

ilent Spectrum Analyzer - RL RF 50 enter Freq 2.479	OΩ AC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	09:59:03 AM May 12, 202 TRACE 1 2 3 4 5
	PNO	: Wide 😱 Trig: Free Ru in:Low #Atten: 30 dB		TRACE 1 2 3 4 5 TYPE MWWWW DET PINNNN
Ref Offset dB/div Ref 20.0			M	lkr1 2.478 856 GHz -5.200 dBm
.00	1		2	
		~~		
D.0				
0.0				
0.0				
enter 2.479500 GH Res BW 30 kHz	łz	#VBW 100 kHz	Swee	Span 2.000 MHz 2.133 ms (1001 pts)
KR MODE TRC SCL	X	Y FUNCTIO		FUNCTION VALUE
1 N 1 f 2 N 1 f	2.478 856 GHz 2.479 854 GHz	-5.200 dBm -5.236 dBm		
3				
5 6				
7				
9				
1				>
3			STATUS	
		FS NVNT 2-DH		
	Swept SA	FS NVNT 2-DH		09:59:45 AM May 12, 202:
RL RF 50	Swept SA DΩ AC 500000 GHz	SENSE:INT	1 2402MHz ALIGN AUTO #Avg Type: RMS n Avg Hold>100/100	TRACE 12345
RL RF 50 enter Freq 2.402	Swept SA 0 ฉ AC 500000 GHz PNO IFGa	SENSE:INT	1 2402MHz ALIGN AUTO #Avg Type: RMS n Avg Hold>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF 50 enter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept SA 0 Q AC 5000000 GHz PNO IFGa 2.34 dB	SENSE:INT	1 2402MHz ALIGN AUTO #Avg Type: RMS n Avg Hold>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF S0 enter Freq 2.402 Ref Offset 0 dB/div Ref 20.0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF St enter Freq 2.402 Ref Offset 0 dB/div Ref 20.0	Swept SA 0 Q AC 5000000 GHz PNO IFGa 2.34 dB	SENSE:INT	1 2402MHz ALIGN AUTO #Avg Type: RMS n Avg Hold>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF St enter Freq 2.402 Ref Offset dB/div Ref 20.0 9 00 00	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	09:59:45 AM May 12, 2023 TRACE 12 3 4 5 - Type Minimum Der MINIMU Ikr1 2.401 852 GHz -4.113 dBm
RL RF SQ enter Freq 2.402 Ref Offset D dB/div Ref 20.0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset Ref Offset 0 dB/div Ref 20.0 Ref 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset dB/div Ref 20.0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset Ref Offset dB/div Ref 20.0 Ref 20.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Swept SA 02 AC 500000 GHz PNO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset dB/div Ref Offset dB/div Ref 20.0 0 0 0 00 0	Swept SA D2 AC PRO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz ALIGNAUTO #Avg Type: RMS Avg Heid:>100/100	TRACE [12345 TYPE [017] DET DIVISION Ikr1 2.401 852 GHz -4.113 dBm
RL RF SQ enter Freq 2.402 Ref Offset dB/div Ref 20.0 000 <td>Swept SA D2 AC PRO IFGa 2.34 dB 0 dBm</td> <td>SENSE:INT</td> <td>1 2402MHz</td> <td>TRACE 12345 TYPE MWWWW DET PNNNN</td>	Swept SA D2 AC PRO IFGa 2.34 dB 0 dBm	SENSE:INT	1 2402MHz	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF SQ enter Freq 2.402 Ref Offset dB/div Ref 20.0 Ref Offset dB/div Ref 20.0 Ref Offset dB/div Ref 20.0 Ref Offset Ref Ref Offset Ref Offset Ref Ref Offset Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref	Swept SA OR AC 500000 GHz PRO IFGa 2.34 dB 0 dBm 1 1 1 2 X	SENSE:INT : Wite in:Low Trig: Free Ru #Atten: 30 dB	1 2402MHz	TRACE [] 23 4 5 TYPE [] 23 4 5 OFF NINNI Ikr1 2.401 852 GHz -4.113 dBm
RL RF SQ enter Freq 2.402 Ref Offset Ref Offset dB/div Ref 20.0 Ref 20.0 00	Swept SA DO: AC PRO FRO 1 2.34 dB 0 dBm 1 1 1 1 1 1 1	SENSE:INT	1 2402MHz	Trace D234 structure Type MANNA Ikr1 2.401 852 GHz -4.113 dBm -4.113 dBm -4.113 dBm Span 2.000 MHz -4.133 ms (1001 pts)
RL RF S0 enter Freq 2.402 Ref Offset Ref Offset dB/div Ref 20.0 Ref 20.0 00	Swept SA DO: AC FRO 500000 GHz PNO IFGa 2.34 dB 0 dBm 1 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT	1 2402MHz	Trace D234 structure Type MANNA Ikr1 2.401 852 GHz -4.113 dBm -4.113 dBm -4.113 dBm Span 2.000 MHz -4.133 ms (1001 pts)
RL RF S0 enter Freq 2.402 Ref Offset Ref Offset dB/div Ref 20.0 Ref 20.0 00	Swept SA DO: AC FRO 500000 GHz PNO IFGa 2.34 dB 0 dBm 1 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT	1 2402MHz	Trace D234 structure Type MANNA Ikr1 2.401 852 GHz -4.113 dBm -4.113 dBm -4.113 dBm Span 2.000 MHz -4.133 ms (1001 pts)
Ref Offiset Ref 20.0 29 00 00 00 00 00 00 00 00 00 00 00 00 00	Swept SA DO: AC FRO 500000 GHz PNO IFGa 2.34 dB 0 dBm 1 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2.34 dB 0 dBm 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT	1 2402MHz	Trace D 3 4 5 Tree D 3 4 5

gilent Spectrum Analyzer - S				
RL RF 50 enter Freq 2.402	500000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS Avg Hold:>100/10	10:01:12 AM May 12, 2023 TRACE 1 2 3 4 5 TYPE MWWWW
		in:Low #Atten: 30 dB		
Ref Offset 2 dB/div Ref 20.00				Mkr1 2.402 014 GHz -2.634 dBm
.00	_1			§ ²
0.0	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0.0				
0.0				
0.0				
0.0				
0.0				
enter 2.402500 GH Res BW 30 kHz	z	#VBW 100 kHz		Span 2.000 MHz Sweep 2.133 ms (1001 pts)
Kes BW Jo KHZ	×	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2 N 1 f	2.402 014 GHz 2.403 010 GHz	-2.634 dBm -2.653 dBm		
3				
5				
8				
9				
G			STATUS	
	С	FS NVNT 3-DH1	2111MH-	
		SENSE:INT	ALIGNAUTO	10:01:38 AM May 12, 2023
RL RF 50	Ω AC 500000 GHz PN0			TRACE 1 2 3 4 5
RL RF 50 enter Freq 2.441 Ref Offset	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN Mkr1 2.441 012 GHz
RL RF 50 enter Freq 2.4415 Ref Offset 2 0 dB/div Ref 20.00	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 12345 TYPE MWWWW DET PNNNN
RL RF 50 enter Freq 2.4415 Ref Offset 2 Ref Offset 2 Ref 20.00 O dB/div Ref 20.00	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset 2 0 dB/div Ref 20.00 0 0 0 0 0 0 0 0 0	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN Mkr1 2.441 012 GHz
RL RF 50 enter Freq 2.4415 Ref Offset 2 Ref Offset 2 0 dB/div Ref 20.00 Ref 20.00 0 0 0 0 0 0 0 0	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset Ref Offset 0 dB/div Ref 20.00 Ref 20.00 0 0 0 0 0 0 0 0 0 0 0 0	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 150 enter Freq 2.4415 Ref Offset Ref Offset 0 dB/div Ref 20.00 Ref 20.00 0 dB/div Ref 20.00 <t< td=""><td>Ω AC 500000 GHz PNO: IFGa 2.36 dB</td><td>SENSE:INT</td><td>ALIGNAUTO #Avg Type: RMS</td><td>Mkr1 2.441 012 GHz -3.089 dBm</td></t<>	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 150 enter Freq 2.4415 Ref Offset Ref Offset 0 dB/div Ref 20.00 Ref 20.00 0 dB/div Ref 20.00 <t< td=""><td>Ω AC 500000 GHz PNO: IFGa 2.36 dB</td><td>SENSE:INT</td><td>ALIGNAUTO #Avg Type: RMS</td><td>Mkr1 2.441 012 GHz -3.089 dBm</td></t<>	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF \$50 enter Freq 2.4415 Ref Offset Ref Offset 0 dB/div Ref 20.00 Ref 20.00 0 dB/div Ref 20.00 <t< td=""><td>Ω AC 500000 GHz PNO: IFGa 2.36 dB</td><td>SENSE:INT</td><td>ALIGNAUTO #Avg Type: RMS</td><td>Mkr1 2.441 012 GHz -3.089 dBm</td></t<>	Ω AC 500000 GHz PNO: IFGa 2.36 dB	SENSE:INT	ALIGNAUTO #Avg Type: RMS	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset3 Ref Offset3 dB/div Ref 20.00 Ref 20.00 0	2.36 dB 0 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	TRACE 12.3.4.5 TYPE MWN Mkr1 2.441 012 GHz -3.089 dBm -3.089 dBm -3.089 dBm 2 -3.089 dBm 2 -3.089 dBm 3 -3.089 dBm 3
RL RF 50 enter Freq 2.4415 Ref Offset Ref Offset dB/div Ref 20.00 Ref 20.00 0	2.36 dB 0 dBm	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset 3 dB/div Ref 20.00 3 <	2.36 dB 0 dBm	SENSE:INT in:Low Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	TRACE 12.3.4.5 TYPE MWN Mkr1 2.441 012 GHz -3.089 dBm -3.089 dBm -3.089 dBm 2 -3.089 dBm 2 -3.089 dBm 3 -3.089 dBm 3
RL RF 50 enter Freq 2.4415 Ref Offset 3 Ref Offset 3 dB/div Ref 20.00 Ref 20.00 0 Ref 20.00 Ref 20.00 <t< td=""><td>2 AC 500000 GHz PRO: IFGa 2.36 dB 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>SENSE:INT Wirle in:Low Trig: Free Run #Atten: 30 dB</td><td>ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100</td><td>Mkr1 2.441 012 GHz -3.089 dBm</td></t<>	2 AC 500000 GHz PRO: IFGa 2.36 dB 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT Wirle in:Low Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset3 Ref Offset3 0 dB/div Ref 20.00 Ref 20.00 0 dB/div Ref 20.00 <	2.36 dB 0 dBm	SENSE:INT Wide Trig: Free Run #Atten: 30 dB #Atten: 40 dB #VBW 100 kHz Y Sense dBm	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	Mkr1 2.441 012 GHz -3.089 dBm
Ref Offset Ref Offset Clear Ref 20.00 Set Ref 20.00 Set Ref 20.00 Set Set Set <	2.36 dB 0 dBm	SENSE:INT Wide Trig: Free Run #Atten: 30 dB #Atten: 40 dB #VBW 100 kHz Y Sense dBm	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	Mkr1 2.441 012 GHz -3.089 dBm
RL RF 50 enter Freq 2.4415 Ref Offset: Set offset: 0 dB/div Ref 20.00 Ref 20.00 Ref 20.00 Ref 20.00	2.36 dB 0 dBm	SENSE:INT Wide Trig: Free Run #Atten: 30 dB #Atten: 40 dB #VBW 100 kHz Y Sense dBm	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	Mkr1 2.441 012 GHz -3.089 dBm

	CFS	NVNT 3-DH	11 2480MHz		
Agilent Spectrum Analyzer - Swep ມະ RL RF 50 ລ Center Freq 2.479500	AC		un Avg Hol	/pe: RMS d:>100/100	10:01:59 AM May 12, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N
Ref Offset 2.4 10 dB/div Ref 20.00 d				Mk	r1 2.479 016 GHz -3.817 dBm
10.0 0.00 -10.0				2	
-20.0					* ***~
-40.0 -50.0 -60.0					
-70.0 Center 2.479500 GHz					Span 2.000 MHz
#Res BW 30 kHz		#VBW 100 kHz		Sweep	2.133 ms (1001 pts)
MKR MODE TRC SCL 1 N 1 F 2 N 1 F 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - -		Y FUNCT 3.817 dBm 3.979 dBm	ION FUNCTION WIDTH	FUN	ICTION VALUE
MSG			STATUS		×

Page: 65 of 79

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

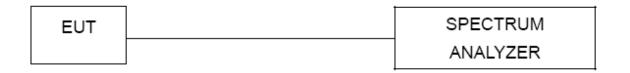
3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

ilent Spectrum Analyzer		bing No. NV	t Graph /NT 1-D)H1 2441MF	lz	
	50 Ω AC 1750000 GHz	SENSE:IN	т : Free Run	ALIGNAUTO #Avg Type: Avg Hold:>	RMS	09:56:48 AM May 12, 202: TRACE 1 2 3 4 5 TYPE MWWWW
	IFG		en: 30 dB			01 837 0 GHz
Ref Offs dB/div Ref 20.	et 2.36 dB .00 dBm					-1.881 dBm
0.0						
						VANNANAAAA
	1	. 4 1 1 4 1 1 1 4 4 4 4	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>hå n n ha n ha h h h h h h h h h h h h h h</u>	<u>h h n n h a k k a h a h h</u>	<u> </u>
0.0						
0.0						
0.0						
tart 2.40000 GHz Res BW 100 kHz		#VBW 300) kHz			op 2.48350 GHz 00 ms (1001 pts
KR MODE TRC SCL	× 2.401 837 0 GHz	Y -1.881 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	
2 N 1 f	2.480 243 5 GHz	-4.723 dBm				
4 5 6 6						
7 B						
3			1111	STATUS		>
	Норр	oing No. N∖	/NT 2-C)H1 2441MF	lz	
ilent Spectrum Analyzer	50 Ω AC	SENSE:IN	IT	ALIGNAUTO	PMC	10:05:36 AM May 12, 202:
enter Freq 2.44	PI		: Free Run en: 30 dB	#Avg Type Avg Hold:>		TRACE 12345 TYPE MWWWWW DET PNNNN
	et 2.36 dB				Mkr1 2.4	01 837 0 GHz -2.269 dBm
dB/div Ref 20.	00 dBm					-2.200 dBh
.00	www.	<u>ስ</u> ሐክኪሲ/ቢሲሲሲኒክሲ	ሊኒቢሊስ	መለከተለ የ	ስ / ሲ / ሲ / ሲ / ሲ / ሲ / ሲ / ሲ / ሲ / ሲ /	1. A A A A A A A A A A A A A A A A A A A
D.0					* 14 00 000 000 000	0+4004~444
0.0						
0.0 						
0.0						¥
tart 2.40000 GHz					8	op 2.48350 GHz
Res BW 100 kHz		#VBW 300			Sweep 8.0	00 ms (1001 pts
(R MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.401 837 0 GHz 2.480 577 5 GHz	ץ -2.269 dBm -8.585 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE
3 4	2.400-077-0-012					
5 6						
7						
/ 8 9						

Agilent Spectrum Analyzer - Swept SA					
XX RL RF 50 Ω AC Center Freq 2.441750000 GHz	PNO: East	ISE:INT Trig: Free Run #Atten: 30 dB		/pe: RMS d:>100/100	10:09:27 AM May 12, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
Ref Offset 2.36 dB 10 dB/div Ref 20.00 dBm 10 d					2.401 586 5 GHz -7.837 dBm 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Start 2.40000 GHz #Res BW 100 kHz	#VBW	300 kHz		Sweep	Stop 2.48350 GHz 8.000 ms (1001 pts)
MKR MODE TRC SCL X 1 N 1 f 2.4015865 GF 2 N 1 f 2.4804105 GF 3 4 - - - - 4 - - - - - 5 - - - - - 6 - - - - - - 9 -			FUNCTION WIDTH	FU	NCTION VALUE


No.: BCTC/RF-EMC-007

Page: 68 of 79

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

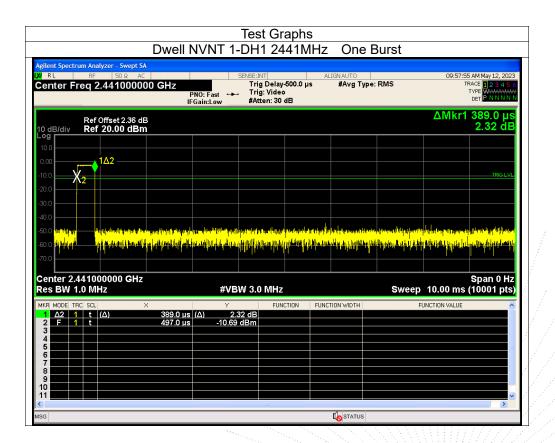
3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

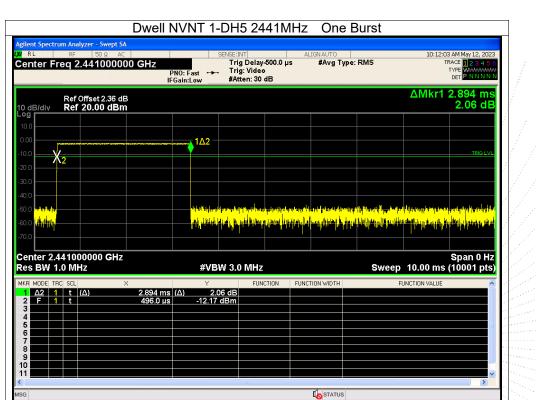
DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).


DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

No.: BCTC/RF-EMC-007

Page: 69 of 7

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (s)	Limit (s)	Verdict
NVNT	1-DH1	2441	0.389	0.124	0.4	Pass
NVNT	1-DH3	2441	1.645	0.263	0.4	Pass
NVNT	1-DH5	2441	2.894	0.309	0.4	Pass
NVNT	2-DH1	2441	0.392	0.125	0.4	Pass
NVNT	2-DH3	2441	1.644	0.263	0.4	Pass
NVNT	2-DH5	2441	2.898	0.309	0.4	Pass
NVNT	3-DH1	2441	0.4	0.128	0.4	Pass
NVNT	3-DH3	2441	1.65	0.264	0.4	Pass
NVNT	3-DH5	2441	2.901	0.309	0.4	Pass



JC JC PR

	Dwell I	NVNT 1-DF	I3 2441N	1Hz One	e Burst		
Agilent Spectrum Analyzer - Swept SA XI RL RF 50.Ω AC Center Freq 2.44100000		PNO: Fast ++ Tr	inт ig Delay-500.0 µ ig: Video tten: 30 dB	ALIGN AUTO Is #Avg T	ype: RMS	TR4	M May 12, 202 CE 12345 PE WWWWW DET PNNNN
Ref Offset 2.36 dB 10 dB/div Ref 20.00 dBm						ΔMkr1 1	.645 ms 5.78 dE
10.0 0.00	.↓1∆2						
-10.0 X2 -20.0							TRIG LVI
-40.0 -50.0	tiden between Langelen ween	a <mark>na katang kana kana kana kana kana kana kana k</mark>	unini kanila di dini adam Mananga kanilangan kanila	n Maria da sela salat salat sela sena <mark>el perfase linet s^{ala}n pela</mark> s	terakarkarlasekarda 1997 terakardar	and the start land of the start	hanting bergalantin ngangang bergalantin
Center 2.441000000 GHz Res BW 1.0 MHz		#VBW 3.	0 MHz		Swee	p 10.00 ms (*	Span 0 H 10001 pts
MKR MODE TRC SCL × 1 Δ2 1 t (Δ) 2 F 1 t 3 4	<u>1.645 ms</u> 497.0 µs			FUNCTION WIDTH		FUNCTION VALUE	
5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							

		Dwell N	NVNT 2-C)H1 24	41MHz	One	Burst		
RL	m Analyzer - Swept S RF 50 Ω A eq 2.4410000	c 100 GHz	PNO: Fast +++ Gain:Low	NSE:INT Trig Delay- Trig: Video #Atten: 30 d	500.0 µs	LIGN AUTO #Avg Type	e: RMS		2 AM May 12, 200 IRACE 12345 TYPE WWWWW DET PNNNN
	Ref Offset 2.36 c Ref 20.00 dBi							∆Mkr1	392.0 μ 0.31 dl
10.0 0.00	142								
									TRIG L1
30.0									
10.0	li ali adale anatolina teologi	l dan se statistica de se statistica de se statistica de se se statistica de se s	on d. hidden adde on a sec	وبالد افترر بالعراء	anna dal malanta	والمراجعة والمراجعة والمراجعة	liktratukelarten etteks	ile note all company i	land and and and a
40.0 50.0 014 44 60.0 14			and de Barlink (perioder and see New York (de la constant en la const New York (de la constant en la const						
40.0 50.0 0,44 50.0 1,44 50.0 1,44 50.0 1,44 70.0	المعالية مالية مالية 41000000 GHz	<mark>is, terres, al fair and an </mark>					alle and a second s		Span 0 H
40.0 50.0 70.0 Center 2.44 Res BW 1.0 KR MODE TRC	1000000 GHz MHz	<mark>ad se toer dy bis (14) d</mark> a 2 ×	#VBW	3.0 MHz	^{the} n it and an in the stand is the stand in the stand is the stand in the stand is the stand i		Sweep	<mark>, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 19</mark> 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979, 1979	Span 0 H
40.0 50.0	<mark>инција инисти</mark> 41000000 GHz 0 MHz	<mark>iai, a., and an </mark>	#VBW	3.0 MHz	^{the} n it and an in the stand is the stand in the stand is the stand in the stand is the stand i	1 (<i>4</i> , 1) ⁽⁴) ⁽⁴⁾ (4), 4)	Sweep	<u>بلار میں دیار میں اور میں اور میں میں میں میں میں میں میں میں میں میں</u>	Span 0 H
40.0	1000000 GHz MHz	<mark>ад алиал фили ((()) д</mark> а 2 × 392.0 µs	#VBW	3.0 MHz	^{the} n it and an in the stand is the stand in the stand is the stand in the stand is the stand i	1 (<i>4</i> , 1) ⁽⁴) ⁽⁴⁾ (4), 4)	Sweep	<u>بلار میں دیار میں اور میں اور میں میں میں میں میں میں میں میں میں میں</u>	Span 0 H
40.0 50.0	1000000 GHz MHz	<mark>ад алиал фили ((()) д</mark> а 2 × 392.0 µs	#VBW	3.0 MHz	^{the} n it and an in the stand is the stand in the stand is the stand in the stand is the stand i	1 (<i>4</i> , 1) ⁽⁴) ⁽⁴⁾ (4), 4)	Sweep	<u>بلار میں میں اور میں اور میں اور میں میں میں میں میں میں میں میں میں میں</u>	Span 0 H

Dwell NVNT 2-DH3 2441MHz One Burst ept SA nt Spectrum Analyzer RL 58 AM May 12, 2 NSE:INT Trig Delay-500.0 μs Trig: Video #Atten: 30 dB #Avg Type: RMS Center Freq 2.441000000 GHz PNO: Fast ↔↔ IFGain:Low TYPE DET ΔMkr1 1.644 ms 0.04 dB Ref Offset 2.36 dB Ref 20.00 dBm 10 dB/div DQ 1<u>Δ</u>2 i liha din fila digi aktiki ng b Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz UNCTION 1 t (∆) 1 t 1.644 ms (Δ) 360.0 μs 0.04 dE -11.76 dBm **STATUS**

Dwe	II NVNT 2-DH5 2441MHz	One Burst	
Agilent Spectrum Analyzer - Swept SA M RL RF 50 Ω AC Center Freq 2.441000000 GHz	SENSE:INT A Trig Delay-500.0 µs PN0:Fast → Trig:Video IFGain:Low #Atten: 30 dB	LIGNAUTO #Avg Type: RMS	10:13:47 AM May 12, 202: TRACE 123 4 5 TYPE WHATMAN DET P NINNN
Ref Offset 2.36 dB 10 dB/div Ref 20.00 dBm 10 0 0 00	162		ΔMkr1 2.898 ms 4.23 dE
-10.0 X2 -20.0 -30.0 -40.0 -50.0 mph/m			
60.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#VBW 3.0 MHz		Span 0 Hz
MKR MODE TRC SCL X	Υ FUNCTION FUNC ms (Δ) 4.23 dB		NCTION VALUE
4 5 6 7 8 9 10			

Dwell NVNT 3-DH1 2441MHz One Burst ept SA nt Spectrum Analyzer - S RL AM May 12, 2 Center Freq 2.441000000 GHz NSE:INT Trig Delay-500.0 μs Trig: Video #Atten: 30 dB #Avg Type: RMS PNO: Fast ↔↔ IFGain:Low TYPE DET ΔMkr1 400.0 μs 3.69 dB Ref Offset 2.36 dB Ref 20.00 dBm 10 dB/div Δ2 χ_2 n selle per per sen in per sen in the sense of the sense of the sense of the second second second second second Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz UNCTION 1 t (∆) 1 t 400.0 μs (Δ) 496.0 μs 3.69 dB -9.40 dBm **STATUS**

n 00.,LTh

	Dwell N	NVNT 3-DH	l3 2441M	IHz One	Burst		
Agilent Spectrum Analyzer - Swept S VI RL RF 50 Q A Center Freq 2.4410000	00 GHz	NO:Fast ↔ Tri	INT Ig Delay-500.0 μ g: Videο tten: 30 dB	ALIGNAUTO s #Avg Ty	pe: RMS	10:14:37 AM May 1 TRACE 12 TYPE WW DET P N	3 4 5 6
Ref Offset 2.36 d 10 dB/div Ref 20.00 dBr						ΔMkr1 1.650 6.26	
10.0 0.00	1∆2						
-10.0 2 -20.0						т	RIG LVL
-30.0							_
-50.0 400490 -60.0 100414	taraa ka k				da al Mariana ang katalan Langsan da katalan sa	linder terresonia llana y a dipatra y a <mark>A patra per della patra dipatra per di</mark>	nd Keste Application
-50.0 <mark>hpt/kgs</mark> -60.0 <mark>Hpt/kg</mark>	read and a second second				d y national data and a dig this part		0 Hz
-50.0 United -60.0 United -70.0 Center 2.441000000 GHz	read and a second second	#VBW 3.	O MHz		Sweep	Span	0 Hz

Dwell NVNT 3-DH5 2441MHz One Burst <mark>d</mark> RL 33 AM May 12, 2 NSE:INT Trig Delay-500.0 μs Trig: Video #Atten: 30 dB #Avg Type: RMS Center Freq 2.441000000 GHz PNO: Fast ↔ IFGain:Low TYPE DET ΔMkr1 2.901 ms 0.08 dB Ref Offset 2.36 dB Ref 20.00 dBm 10 dB/div DQ <u>1∆2</u> X2 أأدار وحديث إرازه وروري وإرجازا بدارات ال Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz FUNCTION ^v <u>Δ2 1 t (Δ)</u> F 1 t 2.901 ms (∆) 497.0 µs 0.08 dB -9.18 dBm

STATUS

CHENZHER

Page: 74 of 79

15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

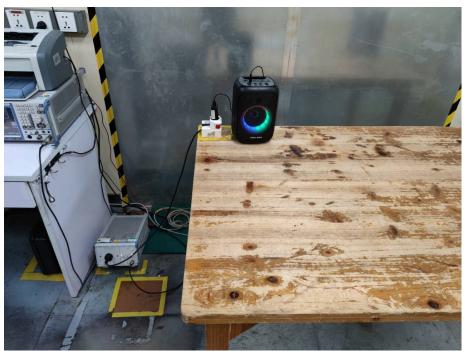
15.2 Test Result

The EUT antenna is PCB antenna, The antenna gain is -0.58 dBi, fulfill the requirement of this section.

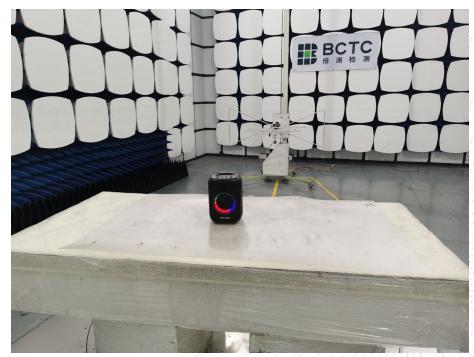
No.: BCTC/RF-EMC-007

16. EUT Photographs

EUT Photo 1



Page: 76 of 79



17. EUT Test Setup Photographs

Conducted Measurement Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-007

Edition: B.0

No.: BCTC/RF-EMC-007

Page: 78 of 79

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-007

Page: 79 of 7