

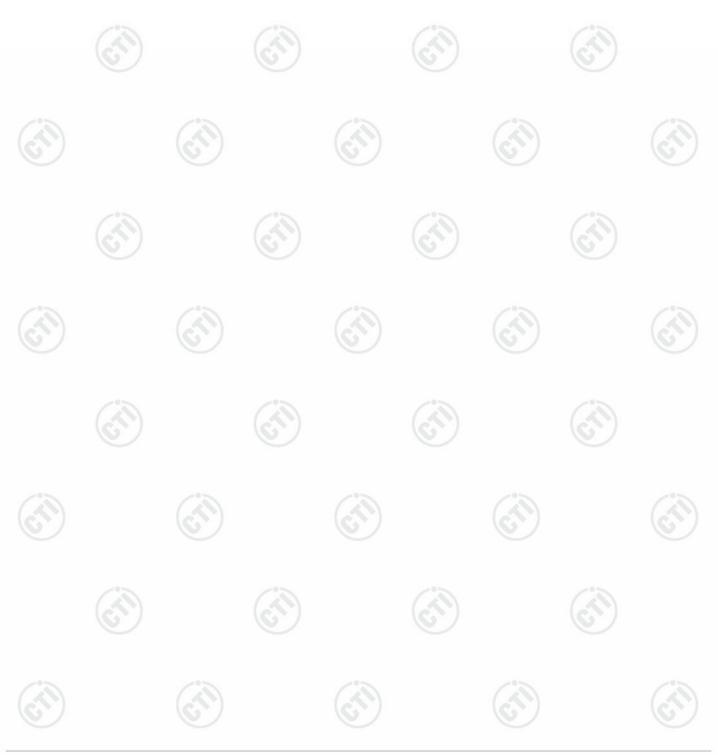
TEST REPORT

- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- : SenseCAP Watcher
- : Seeed Studio
- : W1-A, W1-B
- : N/A
- : EED32Q80844501
- : Z4T-WATCHER
- : Jul. 29, 2024
- : 47 CFR Part 15 Subpart C

Prepared for:

: PASS

Seeed Technology Co., Ltd


9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C

Version No.	Date	Description	
00	Jul. 29, 2024	Original	
6			6

Page 3 of 43

3 Content					
	Co.2				
	RIPTION OF EUT			 	
	ATION				
	IENT = Support Units				
	SUFFORT UNITS				
	UNCERTAINTY (95% CO		. ,		
6 EQUIPMENT LIST.				 	
7 TEST RESULTS A	ND MEASUREMENT	DATA		 	
7 1 ANTENNA REOU	IREMENT				
	ISSIONS				
	UCTED OUTPUT POWE				
7.4 DTS BANDWIDT	н				
	DECTRAL DENSITY				
7.5 MAXIMUM POWE	R SPECTRAL DENSITY			 	
7.5 MAXIMUM POWE 7.6 BAND EDGE MEA		IDUCTED SPURI	OUS EMISSION	 <u> </u>	
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR	ASUREMENTS AND CON	DUCTED SPURING	OUS EMISSION	 <u>(</u>	
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET	ASUREMENTS AND CON NOUS EMISSION & RES	IDUCTED SPURI TRICTED BANDS	DUS EMISSION		
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE	IDUCTED SPURI TRICTED BANDS	DUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O	ASUREMENTS AND CON NOUS EMISSION & RES	IDUCTED SPURI TRICTED BANDS	DUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE	IDUCTED SPURI TRICTED BANDS	DUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE	IDUCTED SPURI TRICTED BANDS	DUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)
7.5 MAXIMUM POWE 7.6 BAND EDGE ME/ 7.7 RADIATED SPUR 8 APPENDIX BLUET 9 PHOTOGRAPHS O 10 PHOTOGRAPHS	ASUREMENTS AND CON NOUS EMISSION & RES OOTH LE OF TEST SETUP OF EUT CONSTRUC	IDUCTED SPURI TRICTED BANDS	OUS EMISSION		(4)

4 Test Summary

Page 4 of 43

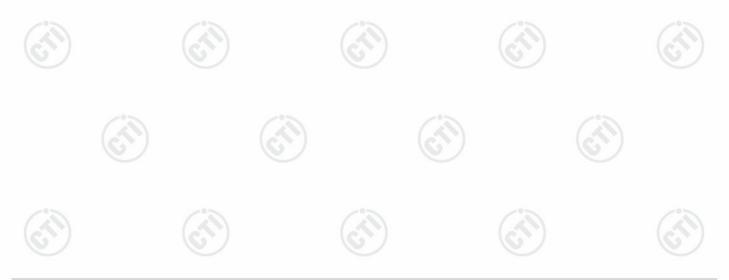
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	TS Bandwidth 47 CFR Part 15 Subpart C Section 15.247 (a)(2)		
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: W1-A, W1-B

Only the model W1-A was tested. Their electrical circuit design, layout, components used and internal wiring are identical. Only the color of the shell is different.


5 General Information

5.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Factory:	Shenzhen Xinxian Technology Co.,Limited.
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

5.2 General Description of EUT

Product Name:	SenseCAP	Watcher			
Model No.:	W1-A, W1-	B	/	(i)	
Test Model No.:	W1-A	(\mathcal{C})	(S)	6
Trade mark:	Seeed Stu	dio			\smile
Product Type:	Mobile	Portable	🛛 Fixed Loca	tion	
Operation Frequency:	2402MHz~	2480MHz	13	13	N
Modulation Type:	GFSK		(37)	(6)	S)
Transfer Rate:	⊠ 1Mbps	2Mbps	U	e	/
Number of Channel:	40				
Antenna Type:	FPC Anten	na			~
Antenna Gain:	2.38dBi		6	<u>()</u>	
Power Supply:	Battery:	DC 3.7V	4		e
Test Voltage:	DC 5V				
Sample Received Date:	Jul. 02, 202	24	~~~	10.	
Sample tested Date:	Jul. 02, 202	24 to Jul. 09, 20	24	(2	9
				0)

Page 5 of 43

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

(\mathcal{S})	Channel	Frequency	
The	lowest channel (CH0)	2402MHz	
The	middle channel (CH19)	2440MHz	
The	highest channel (CH39)	2480MHz	(2)

5.3 Test Configuration

Software:	ESP32.exe			
EUT Power Grade:	Class2 (Pov selected)	wer level is built-in s	set parameters and c	annot be changed and
Jse test software to ransmitting of the El	set the lowest frequency JT.	v, the middle freque	ncy and the highest t	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480

5.4 Test Environment

	Operating Environment	t:				
100	Radiated Spurious Emi	ssions:				
19	Temperature:	22~25.0 °C		(2)		(2)
2	Humidity:	50~55 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	(\mathbf{G}^{*})		6	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C		1		13
	Humidity:	50~55 % RH		$(c^{(n)})$		$(c^{(n)})$
~	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

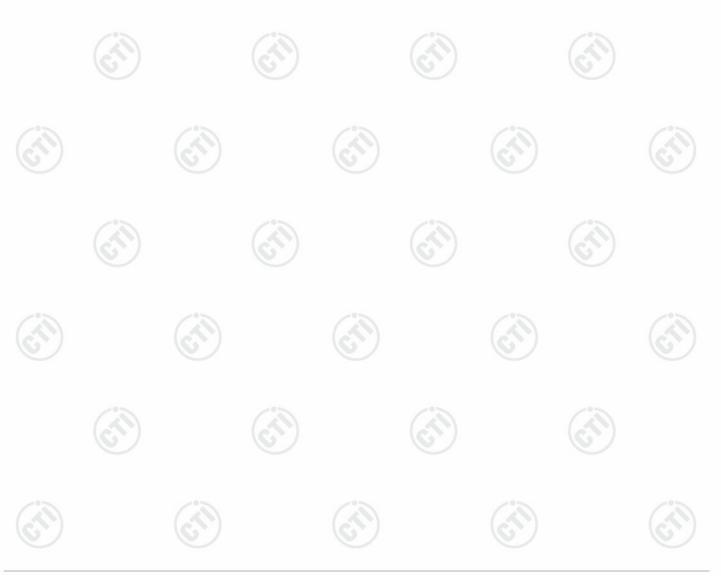
1)	support	equipment
• •		

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	1	/
	(3)	13	1	19

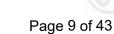
5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)


· · · · · · · · · · · · · · · · · · ·		
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Sourious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
A		3.4dB (18GHz-40GHz)
5	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

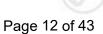
6 Equipment List

		RF to	st system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024	
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(A)	@	
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	woder No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025	
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025	
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024	
Barometer	changchun	DYM3	1188			
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	<u></u>	/	
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025	

Page	10	of	43

ISN	TES	EQ ISN T8	00 30297	12-14-2023	12-13-2024	
V	e		S	4	2	
	3M Semi-an	echoic Chamber (2	2)- Radiated disturb	ance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	ток	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/202	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEM S	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/202	
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/202	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/202	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	(D	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	<u>(1)</u>	(
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A		0	



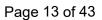
Page 11 of 43

		1		6					
		3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy				
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	<u>I</u> -	<u> </u>				
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025				
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025				
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025				
TRILOG	6	2		e					
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025				
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025				
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021 07-03-2024	07-03-2024 07-02-2025				
Preamplifier Preamplifier	Tonscend	EMC051845SE EMC001330	980380 980563	12-14-2023 03-08-2024	12-13-2024				
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024				
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024				
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025				
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027				
Cable line	Times	SFT205-NMSM-2.50M	394812-0001						
Cable line	Times	SFT205-NMSM-2.50M	394812-0002						
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(N)	-(~				
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u> </u>					
Cable line	Times	EMC104-NMNM-1000	SN160710						
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	- 6)				
Cable line	Times	SFT205-NMNM-1.50M	381964-0001						
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(A)	(2)				

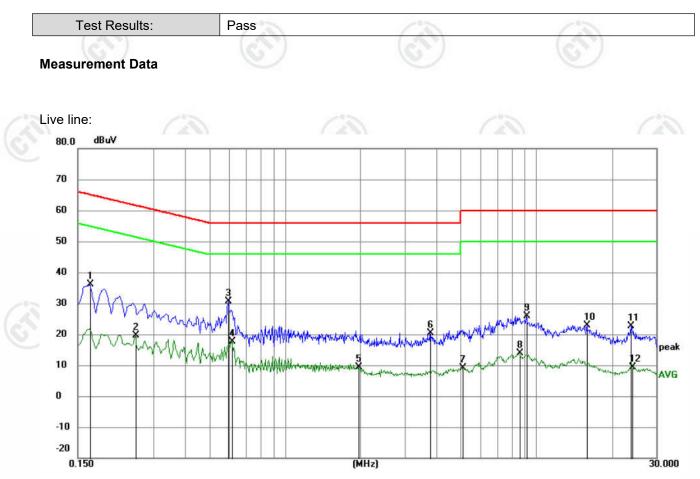
7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)								
15.203 requirement:									
An intentional radiator sha	radiator shall be designed to ensure that no antenna other than that furnished by the								
responsible party shall be	used with the device. The use of a permanently attached antenna or of an								
antenna that uses a unique	e coupling to the intentional radiator, the manufacturer may design the unit								
so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or									
electrical connector is prohibited.									
15.247(b) (4) requirement:									
The conducted output pow	ver limit specified in paragraph (b) of this section is based on the use of								
	rains that do not avaged 6 dDi. Event as about in paragraph (a) of this								
antennas with directional g	gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this								
-	ennas of directional gain greater than 6 dBi are used, the conducted output								
section, if transmitting ante									
section, if transmitting anter power from the intentional	ennas of directional gain greater than 6 dBi are used, the conducted output								
section, if transmitting anter power from the intentional	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1),								
section, if transmitting anter power from the intentional (b)(2), and (b)(3) of this se	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1),								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the Please see Internal photos								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the Please see Internal photos								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the Please see Internal photos								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the Please see Internal photos								
section, if transmitting ante power from the intentional (b)(2), and (b)(3) of this se antenna exceeds 6 dBi. EUT Antenna:	ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ection, as appropriate, by the amount in dB that the directional gain of the Please see Internal photos								



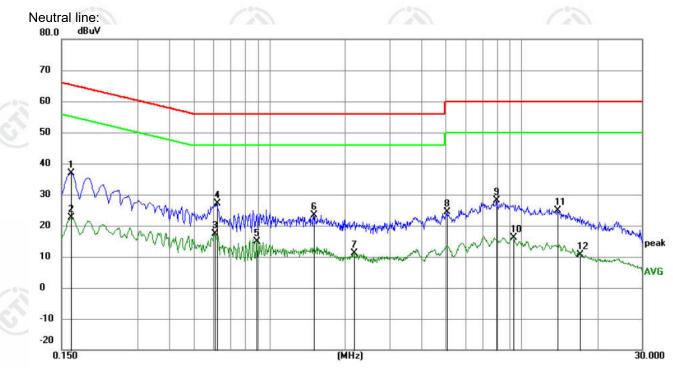
Test Requirement:	47 CFR Part 15C Section 15.	207						
Test Method:	ANSI C63.10: 2013							
 Test Frequency Range:	150kHz to 30MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto		63				
Limit:		dBuV)	$(\epsilon \nabla)$					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	56 to 46*						
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46							
	5-30	60	50					
	* Decreases with the logarith							
 Test Setup:								
	AC Mains	AE USN2 + AC M Ground Reference Plane	Test Receiver					
Test Procedure:	 The mains terminal distur room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the n The tabletop EUT was pl ground reference plane. A placed on the horizontal g The test was performed w the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bor mounted on top of the gro the closest points of the and associated equipmen 	I to AC power source Network) which provide cables of all other SN 2, which was bonde as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-meta And for floor-standing a ground reference plane. ith a vertical ground re from the vertical groue plane was bonded N 1 was placed 0.8 m nded to a ground re pund reference plane. T LISN 1 and the EUT. t was at least 0.8 m fro	e through a LISN is a $50\Omega/50\mu$ H + units of the E ed to the ground f e unit being mea multiple power ca not exceeded. allic table 0.8m a mrangement, the ference plane. Th und reference pl to the horizonta from the bounda ference plane for his distance was All other units of om the LISN 2.	I 1 (Line 5Ω linea UT were reference sured. <i>A</i> ables to a bove the EUT was between the EUT between the EUT				
	 In order to find the maxim and all of the interface ca ANSI C63.10: 2013 on co 	bles must be changed	according to	quipmen				



Page 14 of 43

Report No. : EED32Q80844501

3	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
<u>5</u> -			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1680	26.31	9.89	36.20	65.06	-28.86	QP	
S .	2		0.2535	9.84	9.72	19.56	51.64	-32.08	AVG	
_	3	*	0.5955	20.97	9.60	30.57	56.00	-25.43	QP	
17	4		0.6140	7.87	9.65	17.52	46.00	-28.48	AVG	
-	5		1.9680	-0.48	9.75	9.27	46.00	-36.73	AVG	
- -	6		3.7860	10.51	9.80	20.31	56.00	-35.69	QP	
	7		5.1000	-0.62	9.84	9.22	50.00	-40.78	AVG	
3	8		8.5830	3.95	9.84	13.79	50.00	-36.21	AVG	
3	9		9.1185	15.93	9.84	25.77	60.00	-34.23	QP	
	10		15.9630	12.93	9.89	22.82	60.00	-37.18	QP	
_	11		23.8560	12.62	9.94	22.56	60.00	-37.44	QP	
5	12		24.1035	-0.48	9.94	9.46	50.00	-40.54	AVG	

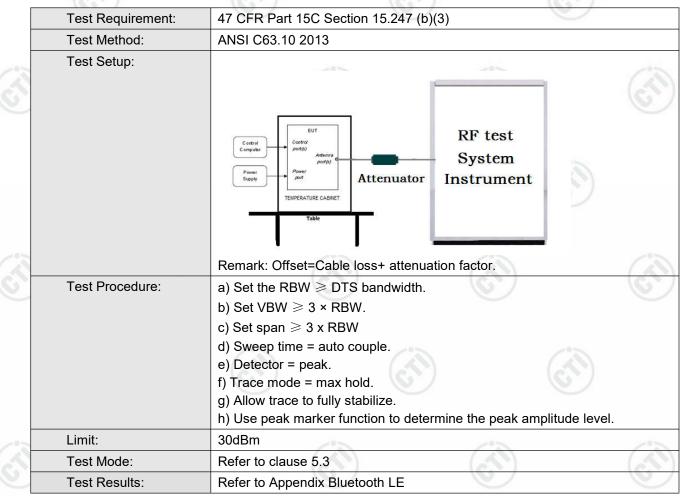

Remark:

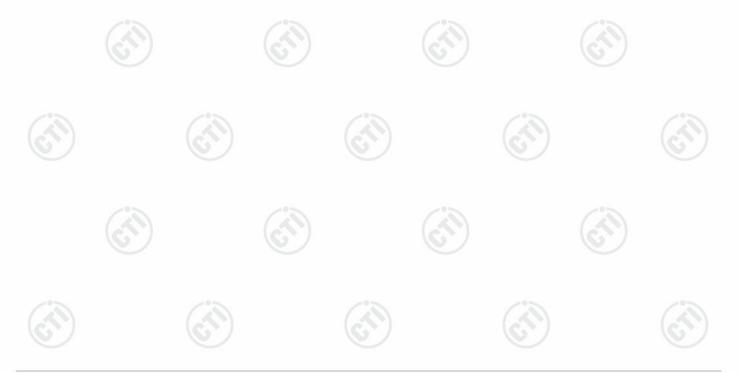
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 43

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1635	27.06	9.88	36.94	65.28	-28.34	QP	
2	0.1635	12.76	9.88	22.64	55.28	-32.64	AVG	
3	0.6045	7.78	9.61	17.39	46.00	-28.61	AVG	
4	0.6180	17.42	9.66	27.08	56.00	-28.92	QP	
5	0.8925	5.18	9.81	14.99	46.00	-31.01	AVG	
6	1.4955	13.72	9.74	23.46	56.00	-32.54	QP	
7	2.1660	1.46	9.75	11.21	46.00	-34.79	AVG	
8	5.0640	14.49	9.84	24.33	60.00	-35.67	QP	
9	7.9485	18.37	9.84	28.21	60.00	-31.79	QP	
10	9.2534	6.25	9.83	16.08	50.00	-33.92	AVG	
11	13.9110	15.06	9.85	24.91	60.00	-35.09	QP	
12	17.0880	0.72	9.93	10.65	50.00	-39.35	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 16 of 43

7.3 Maximum Conducted Output Power

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

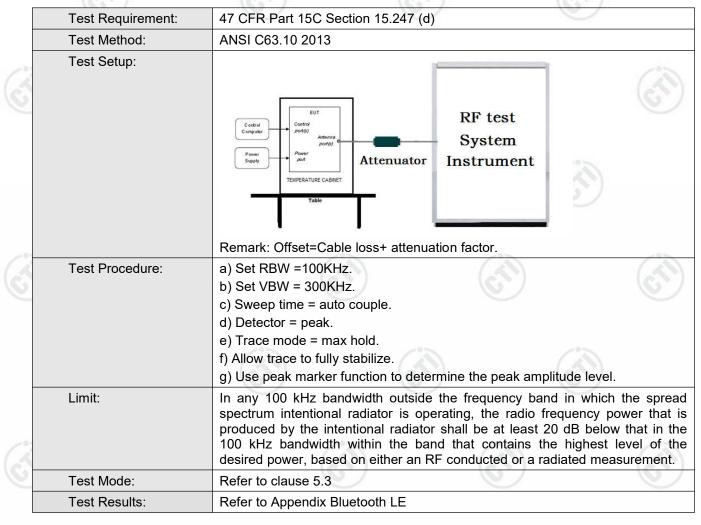
7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Conguter Conguter Power Power Supply TEMPERATURE CABNET Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor.a) Set RBW = 100 kHz.b) Set the VBW \geq [3 \times RBW].
	 c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 43

7.5 Maximum Power Spectral Density

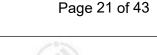
Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Computer Supply Power Supply TemPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

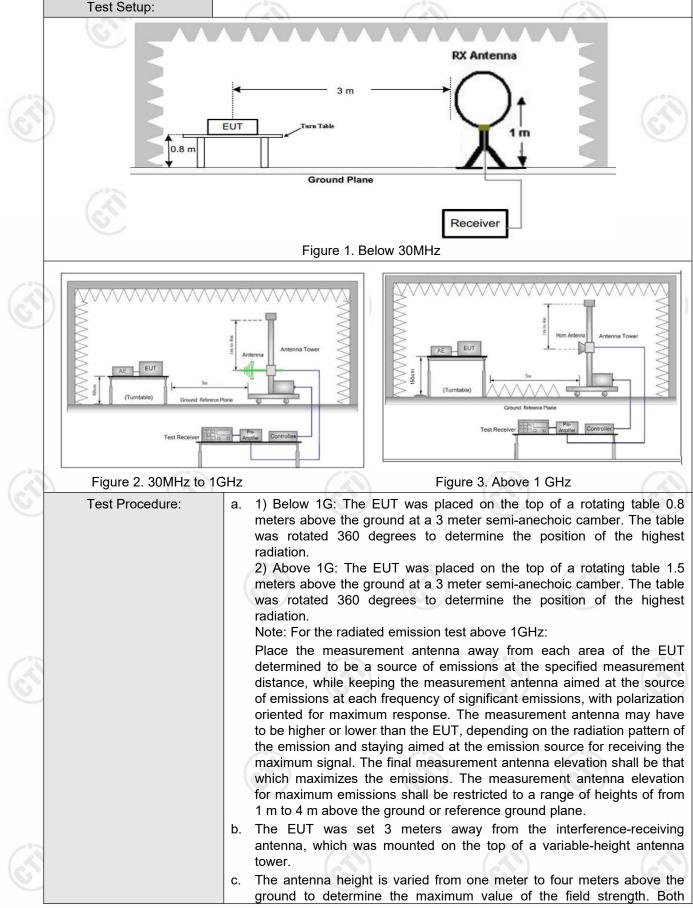


7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 43

7.7 Radiated Spurious Emission & Restricted bands

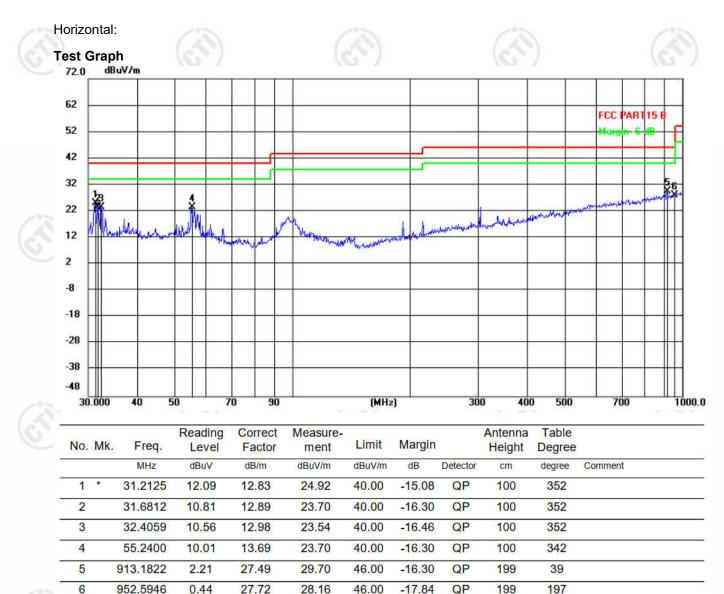

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	/	
	Test Method:	ANSI C63.10 2013							
	Test Site:	Measurement Distance	: 3n	n (Semi-Anech	noic Cham	be	r)		
	Receiver Setup:	Frequency	10	Detector	RBW	1	VBW	Remark	
S.		0.009MHz-0.090MH	z	Peak	10kHz	Z	30kHz	Peak	
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average	
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak	
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak	
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average	
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak	
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak	
13			2	Peak	1MHz		3MHz	Peak	
S I		Above 1GHz		Peak	1MHz)	10kHz	Average	
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measuremer distance (m	
		0.009MHz-0.490MHz	2	400/F(kHz)	-	<u> i</u>		300	
		0.490MHz-1.705MHz	24	4000/F(kHz)	-			30	
		1.705MHz-30MHz		30	-			30	
		30MHz-88MHz		100	40.0	Q	uasi-peak	3	
		88MHz-216MHz		150	43.5	Quasi-peak		3	
		216MHz-960MHz	2	200	46.0	Q	uasi-peak	3	
S.		960MHz-1GHz)	500	54.0	Q	uasi-peak	3	
		Above 1GHz		500	54.0		Average	3	
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	B above the oment under t	maximum est. This p	pe	rmitted ave	erage emission	



age 21 of 43

CTI华测检测

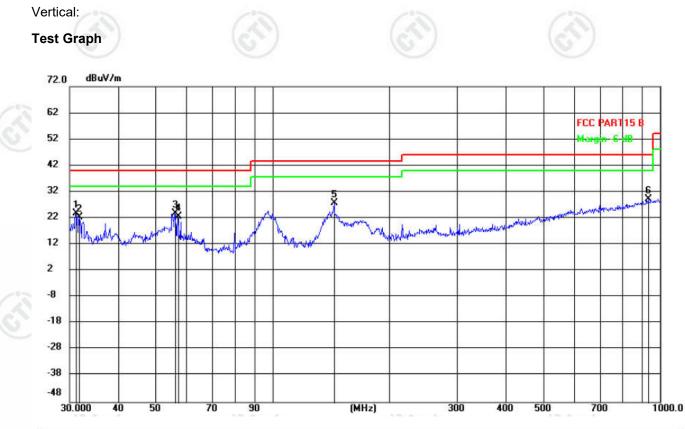
Report No. : EED32Q80844501


Page 22 of 43

Кер		0020000-	1001				i uge	22 01 10
			 d. For each and ther the test meter) a degrees e. The test Bandwid f. If the en limit spe EUT woor margin average g. Test the (2440MH) h. The radii for Trans worst came 	ement. h suspected of h the antenna frequency of and the rota to find the ma- receiver systent th with Maxim nission level of ecified, then te uld be reported would be re method as speciation measured the Highe iation measured smitting model ase.	emission, the was tuned to below 30MHz table table w aximum readin em was set to num Hold Moo of the EUT in esting could be d. Otherwise -tested one becified and the lowest chan st channel (24 rements are p e, and found	EUT was arr heights from the antenna- vas turned fing. The Peak Detect de. peak mode we stopped an- the emissions by one usin the reported i nnel (2402M 80MHz) performed in the X axis po	anna are set to ranged to its v 1 meter to 4 a was tuned to rom 0 degre t Function and vas 10dB lowe d the peak vas s that did not g peak, qua n a data shee Hz),the midd X, Y, Z axis positioning white easured was	worst case meters (for o heights 1 es to 360 d Specified er than the lues of the have 10dB si-peak or et. le channel positioning ch it is the
	Test Mod		Refer to clau	-				
			Pass		(A)		(1)	

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.



Page 24 of 43

No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.1088	10.96	12.81	23.77	40.00	-16.23	QP	100	7	
2		31.8148	9.50	12.91	22.41	40.00	-17.59	QP	100	344	
3		56.1777	10.13	13.62	23.75	40.00	-16.25	QP	200	269	
4		57.1413	9.11	13.53	22.64	40.00	-17.36	QP	100	28	
5 '	e i	144.3854	18.22	9.64	27.86	43.50	-15.64	QP	100	302	
6	Ş	933.5801	1.71	27.61	29.32	46.00	-16.68	QP	100	354	

Radiated Spurious Emission above 1GHz:

					C					
	Mode	:		BLE GFSK T	ransmitting		Channel:		2402 MHz	2
23	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
5	1	1210.6211	7.97	38.16	46.13	74.00	27.87	Pass	Н	PK
)	2	1929.2929	8.97	37.18	46.15	74.00	27.85	Pass	Н	PK
	3	3205.0137	-18.48	3 56.35	37.87	74.00	36.13	Pass	Н	PK
	4	4808.1205	-13.44	60.08	46.64	74.00	27.36	Pass	Н	PK
	5	6802.2535	-7.87	47.14	39.27	74.00	34.73	Pass	Н	PK
	6	12620.6414	0.86	43.15	44.01	74.00	29.99	Pass	Н	PK
	7	1247.0247	7.86	37.31	45.17	74.00	28.83	Pass	V	PK
	8	2030.9031	9.16	37.23	46.39	74.00	27.61	Pass	V	PK
17	9	3205.0137	-18.48	3 58.08	39.60	74.00	34.40	Pass	V	PK
	10	4808.1205	-13.44	58.31	44.87	74.00	29.13	Pass	V	PK
	11	7822.3215	-3.96	45.64	41.68	74.00	32.32	Pass	V	PK
	12	13445.6964	5.01	40.79	45.80	74.00	28.20	Pass	V	PK

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2440 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1596.8597	7.99	37.08	45.07	74.00	28.93	Pass	Н	PK
2	4067.0711	-15.90	52.91	37.01	74.00	36.99	Pass	Н	PK
3	4880.1253	-13.46	60.55	47.09	74.00	26.91	Pass	н	PK
4	7368.2912	-6.64	47.10	40.46	74.00	33.54	Pass	Н	PK
5	11646.5764	0.44	43.49	43.93	74.00	30.07	Pass	н	PK
6	15345.8231	5.92	40.88	46.80	74.00	27.20	Pass	Н	PK
7	1341.6342	7.94	37.60	45.54	74.00	28.46	Pass	V	PK
8	1797.0797	8.46	36.90	45.36	74.00	28.64	Pass	V	PK
9	3253.0169	-18.26	58.38	40.12	74.00	33.88	Pass	V	PK
10	4880.1253	-13.46	57.55	44.09	74.00	29.91	Pass	V	PK
11	7775.3184	-4.19	46.12	41.93	74.00	32.07	Pass	V	PK
12	11629.5753	0.66	43.76	44.42	74.00	29.58	Pass	V	PK
1			·					•	

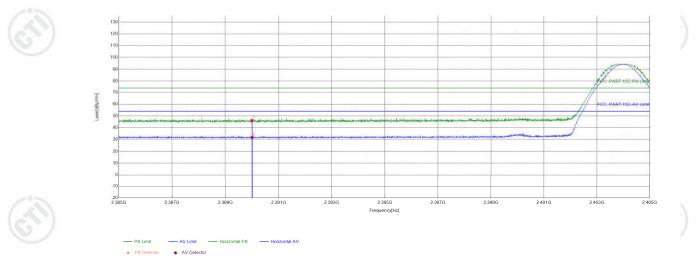
Page 26 of 43

		10-		10-10-		10 3		1	O have	
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1364.4364	8.05	37.64	45.69	74.00	28.31	Pass	Н	PK
	2	1863.2863	8.77	37.25	46.02	74.00	27.98	Pass	Н	PK
	3	3307.0205	-18.07	54.71	36.64	74.00	37.36	Pass	Н	PK
	4	4960.1307	-13.35	59.42	46.07	74.00	27.93	Pass	Н	PK
	5	7374.2916	-6.63	48.08	41.45	74.00	32.55	Pass	Н	PK
	6	12821.6548	1.92	42.63	44.55	74.00	29.45	Pass	Н	PK
	7	1267.6268	7.81	38.26	46.07	74.00	27.93	Pass	V	PK
	8	1871.4871	8.82	36.96	45.78	74.00	28.22	Pass	V	PK
	9	3307.0205	-18.07	57.72	39.65	74.00	34.35	Pass	V	PK
	10	4960.1307	-13.35	57.53	44.18	74.00	29.82	Pass	V	PK
3	11	9440.4294	-1.02	43.80	42.78	74.00	31.22	Pass	V	PK
	12	13677.7118	5.35	41.85	47.20	74.00	26.80	Pass	V	PK
	/									

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Restricted bands:

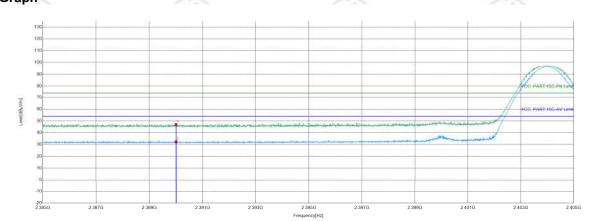


Test plot as follows:

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	1 67	67	(I)

Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.17	46.13	74.00	27.87	PASS	Horizontal	PK
2	2390	9.96	21.81	31.77	54.00	22.23	PASS	Horizontal	AV



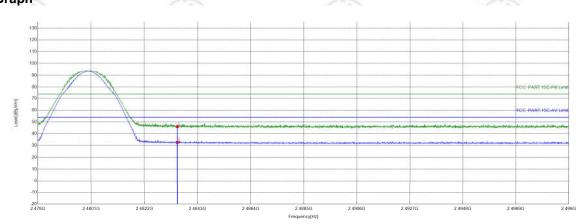
Page 28 of 43

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	١		

Test Graph

PK Limit AV Limit Vertical PK Vertical AV PK Detector AV Detector

2	Suspecte	d List	~~~		2°2					23
5	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	37.01	46.97	74.00	27.03	PASS	Vertical	PK
	2	2390	9.96	22.33	32.29	54.00	21.71	PASS	Vertical	AV
	6			(\mathbf{O})		S)			5	



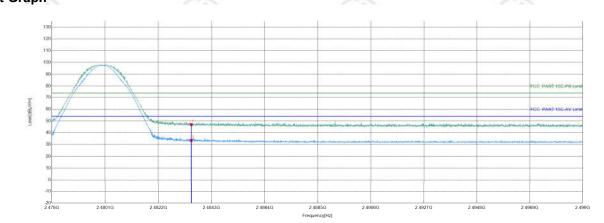
Page 29 of 43

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09	

Test Graph

PK Limit AV Limit Horizontal PK Horizontal AV * AV Detector

<* 22	(J. 1997)		1°2		12		1	2		2°2
<u>s</u>	Suspecte	d List								
٢	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	2483.5	10.38	35.67	46.05	74.00	27.95	PASS	Horizontal	PK
	2	2483.5	10.38	22.32	32.70	54.00	21.30	PASS	Horizontal	AV
-	6			67		6			67)	



Page 30 of 43

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	Aiden.wang	Test_Date	2024/07/09
Remark	N		

Test Graph

PK Limit AV Limit Vertical PK Vertical AV AV Detector

		1°2		/°~~		1	2		2°2
Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	36.52	46.90	74.00	27.10	PASS	Vertical	PK
2	2483.5	10.38	23.07	33.45	54.00	20.55	PASS	Vertical	AV
10	51		657		6	b.		GT /	-

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com