.0840 | 15.0598 | | 2.462000000 GHz | 52.0710 | 15.0463 | | 2.464000000 GHz | 52.0687 | 15.0650 | | | | | | 2.466000000 GHz | 52.0567 | 15.0732 | |-----------------|---------|---------| | 2.468000000 GHz | 52.0388 | 15.0737 | | 2.470000000 GHz | 52.0292 | 15.0865 | | 2.472000000 GHz | 52.0346 | 15.0991 | | 2.474000000 GHz | 52.0237 | 15.1138 | | 2.476000000 GHz | 52.0191 | 15.1127 | | 2.478000000 GHz | 52.0097 | 15.1254 | | 2.480000000 GHz | 52.0064 | 15.1341 | | 2.482000000 GHz | 52.0001 | 15.1314 | | 2.484000000 GHz | 51.9851 | 15.1515 | | 2.486000000 GHz | 51.9871 | 15.1611 | | 2.488000000 GHz | 51.9737 | 15.1677 | | 2.490000000 GHz | 51.9758 | 15.1772 | | 2.492000000 GHz | 51.9801 | 15.1648 | | 2.494000000 GHz | 51.9661 | 15.1914 | | 2.496000000 GHz | 51.9684 | 15.1891 | | 2.498000000 GHz | 51.9603 | 15.2083 | | 2.500000000 GHz | 51.9749 | 15.1978 | | | | | # ANNEX G PHANTOM CERTIFICATE OF CONFORMITY Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ### Certificate of conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 | |-----------------------|---| | Type No | QD 000 P40 C | | Series No | TP-1150 and higher | | Manufacturer / Origin | Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland | The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples). | Test | Requirement | Details | Units tested | |------------------------|---|--|--| | Shape | Compliance with the geometry according to the CAD model. | IT'IS CAD File (*) | First article,
Samples | | Material thickness | Compliant with the requirements according to the standards | 2mm +/- 0.2mm in
specific areas;
6mm +/- 0.2mm at ERP | First article,
Samples | | Material
parameters | Dielectric parameters for required frequencies | 200 MHz – 3 GHz
Relative permittivity < 5
Loss tangent < 0.05. | Material
sample
TP 104-5 | | Material resistivity | The material has been tested to be
compatible with the liquids defined in
the standards if handled and cleaned
according to the instructions | DEGMBE based simulating liquids | Pre-series,
First article,
Samples | #### Standards - CENELEC EN 50361 - IEEE Std 1528-200x Draft CD 1.1 (Dec 02) - IEC 62209/CD (Nov 02) - The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3]. #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3]. Date 7.8.2003 Signature / Stamp Schmid & Periner Engineering AG Zeighausstresse 43, 805 Zeisch, Switzerl Rhone 431 (2653/80, Feb 441 1 245 9779 nfo@speag.com, http://www.speag.com