

RADIO TEST REPORT FCC ID: 2A8TA-I33

Product: Wireless Bluetooth Earphones Trade Mark: N/A Model No.: I33 Family Model: G2,I38,I36,I37,I39,I50,I51, I52 Report No.: S22091604104001 Issue Date: Sep 22. 2022

Prepared for

Shenzhen Shengdaren Technology Co.,Ltd

2nd&3rd Floor,3D Printing Industrial Park,No.17-1,Guanlan Avenue,Longhua District,Shenzhen,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 T	EST RESULT CERTIFICATION	3
2 S	UMMARY OF TEST RESULTS	4
3 F.	ACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
3.3	MEASUREMENT UNCERTAINTY	
	ENERAL DESCRIPTION OF EUT	
5 D	DESCRIPTION OF TEST MODES	8
6 S	ETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT	10
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 T	EST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	
7.2	RADIATED SPURIOUS EMISSION	
7.3	NUMBER OF HOPPING CHANNEL	
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST	
7.6 7.7	PEAK OUTPUT POWER	
7.7	CONDUCTED BAND EDGE MEASUREMENT	
7.8	SPURIOUS RF CONDUCTED EMISSION	
7.10		
7.10		
	EST RESULTS	
8.1	DWELL TIME	
8.2	MAXIMUM CONDUCTED OUTPUT POWER	
8.3	OCCUPIED CHANNEL BANDWIDTH	
8.4	CARRIER FREQUENCIES SEPARATION	
8.5	NUMBER OF HOPPING CHANNEL	
8.6 8.7	BAND EDGE CONDUCTED RF SPURIOUS EMISSION	
0.7	CONDUCTED VI. 2LOVIOO2 EMI2910M	04

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Shengdaren Technology Co.,Ltd
Address:	2nd&3rd Floor,3D Printing Industrial Park,No.17-1,Guanlan Avenue,Longhua District,Shenzhen,China
Manufacturer's Name:	Shenzhen Shengdaren Technology Co.,Ltd
Address:	2nd&3rd Floor,3D Printing Industrial Park,No.17-1,Guanlan Avenue,Longhua District,Shenzhen,China
Product description	
Product name:	Wireless Bluetooth Earphones
Model and/or type reference:	133
Family Model:	G2,I38,I36,I37,I39,I50,I51, I52
Sample number	S220916041004

Measurement Procedure Used:

APPLICABLE STANDARDS					
STANDARD/ TEST PROCEDURE TEST RESULT					
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013					
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., and shall be noted in the revision of the document.					
The test results of this report relate only to the tested sample identified in this report.					
Date of Test : Sep 16, 2022 ~ Sep 22, 2022					

Testing Engineer	Susan	li
	(Susan li)	
Authorized Signatory	Alese	
Authorized Digitatory	(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Wireless Bluetooth Earphones	
Trade Mark	N/A	
FCC ID	2A8TA-I33	
Model No.	133	
Family Model	G2,I38,I36,I37,I39,I50,I51, I52	
Model Difference	All models are the same circuit and RF module, except the Model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK	
Number of Channels	79 Channels	
Antenna Type	Ceramic Antenna	
Antenna Gain	4.08 dBi	
Adapter	N/A	
Battery	Earphone: DC 3.7V, 95mAh Charging case: DC 3.7V, 400mAh	
Power supply	Earphone: DC 3.7V from Battery or DC 5V form Charging case. Charging case: DC 3.7V from Battery or DC 5V from type-C port.	
HW Version	V2.3.0	
SW Version	V0.2	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

		Certificate #4298.01	
Revision History			
Report No.	Version	Description	Issued Date
S22091604104001	Rev.01	Initial issue of report	Sep 22, 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation;) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission	
Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF E			TEST			
6.1 BLOCK DIAGRA				EM		
For AC Conducted Er			F 1231 3131			
		0.1		AC	PLUG	
	EUT	C-1	AE-1			
	201		Adapter			
For Radiated Test Ca	202					
T OF Maulated Test Ca	505					
	EUT					
•						
For Conducted Test C	ases					
Measurement	C-2	т				
Instrument						
Note: 1. The temporal and this temporary ar	ry antenna conr itenna connecto	nector is s or is listed	oldered on the	e PCB boa nent list.	ard in order	to perform conducted tes
2. EUT built-in b						

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
	·			

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	NO	NO	0.3m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

ualatic	na conducted i	cot equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

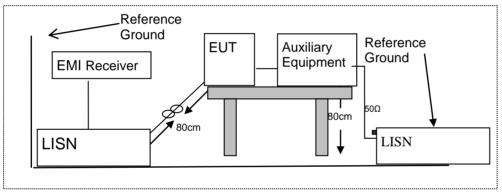
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

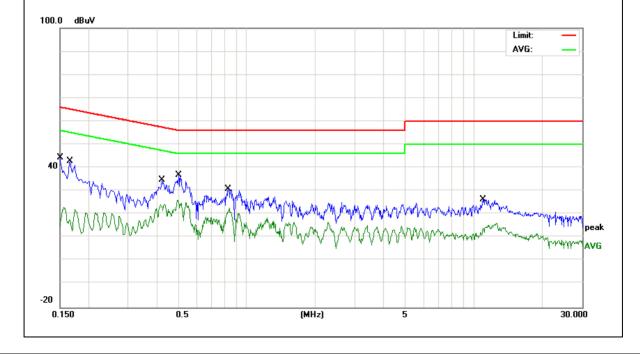
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

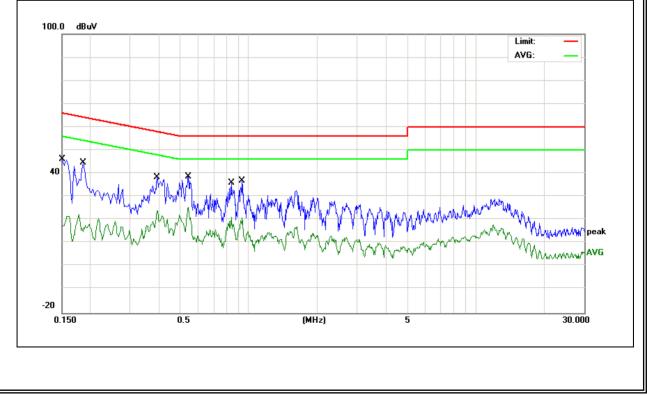

EUT:	Wireless Bluetooth Earphones	Model Name :	133
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1499	34.76	9.60	44.36	66.00	-21.64	QP
0.1499	9.94	9.60	19.54	56.00	-36.46	AVG
0.1660	33.10	9.61	42.71	65.15	-22.44	QP
0.1660	7.99	9.61	17.60	55.15	-37.55	AVG
0.4218	25.04	9.66	34.70	57.41	-22.71	QP
0.4218	14.69	9.66	24.35	47.41	-23.06	AVG
0.5020	27.21	9.66	36.87	56.00	-19.13	QP
0.5020	16.52	9.66	26.18	46.00	-19.82	AVG
0.8298	21.03	9.68	30.71	56.00	-25.29	QP
0.8298	13.14	9.68	22.82	46.00	-23.18	AVG
10.9938	16.32	9.96	26.28	60.00	-33.72	QP
10.9938	4.48	9.96	14.44	50.00	-35.56	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Wireless Bluetooth Earphones	Model Name :	133
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1499	36.56	9.65	46.21	66.00	-19.79	QP
0.1499	8.02	9.65	17.67	56.00	-38.33	AVG
0.1859	35.05	9.63	44.68	64.21	-19.53	QP
0.1859	8.97	9.63	18.60	54.21	-35.61	AVG
0.3940	28.64	9.66	38.30	57.98	-19.68	QP
0.3940	14.44	9.66	24.10	47.98	-23.88	AVG
0.5420	28.95	9.66	38.61	56.00	-17.39	QP
0.5420	15.86	9.66	25.52	46.00	-20.48	AVG
0.8378	26.32	9.68	36.00	56.00	-20.00	QP
0.8378	11.47	9.68	21.15	46.00	-24.85	AVG
0.9378	27.18	9.69	36.87	56.00	-19.13	QP
0.9378	11.17	9.69	20.86	46.00	-25.14	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 15.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)					
Frequency(MHz)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

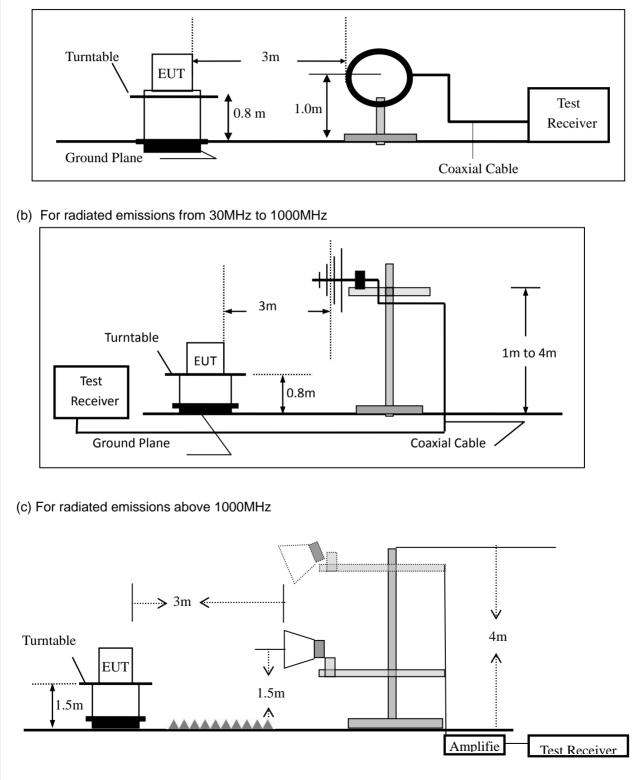
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

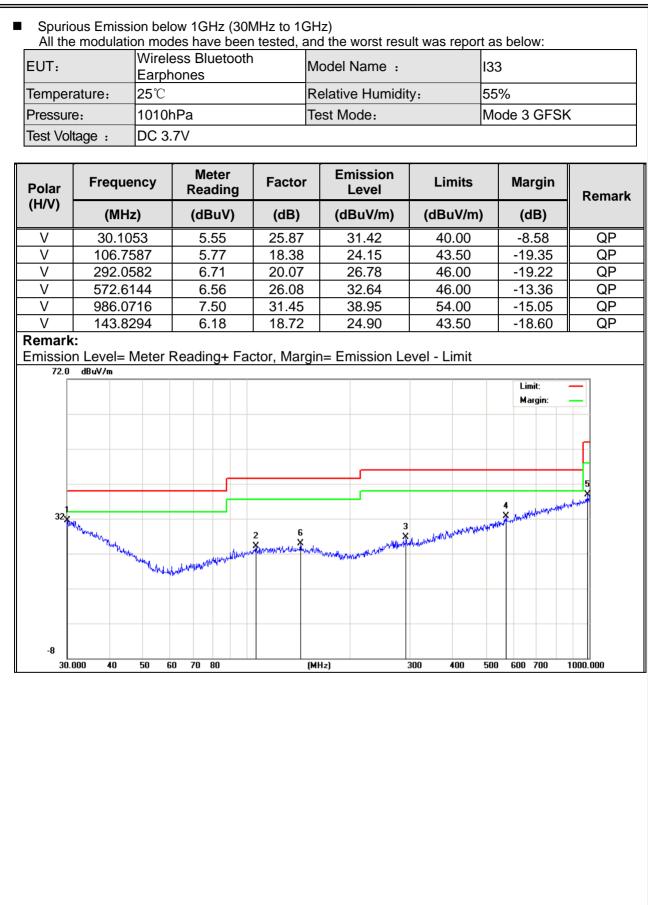
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Ah awa 4000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results


Spurious Em	Emission below 30MHz (9KHz to 30MHz)									
EUT:	Wireless Bluetooth Earphones	Model No.:	133							
Temperature:	20 ℃	Relative Humidity:	48%							
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li							

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK AV		PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

NTEK 北测

NTEK 北测[®]

(H/V)(MHz)(dBuV)(dB)(dBuV/m)(dBuV/m)(dB)H30.21105.9825.8731.8540.00-8.150H32.74867.0024.5331.5340.00-8.470H113.71426.7118.5625.2743.50-18.230H160.90887.2718.2725.5443.50-17.960H223.73336.9317.2924.2246.00-21.780	QP QP QP QP QP QP
H 32.7486 7.00 24.53 31.53 40.00 -8.47 0 H 113.7142 6.71 18.56 25.27 43.50 -18.23 0 H 160.9088 7.27 18.27 25.54 43.50 -17.96 0 H 223.7333 6.93 17.29 24.22 46.00 -21.78 0 H 620.7096 7.79 26.38 34.17 46.00 -11.83 0 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dBuV/m	QP QP QP QP
H 113.7142 6.71 18.56 25.27 43.50 -18.23 0 H 160.9088 7.27 18.27 25.54 43.50 -17.96 0 H 223.7333 6.93 17.29 24.22 46.00 -21.78 0 H 620.7096 7.79 26.38 34.17 46.00 -11.83 0 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Limit:	QP QP QP
H 160.9088 7.27 18.27 25.54 43.50 -17.96 0 H 223.7333 6.93 17.29 24.22 46.00 -21.78 0 H 620.7096 7.79 26.38 34.17 46.00 -11.83 0 Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Limit:	QP QP
H 223.7333 6.93 17.29 24.22 46.00 -21.78 () H 620.7096 7.79 26.38 34.17 46.00 -11.83 () Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Limit: 72.0 dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m	QP
H 620.7096 7.79 26.38 34.17 46.00 -11.83 () Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit - - - - - - 11.83 () 72.0 dBuV/m - - - - - - - - - - - - - - - - - 1.83 () - - 1.83 () - - 1.83 () - - 1.83 () - - 1.83 () - 1.83 () - - 1.83 () - 1.83 () - 1.83 () - 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 () 1.83 <	
Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	QP
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	
-8	
30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.00	00

Spurious Er				lz to	25G	Hz)					
EUT: Wireless Bluetooth Earphones						lel No.:		133			
Temperature:	nperature: 20 °C F						dity:	48%			
Fest Mode:	Mode	e2/Mode	3/Mode4		Test	t By:		Susan li			
All the modulation							sult was		below:		
	Deed	Ochla	A	Dura		F actorian					
Frequency	Read Level	Cable loss	Antenna Factor	Prea Fac		Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dl	B)	(dBµV/m)	(dBµV/m	ı) (dB)			
			Low Chanr	nel (24	102 M	Hz)(π/4-DQ	PSK)Ab	ove 1G		·	
4804	69.06	5.21	35.59	44.	30	65.56	74.00	-8.44	Pk	Vertical	
4804	46.9	5.21	35.59	44.	30	43.40	54.00	-10.60	AV	Vertical	
7206	69.27	6.48	36.27	44.	60	67.42	74.00	-6.58	Pk	Vertical	
7206	45.6	6.48	36.27	44.	60	43.75	54.00	-10.25	AV	Vertical	
4804	68.83	5.21	35.55	44.	30	65.29	74.00	-8.71	Pk	Horizontal	
4804	45.65	5.21	35.55	44.	30	42.11	54.00	-11.89	AV	Horizontal	
7206	68.67	6.48	36.27	44.	52	66.90	74.00	-7.10	Pk	Horizontal	
7206	48.95	6.48	36.27	44.	52	47.18	54.00	-6.82	AV	Horizontal	
			Mid Chanr	nel (24	441 MHz)(π/4-DQPSK)Above 1G						
4882	69.57	5.21	35.66	44.	20	66.24	74.00	-7.76	Pk	Vertical	
4882	50.5	5.21	35.66	44.	20	47.17	54.00	-6.83	AV	Vertical	
7323	69.52	7.10	36.50	44.	43	68.69	74.00	-5.31	Pk	Vertical	
7323	49.45	7.10	36.50	44.	43	48.62	54.00	-5.38	AV	Vertical	
4882	70.76	5.21	35.66	44.	20	67.43	74.00	-6.57	Pk	Horizontal	
4882	45.29	5.21	35.66	44.	20	41.96	54.00	-12.04	AV	Horizontal	
7323	68.52	7.10	36.50	44.	43	67.69	74.00	-6.31	Pk	Horizontal	
7323	48.69	7.10	36.50	44.	43	47.86	54.00	-6.14	AV	Horizontal	
			High Chanr	nel (24	80 M	Hz)(π/4-DQ	PSK) Ab	ove 1G			
4960	69.95	5.21	35.52	44.	21	66.47	74.00	-7.53	Pk	Vertical	
4960	50.52	5.21	35.52	44.	21	47.04	54.00	-6.96	AV	Vertical	
7440	70.48	7.10	36.53	44.	60	69.51	74.00	-4.49	Pk	Vertical	
7440	47.3	7.10	36.53	44.	60	46.33	54.00	-7.67	AV	Vertical	
4960	69.02	5.21	35.52	44.	21	65.54	74.00	-8.46	Pk	Horizontal	
4960	46.8	5.21	35.52	44.	21	43.32	54.00	-10.68	AV	Horizontal	
7440	68.36	7.10	36.53	44.	60	67.39	74.00	-6.61	Pk	Horizontal	
7440	49.04	7.10	36.53	44.	60	48.07	54.00	-5.93	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz											
EUT	:	Wireless B	luetooth	Earphone	s Model	No.:		133			
Tem	perature:	20 °C			Relativ	Relative Humidity: 48%					
Test	Mode:	Mode2/ Mo	Test B	by:		Sus	an li				
All t	he modula	ation mode	s have b	een testeo	d, and the	worst res	ult wa	s rep	ort as be	elow:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре	
				2Mbp	s(π/4-DQP	SK)- Non-h	opping				
	2310.00	69.18	2.97	27.80	43.80	56.15	74	1	-17.85	Pk	Horizontal
	2310.00	50.90	2.97	27.80	43.80	37.87	54	1	-16.13	AV	Horizontal
	2310.00	68.88	2.97	27.80	43.80	55.85	74	1	-18.15	Pk	Vertical
	2310.00	47.83	2.97	27.80	43.80	34.80	54	1	-19.20	AV	Vertical
	2390.00	68.11	3.14	27.21	43.80	54.66	74	1	-19.34	Pk	Vertical
	2390.00	46.82	3.14	27.21	43.80	33.37	54	1	-20.63	AV	Vertical
	2390.00	68.88	3.14	27.21	43.80	55.43	74	1	-18.57	Pk	Horizontal
	2390.00	49.14	3.14	27.21	43.80	35.69	54	1	-18.31	AV	Horizontal
	2483.50	69.39	3.58	27.70	44.00	56.67	74	1	-17.33	Pk	Vertical
	2483.50	45.64	3.58	27.70	44.00	32.92	54	1	-21.08	AV	Vertical
	2483.50	70.14	3.58	27.70	44.00	57.42	74	1	-16.58	Pk	Horizontal
	2483.50	49.99	3.58	27.70	44.00	37.27	54	1	-16.73	AV	Horizontal
				2N	lbps (π/4-D	QPSK)- hopp	bing			-	-
	2310.00	69.67	2.97	27.80	43.80	56.64	74	1	-17.36	Pk	Horizontal
	2310.00	49.62	2.97	27.80	43.80	36.59	54	1	-17.41	AV	Horizontal
	2310.00	69.86	2.97	27.80	43.80	56.83	74	1	-17.17	Pk	Vertical
	2310.00	50.39	2.97	27.80	43.80	37.36	54	1	-16.64	AV	Vertical
	2390.00	68.28	3.14	27.21	43.80	54.83	74	1	-19.17	Pk	Vertical
	2390.00	48.32	3.14	27.21	43.80	34.87	54	1	-19.13	AV	Vertical
	2390.00	70.24	3.14	27.21	43.80	56.79	74	1	-17.21	Pk	Horizontal
	2390.00	45.55	3.14	27.21	43.80	32.10	54	1	-21.90	AV	Horizontal
	2483.50	68.10	3.58	27.70	44.00	55.38	74	1	-18.62	Pk	Vertical
	2483.50	47.21	3.58	27.70	44.00	34.49	54	1	-19.51	AV	Vertical
	2483.50	69.73	3.58	27.70	44.00	57.01	74	1	-16.99	Pk	Horizontal
	2483.50	49.52	3.58	27.70	44.00	36.80	54	1	-17.20	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Er	nission ir	n Restrict	ed Band 3	3260MHz	18000MH	Z					
EUT	:	Wireless Bluetooth Earphones			Model	Model No.: I33			133			
Tem	perature:	20 ℃	20 ℃			Relative Humidity: 4			48%			
Test	Mode:	Mode	2/ Mode4	1	Test E	Fest By: Susan li						
All t	All the modulation		es have b	een testeo	d, and the	worst res	ult wa	is rep	ort as be	elow:		
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре		
	3260	69.35	4.04	29.57	44.70	58.26	74	4	-15.74	Pk	Vertical	
	3260	45.29	4.04	29.57	44.70	34.20	54	4	-19.80	AV	Vertical	
	3260	70.71	4.04	29.57	44.70	59.62	74	4	-14.38	Pk	Horizontal	
	3260	45.49	4.04	29.57	44.70	34.40	54	4	-19.60	AV	Horizontal	
	3332	70.18	4.26	29.87	44.40	59.91	74	4	-14.09	Pk	Vertical	
	3332	49.51	4.26	29.87	44.40	39.24	54	4	-14.76	AV	Vertical	
	3332	69.60	4.26	29.87	44.40	59.33	74	4	-14.67	Pk	Horizontal	
	3332	46.25	4.26	29.87	44.40	35.98	54	4	-18.02	AV	Horizontal	
	17797	53.09	10.99	43.95	43.50	64.53	74	4	-9.47	Pk	Vertical	
	17797	30.94	10.99	43.95	43.50	42.38	54	4	-11.62	AV	Vertical	
	17788	51.60	11.81	43.69	44.60	62.50	74	4	-11.50	Pk	Horizontal	
	17788	40.69	11.81	43.69	44.60	51.59	54	4	-2.41	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

1-11.	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Susan li

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto Detector function = peak

Trace = max hold

7.4.6 Test Results

IFUI	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Wireless Bluetooth Earphones	Model No.:	133
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Susan li

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Ceramic Antenna (Gain: 4.08 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

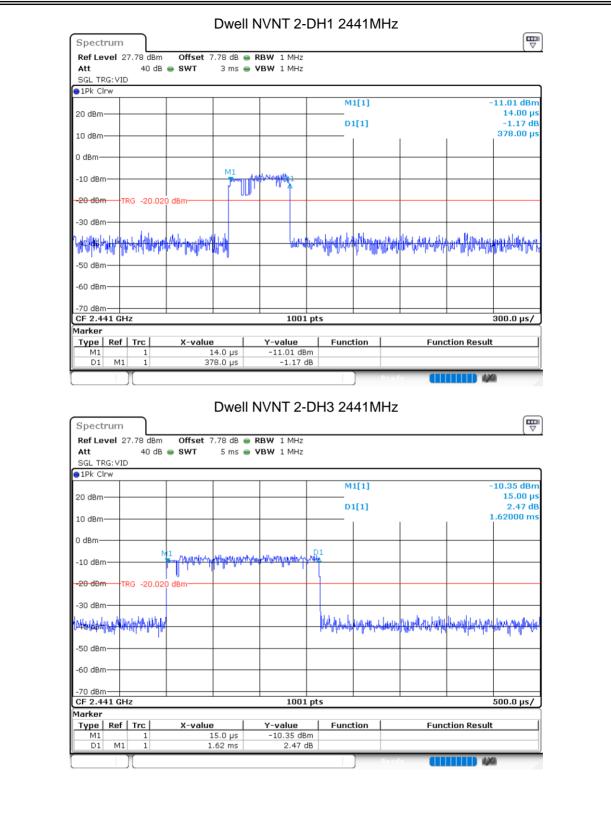
8 TEST RESULTS

8.1 DWELL TIME

U.I DWLLL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.375	120	31600	400	Pass
NVNT	1-DH3	2441	1.635	261.6	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz

	RG: VID		ib 😑 SWT		• VBW							
∋1Pk Cl	rw						M	1[1]			-	13.34 dBn
20 dBm	_											2.00 µ
10 -10							D	1[1]				3.04 dE 375.00 µs
10 dBm												о <i>го</i> лоо µ.
0 dBm—												
-10 dBm	<u> </u>			MJ.		D1						
						1						
-20 dBm		RG -20.0	020 dBm									
-30 dBm	η					\rightarrow						
1	a 1	ad It is	ման են հետ	ا داد.		L. M. W	. Anha ta ba an an	ليحمط	Mari	a kalan sa	adal. Ar amalar	المراجعات ا
Hill Hab	ulun u	hallha	վերգիլերեր կետո	MA.		- WP M	hdianadhdiodhadd	Luturul	m ahut	uninghhang,	Hall Hallen Star	And many staff
-50 dBrr	η						'				• •	U
-60 dBrr												
-70 dBm												
CF 2.4	41 GH	z				1001	pts					300.0 µs/
1arker Type	Ref	Trc	X-value	1	.	alue	Func	tion		Euro	tion Result	
M1	Rei	1		2.0 µs		3.34 dB		tion		Fund	alon kesult	
D1	M1	1		5.0 µs	-	3.04 (



Spectrum Ref Level 27. Att SGL TRG: VID		Offset		RBW 1 MHz VBW 1 MHz					
9 1Pk Clrw									
_					м	1[1]			-1.28 dBm
20 dBm					D	1[1]			5.00 μs -0.27 dB
10 dBm						1	1		1.63500 ms
0 dBm	м	1			<u>D1</u>				
-10 dBm									
-20 dBm TRG	3 -20.020	dBro							
-20 0000 1100	5 -20.020	UBIII							
-30 dBm									
Addust Hundright	Manual				- Wantulajang	hay a print a start of the second	all and the second s	and a production of the second s	h <mark>h h-hl</mark> hthatha
-50 dBm									°
-60 dBm									
-70 dBm									
CF 2.441 GHz Marker				1001	pts				500.0 µs/
Type Ref	Trc 1	X-valu	e 5.0 μs	Y-value -1.28 dBr		tion	Fund	ction Resul	t
D1 M1 Spectrum Ref Level 27.	1		Dwell I	-0.27 d NVNT 1-I RBW 1 MHz) Peer 41MHz	× (11		ű (T
Spectrum Ref Level 27. Att SGL TRG: VID	78 dBm		635 ms) 41MHz	y di) 4	
Spectrum Ref Level 27. Att	78 dBm	Offset	635 ms	NVNT 1-I	DH5 24		× (11		
Spectrum Ref Level 27. Att SGL TRG: VID	78 dBm	Offset	635 ms	NVNT 1-I	DH5 24	1[1]	× (11		-8.58 dBm 8.00 μs
Spectrum Ref Level 27. Att SGL TRG: VID • 1Pk Clrw 20 dBm	78 dBm	Offset	635 ms	NVNT 1-I	DH5 24		v (11		-8.58 dBm
Spectrum Ref Level 27. Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	78 dBm	Offset	635 ms	NVNT 1-I	DH5 24	1[1]	× ••••		-8.58 dBm 8.00 µs 1.25 dB
Spectrum Ref Level 27. Att SGL TRG: VID 1Pk Clrw 20 dBm	78 dBm 40 dB	Offset	635 ms	NVNT 1-I RBW 1 MHz YBW 1 MHz	DH5 24	1[1]	× ••••		-8.58 dBm 8.00 µs 1.25 dB
Spectrum Ref Level 27. Att SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm 0 dBm	78 dBm 40 dB	Offset	635 ms	NVNT 1-I	DH5 24	1[1]	× (1)		-8.58 dBm 8.00 µs 1.25 dB
Spectrum Ref Level 27. Att SGL TRG: VID • 1Pk CIrw 20 dBm 10 dBm -10 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz I MHz D1	DH5 24	1[1]	× (1)		-8.58 dBm 8.00 µs 1.25 dB
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm -10 dBm -20 dBm TRG	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz I MHz D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm -10 dBm -20 dBm TRG	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm TRG -30 dBm -30 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID © 1Pk CIrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID PIPk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -50 dBm	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1	DH5 24	1[1]			-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	78 dBm 40 dB	Offset	635 ms	NVNT 1-I RBW 1 MHz VBW 1 MHz D1 D1 D1 D1 U D1 U U U U U U U U U U U U U	DH5 24			guilaghalthadaire	-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID • IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -44 yes -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm Type Ref	78 dBm 40 dB 1 5 -20.020	Offset SWT	635 ms	NVNT 1-I RBW 1 MHz yBW 1 MHz D1 D1 D1 D1 L	DH5 24				-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms
Spectrum Ref Level 27. Att SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type	78 dBm 40 dB	Offset SWT	635 ms	NVNT 1-I	DH5 24			guilaghalthadaire	-8.58 dBm 8.00 µs 1.25 dB 2.88000 ms 800.0 µs/

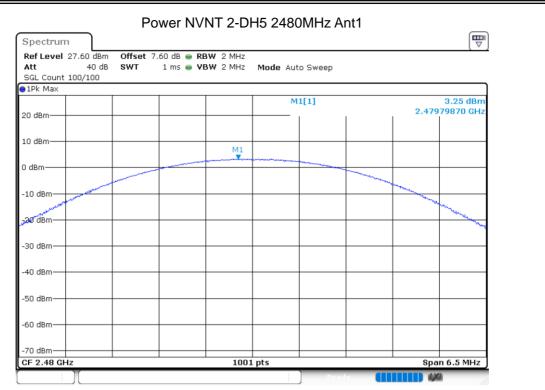
Dwell NVNT 2-DH5 2441MHz Spectrum Ref Level 27.78 dBm Offset 7.78 dB 👄 RBW 1 MHz Att 40 dB 👄 SWT 8 ms 👄 VBW 1 MHz SGL TRG: VID ⊖1Pk Clrw M1[1] 7.60 dBn 24.00 µs 20 dBm· D1[1] -1.89 dB 2.87200 ms 10 dBm-0 dBm-M1 ^{ւրչ}կերծ<mark>ե</mark>րարկերները անտանություններություններ wayyaha waya -10 dBm· -20 dBm -20.020 l dBn -30 dBm www.international.com/www.international.com/ halphoneybold 如他的机时 -50 dBm· -60 dBm· -70 dBm CF 2.441 GHz 1001 pts . 800.0 µs/ Marker Type | Ref | Trc | X-value Y-value Function Function Result 24.0 µs 2.872 ms -7.60 dBm -1.89 dB Μ1 1 M1 D1

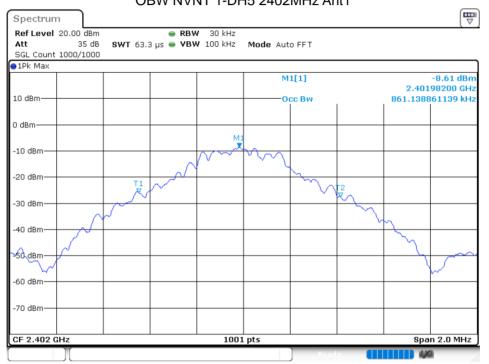
8.2 MAXIMUM CONDUCTED OUTPUT POWER

•••						
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	1.746	30	Pass
NVNT	1-DH5	2441	Ant 1	1.398	30	Pass
NVNT	1-DH5	2480	Ant 1	2.524	30	Pass
NVNT	2-DH5	2402	Ant 1	2.55	21	Pass
NVNT	2-DH5	2441	Ant 1	2.249	21	Pass
NVNT	2-DH5	2480	Ant 1	3.252	21	Pass

Power NVNT 1-DH5 2402MHz Ant1 [₩ Spectrum Ref Level 30.62 dBm Offset 7.62 dB 👄 RBW 2 MHz Att 40 dB SWT 1 ms 👄 VBW 2 MHz Mode Auto Sweep SGL Count 300/300 ●1Pk Max M1[1] 1.75 dBm 2.40176020 GHz 20 dBm· 10 dBm M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm· -60 dBm· Span 5.0 MHz CF 2.402 GHz 1001 pts 4.40

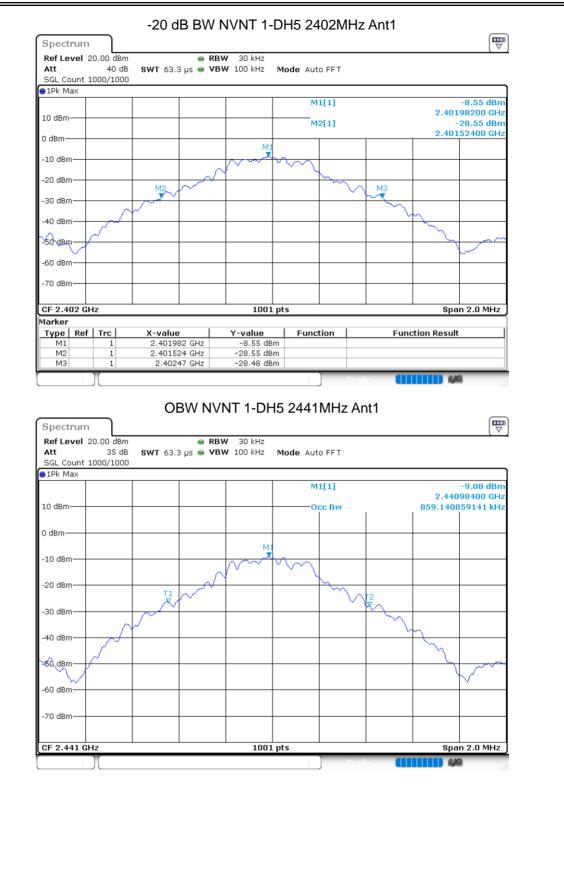
Ref Level 27.78 dBm Att 40 dB SGL Count 100/100		 RBW 2 MHz VBW 2 MHz N 	1ode Auto Sweep			
●1Pk Max			M1[1]			1.40 dBm
20 dBm				I	2.440	78520 GHz
10 dBm						
10 ubiii		M1				
0 dBm						
-10 dBm						
-20 dBm						
20 000						
-30 dBm						
-40 dBm						
-50 dBm						
-50 ubin						
-60 dBm						
-70 dBm						
		1001	te		Spar	1 5.0 MHz
Spectrum Ref Level 27.60 dBm Att 40 dB	Offset 7.60 dB	1001 p NVNT 1-DH: RBW 2 MHz VBW 2 MHz NHz	Rea	dv 🚺		
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A	dv 🚺		
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A	dv 🚺		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A Tode Auto Sweep	••• ••• \nt1		
Spectrum Ref Level 27.60 dBm	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A Tode Auto Sweep	dv ••••••••••••••••••••••••••••••••••••		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A Tode Auto Sweep	• • • • • • • • • • • • • • • • • • •		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm 0 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	dv ••••••••••••••••••••••••••••••••••••		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm 0 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	• • • • • • • • • • • • • • • • • • •		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm -10 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	Ant1		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	<pre>/* III /////////////////////////////////</pre>		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	Ant1		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	<pre>// III // I</pre>		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	Avnt1		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max 20 dBm 20 dBm 10 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	Ant1		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A Tode Auto Sweep	** • • • • • • • • • • • • • • • • • •		(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Offset 7.60 dB	NVNT 1-DH: • RBW 2 MHz • VBW 2 MHz N	5 2480MHz A	Ant1	2.479	(₩) 2.52 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 150/150 1Pk Max 20 dBm 10 dBm -0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 7.60 dB	NVNT 1-DH	5 2480MHz A	Image: state	2.479	2.52 dBm 30520 GHz





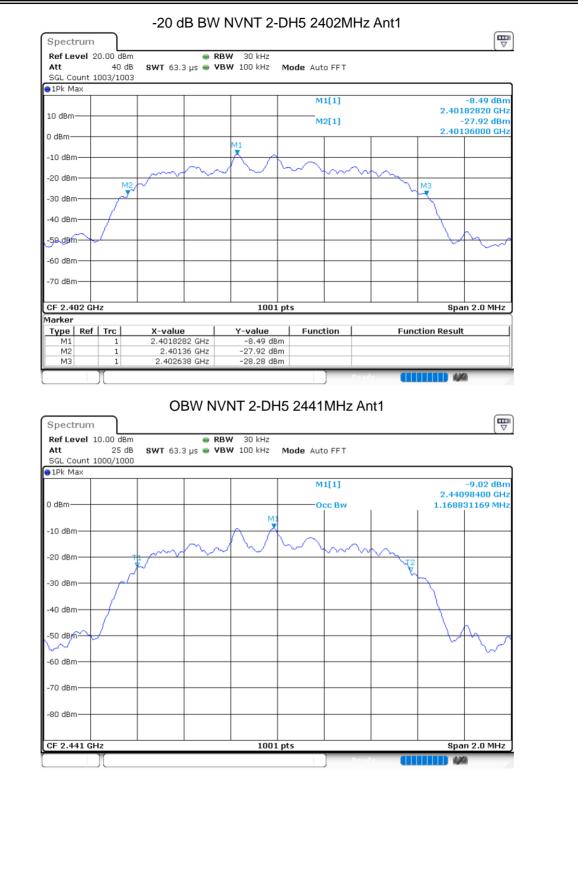
8.3 OCCUPIED CHANNEL BANDWIDTH

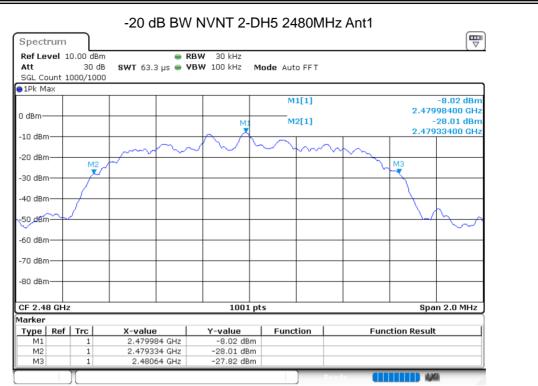
NTEK 北测[®]

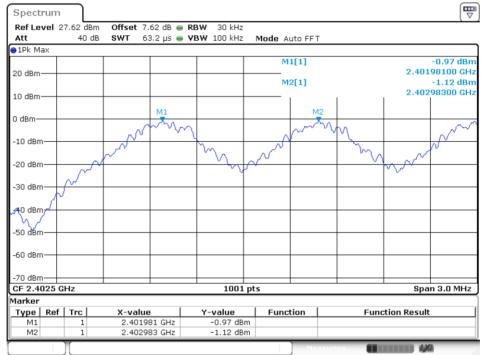

Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8611	0.946	Pass
NVNT	1-DH5	2441	Ant 1	0.8591	0.946	Pass
NVNT	1-DH5	2480	Ant 1	0.8511	0.946	Pass
NVNT	2-DH5	2402	Ant 1	1.1708	1.278	Pass
NVNT	2-DH5	2441	Ant 1	1.1688	1.28	Pass
NVNT	2-DH5	2480	Ant 1	1.1688	1.306	Pass

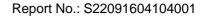
OBW NVNT 1-DH5 2402MHz Ant1





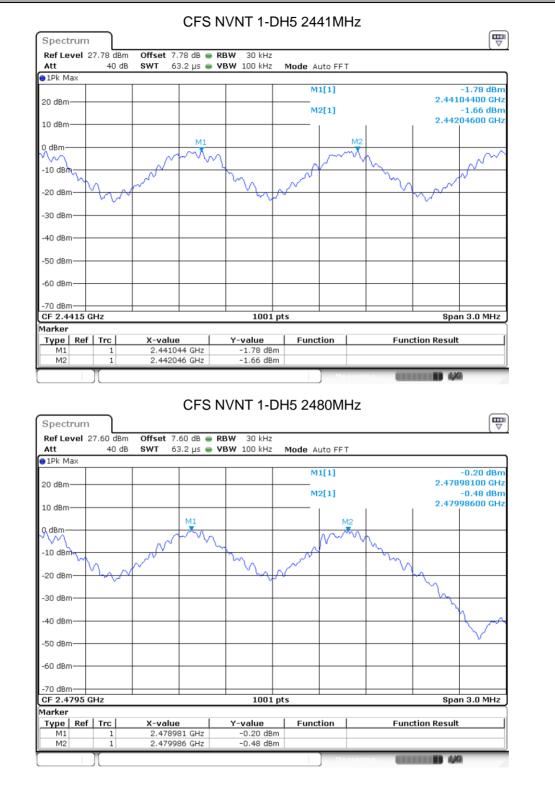


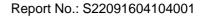


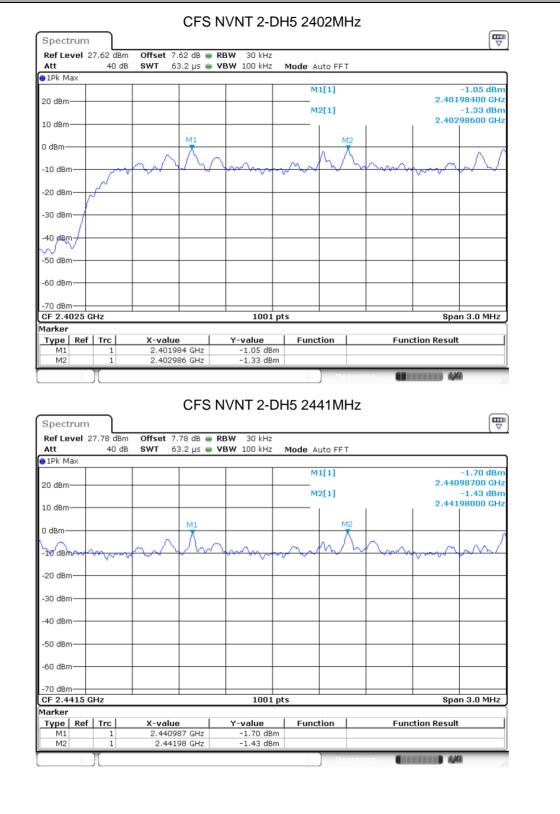


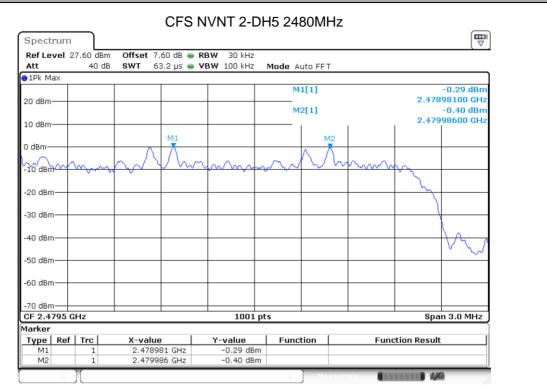
8.4 CARRIER FREQUENCIES SEPARATION

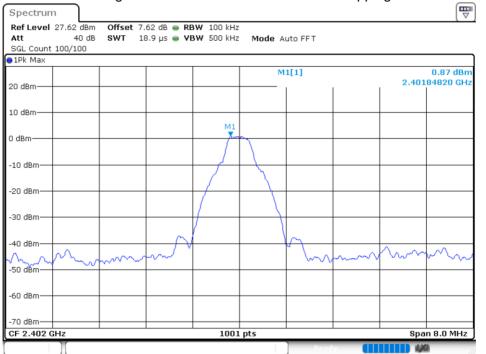
U.4 OANNE			N			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.981	2402.983	1.002	0.946	Pass
NVNT	1-DH5	2441.044	2442.046	1.002	0.946	Pass
NVNT	1-DH5	2478.981	2479.986	1.005	0.946	Pass
NVNT	2-DH5	2401.984	2402.986	1.002	0.852	Pass
NVNT	2-DH5	2440.987	2441.98	0.993	0.853	Pass
NVNT	2-DH5	2478.981	2479.986	1.005	0.871	Pass




CFS NVNT 1-DH5 2402MHz






5 NUMBER OF H						
ondition Mode	Hopping Nu		it Verdict	7		
NVNT 1-DH5	79	15		_		
I	<u> </u>			_		
		Hopping N	o. NVNT 1-	DH5 2402	2MHz	\frown
Spectr						
Att	40 db SW1	et 7.62 dB 👄 RB ' 1 ms 👄 VI		ode Auto Sweep	р	
SGL Col	unt 7000/7000					
20 dBm-				M1[1]	0.9 2.40183	94 dBm 70 GHz
10 dBm-				M2[1]		31 dBm
M1						_
O dBm/r	, ANA (AANA NA KUMIKA)	ADDIANABADAT	ANTA A A A A A A A A A A A A A A A A A A	MANDADA	AHAHAHAKKANYIANUANN	
-10 464	<u>+AAAAAAAAAAAAA</u>	<u> I I I I I I I I I I I I I I I I I I I</u>	<u> </u>	<u> 1840abaalaaa</u>	lhihhhhkkkhhhhkkkkki ni	ΨΨ.
-20 dBm						
-30 dBm						
-40 dBm						lur
-50 dBm						
-60 dBm						
-70 dBm						
Start 2.			1001 pts		Stop 2.483	85 GHz
		value	Y-value	Function	Function Result	
M1 M2		401837 GHz 799095 GHz	0.94 dBm 4.31 dBm			
				Re	ady (

8.6 BAND EDGE

U.U DANDL	DOL						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-41.85	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-42.21	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-45.13	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-43.95	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-42.52	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-41.53	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-42.76	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.55	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Ref

●1Pk Max							
20 dBm			M1[1]		2.40	0.89 dBm 0195000 GHz
10 dBm			M2[1]			-45.13 dBm
				1		2.4(0000000 GHz
0 dBm							
-10 dBm							
-20 dBm-D1 -19.12	26 dBm						
-30 dBm							+
-40 dBm	_	M4				, M3	men non ul
-40 dBm holywar milling of the stand of the	maggeterable	A frammington along	www.wyww.	monully	himanitution	monorio	anguran nu
-60 dBm							
-70 dBm							
Start 2.306 GHz		10	D1 pts			Stop	2.406 GHz
Marker Type Ref Trc	X-value	Y-value	Functio	n l	Fun	ction Resu	ult
M1 1	2.40195	5 GHz 0.89	dBm		T and		
M2 1 M3 1	2.39	4 GHz -45.13 9 GHz -45.87	dBm				
M2 1 M3 1 M4 1 Band Ed Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87	dBm dBm DH5 2402		nt1 Ho	pping F	xa Ref (₩
M2 1 M3 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHz -40.99 ing) NVNT 1-	dBm dBm DH5 2402 Hz Hz Mode Aut	D FF T	nt1 Ho	pping F	
M2 1 M3 1 M4 1 Band Ed Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHz -40.99 ing) NVNT 1-	dBm dBm DH5 2402	D FF T	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 1Pk Max 20 dBm 20 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHz -40.99 ing) NVNT 1-	dBm dBm DH5 2402 Hz Hz Mode Aut	D FF T	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 ●1Pk Max	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FF T	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 1Pk Max 20 dBm 20 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHz -40.99 ing) NVNT 1-	dBm dBm DH5 2402 Hz Hz Mode Aut	D FF T	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 10 SGL Count 8000/800 10 M8m 0 0 dBm 0	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 1Pk Max 20 dBm 10 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 Band Ec Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 10 SGL Count 8000/800 10 M8m 0 0 dBm 0	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Band Ed 0 Spectrum 40 d Ref Level 27.62 dBr 40 d SGL Count 8000/800 10 dBm 10 dBm 0 -10 dBm -20 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Band Ec Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Band Ed 0 Spectrum 40 d Ref Level 27.62 dBr 40 d SGL Count 8000/800 10 dBm 10 dBm 0 -10 dBm -20 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 PIPk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm -	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Band Ed 0 Spectrum Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 10 PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -30 dBm	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 PIPk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm -	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHZ -40.99 ing) NVNT 1- 12 dB • RBW 100 k 9 µs • VBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho		
M2 1 M3 1 M4 1 M4 1 Ref Level 27.62 dBr Att 40 d SGL Count 8000/800 PIPk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	2.39 2.3433 dge(Hoppi m Offset 7.6 B swr 18.	9 GHz -45.87 3 GHz -40.99 ing) NVNT 1- i2 dB • RBw 100 k 9 µs • YBW 300 k	dBm dBm DH5 2402 Hz Hz Mode Aut	D FFT	nt1 Ho	2.40	

20 dBm 2.40185000 10 dBm M2[1] 2.40000000 0 dBm -10 dBm -20 dBm D1 -18.589 dBm -30 dBm -30 dBm -60 dBm -70 dBm	-18.589 dBm	0 dBm 2.40185000 GHz 0 dBm M2[1] 0 dBm 2.40000000 GHz 0 dBm 0.40185000 GHz 0 dBm 0.40185000 GHz 0 dBm 0.1 -18.589 dBm	1Pk Max	700/700								
10 dBm M2[1] -44.44 10 dBm 2.40000000 0 0 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0	-18.589 dBm	D dBm M2[1] -44.44 dBm 2.40000000 GHz M1 dBm M1 dBm M1 0 dBm M4 0 dBm M4 0 dBm M4	20 dBm					м	1[1]		2 401	
0 dBm	-18.589 dBm	dBm M1 .0 dBm M2 .0 dBm M2						м	2[1]		-	44.44 dBm
-10 dBm - D1 -18.589 dB	-18.589 dBm	0 dBm 01 -18.589 dBm									2.400	
-20 dBm D1 -18.589 dBm Main	-18.589 dBm	00 dBm 01 -18.589 dBm 44 10 dBm 10 d	0 dBm									ŇM.
-30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	M4 M3 M0	10 dBm	-10 dBm—									1
-40 dBm		10 dBm M4 M3 M2 M3	-20 dBm	D1 -18.589	dBm=====							
-40 dBm		10 dBm	-30 dBm									
-50 dBm	and family and any second se	the denses of such and such and such and such and such as the such	-40 dBm		tu aka tarar		1. Malentaryda	Accession and a second	and a discussion	a atta da cada	43 Var. 11 1 1 1.	Ma
-70 dBm					or work of the control of the contro	and the second sec		ann ann an	and a construction of the second	ትርጉሙ እስት የትርጉሙ እስት ትርጉሙ እስት የትርጉሙ እስት ትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እስት የትርጉሙ እ ትርጉሙ እስት የትርጉሙ እስት የት	on have	andreas
		.0 dBm	-60 dBm									
			-70 dBm									
	iz 1001 pts Stop 2.406 GHz	0 dBm	Start 2.30	5 GHz			1001	pts			Stop :	2.406 GHz
Type Ref Trc X-value Y-value Function Function Result		tart 2.306 GHz 1001 pts Stop 2.406 GHz	Type Re						tion	Fund	tion Result	<u> </u>
		tart 2.306 GHz Stop 2.406 GHz arker Type Ref Trc X-value Y-value Function Function Result										
M3 1 2.387 GHz -44.53 dBm		Stop 2.406 GHz Stop 2.406 GHz arker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm										
Peady 🧰		Stop 2.406 GHz 1001 pts Stop 2.406 GHz arker							Read			0
Spectrum Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100	50 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT	tart 2.306 GHz Stop 2.406 GHz orker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm 6Hz 6Hz 6Hz M2 1 2.40185 GHz 0.70 dBm 6Hz 6Hz 6Hz M3 1 2.3437 GHz -44.44 dBm 6Hz 6Hz 6Hz M4 1 2.3432 GHz -40.80 dBm 6Hz 6Hz 6Hz M4 1 2.3432 GHz -40.80 dBm 6Hz 6Hz 6Hz Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref 6Hz 6Hz 6Hz 6Hz 6Hz Copectrum C C 6Hz 7.60 dB 6Hz 7.60 dB 6Hz 6Hz Std Level 27.60 dBm Offset 7.60 dB 9 BW 100 kHz Mode Auto FFT 6GL Count 100/100 6Hz	⊖1Pk Max					м	1[1]			2.10 dBm
Spectrum Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • <t< th=""><th>50 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT /100</th><th>tart 2.306 GHz Stop 2.406 GHz arker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.40185 GHz 0.70 dBm Function Function Result M3 1 2.3437 GHz -44.44 dBm Function Function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result For the function Result For the function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref For the function Result For the function FFT For the function FFT Set Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT For the function FFT </th></t<> <th>20 dBm</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> </th> <th></th> <th>2.479</th> <th>99200 GHz</th>	50 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT /100	tart 2.306 GHz Stop 2.406 GHz arker Ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.40185 GHz 0.70 dBm Function Function Result M3 1 2.3437 GHz -44.44 dBm Function Function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result For the function Result M4 1 2.3432 GHz -40.80 dBm For the function Result For the function Result For the function Result For the function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref For the function Result For the function FFT For the function FFT Set Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT For the function FFT	20 dBm								2.479	99200 GHz
Spectrum Ref Level 27.60 dBm Offset 7.60 dB ● RBW 100 kHz Att 40 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 ● 1Pk Max M1[1] 2.10	50 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT /100	tart 2.306 GHz Stop 2.406 GHz inter inter inter inter Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.4 GHz -44.44 dBm Intervention Function Result M3 1 2.387 GHz -44.53 dBm Intervention Function Result M4 1 2.3432 GHz -40.80 dBm For the state For the state Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref For the state For the state For the state Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT Ft SGL Count 100/100 It 40 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT M4 1 2.10 dBm M1[1] C.10 dBm Colstate	10 dBm									
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 •	60 dBm Offset 7.60 dB ● RBW 100 kHz 40 dB SWT 18.9 μs ● VBW 300 kHz Mode Auto FFT /100 M1[1] 2.10 dBm	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Result Function Result M2 1 2.4 GHz -44.44 dBm Function Result Function Result M3 1 2.387 GHz -44.53 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Function Result Function Result Function Result Function Result Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT Function Result Function Result GL Count 100/100 IRK Max Auto Result Auto Result Auto Result	10 0.011				м	1				
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • <	M1[1] 2.10 dBm 2.47999200 GHz	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.4 GHz -44.44 dBm Function Function Result M3 1 2.387 GHz -44.53 dBm Function Function Result M4 1 2.3432 GHz -40.80 dBm Function Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Function Result Function Result Function Result Function Result Stat 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT GGL Count 100/100 IPk Max 0 M1[1] 2.10 dBm 2.47999200 GHz 2.47999200 GHz Function Result Function	0 dBm				\vdash	γ				
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • VBW 300 kHz Mode Auto FFT 2.10 • 1Pk Max	M1[1] 2.10 dBm 2.47999200 GHz	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.4 GHz -44.44 dBm Function Function Result M3 1 2.387 GHz -44.53 dBm Function Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Function Result Function Result Function Result Feet Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Mtt 40 dB SWT 18.9 μs • VBW 300 kHz Mode Auto FFT GL Count 100/100 IPk Max 2.10 dBm 2.47999200 GHz 0 dBm M1[1] 2.47999200 GHz 2.47999200 GHz	-10 dBm									
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • 1Pk Max	M1[1] 2.10 dBm 2.47999200 GHz	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result M1 1 2.40185 GHz 0.70 dBm Function Function Result M2 1 2.4 GHz -44.44 dBm Function Result Function Result M3 1 2.387 GHz -44.53 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result M4 1 2.3432 GHz -40.80 dBm Function Result Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Function Result Function Result Function Result Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Mtt 40 dB SWT SWT 18.9 μs • VBW 300 kHz Mode Auto FFT GL Count 100/100 Max M1[1] 2.10 dBm 2.47999200 GHz 0 dBm M1 M1 M1 Function Result Function Result						1				
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 •1Pk Max	M1[1] 2.10 dBm 2.47999200 GHz	Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Image: Start and S	-20 dBm				1					
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 • 1Pk Max	M1[1] 2.10 dBm 2.47999200 GHz	Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Image: Start and S	-30 dBm				/	\vdash				
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Second Secon	M1[1] 2.10 dBm 2.47999200 GHz	Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Tree Stop 2.406 GHz M1 1 2.4 GHz -44.44 dBm M3 1 2.387 GHz -44.53 dBm M4 1 2.387 GHz -40.80 dBm M4 1 2.387 GHz -40.80 dBm M4 1 2.3432 GHz -40.80 dBm M1 2.47999200 GHz M1 M2 M1 2.10 dBm M3 M1 M1 2.47999200 GHz M4 M1 M1 2.47999200 GHz M3 M1 M1 M1 2.47999200 GHz M1 M1 M1 M1 M1	-40 dBm-			~		<u> </u>	\wedge			
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Superstand Supersta	M1[1] 2.10 dBm 2.47999200 GHz	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker		m	hman	n				Land	mm	m
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Count 100/100 M1[1] 2.10 Image: Count 100/100 M1[1] 0.10 Image: Count 100/100	M1 2.10 dBm M1 M1	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker	-50 dBm		W - 46				~ ~			
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Superstand state s	M1 2.10 dBm M1 M1	tart 2.306 GHz Stop 2.406 GHz srker Function Function Result M1 1 2.40185 GHz 0.70 dBm M2 1 2.40185 GHz 0.70 dBm M3 1 2.987 GHz -44.44 dBm M4 1 2.332 GHz -44.44 dBm M4 1 2.332 GHz -40.80 dBm M4 1 2.3432 GHz -40.80 dBm M4 1 2.3432 GHz -40.80 dBm Perf Ifficial and	-60 dBm									
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Superstand state s	M1 2.10 dBm M1 M1	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result Main M1 1 2.4 GHz -44.44 dBm Stop 2.406 GHz Main Stop 2.406 GHz M2 1 2.4 GHz -44.44 dBm Stop 2.406 GHz Main Stop 2.406 GHz M3 1 2.347 GHz -44.53 dBm Stop 2.406 GHz Main M4 1 2.3432 GHz -40.80 dBm Stop 2.406 GHz Main M4 1 2.3432 GHz -40.80 dBm Stop 2.406 GHz Main Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Stop 2.406 GHz Stop 2.407										
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Second secon	M1 2.10 dBm M1 M1	tart 2.306 GHz 1001 pts Stop 2.406 GHz arker ype Ref Trc X-value Y-value Function Function Result Main M1 1 2.4 GHz -44.44 dBm Stop 2.406 GHz Main Stop 2.406 GHz M2 1 2.4 GHz -44.44 dBm Stop 2.406 GHz Main Stop 2.406 GHz M3 1 2.347 GHz -44.53 dBm Stop 2.406 GHz Main M4 1 2.3432 GHz -40.80 dBm Stop 2.406 GHz Main M4 1 2.3432 GHz -40.80 dBm Stop 2.406 GHz Main Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Stop 2.406 GHz Stop 2.407	-70 dBm-				1001	ntc				5 0 0 MU2
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Subscript of the s	Stol dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT /100 M1[1] 2.10 dBm 2.47999200 GHz M1 1 M1 M1 1 M1 M1 1	Eart 2.306 GHz 1001 pts Stop 2.406 GHz arker 0.70 dBm Function Function Result M1 1 2.40185 GHz 0.70 dBm M2 1 2.44145 GHz -44.43 dBm M3 1 2.387 GHz -44.44 dBm M4 1 2.387 GHz -44.44 dBm M4 1 2.3432 GHz -40.80 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Image: Stap 2.406 GHz Image: Stap 2.406 GHz ipectrum Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Image: Stap 2.400 dBm Image: Stap 2.400 dBm Image: Stap 2.400 dBm igl_Count 100/100 Im		12			1001	pts	Pead		spa	IN 8.0 MHZ
Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 Image: Second Secon	50 dBm Offset 7.60 dB • RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT /100 M1[1] 2.10 dBm 0 M1[1] 2.47999200 GHz 0 M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Eart 2:306 GHz 1001 pts Stop 2:406 GHz arker Ype Ref Trc X-value Y-value Function Function Result M1 1 2:40185 GHz 0.70 dBm Function Function Result M2 1 2:40185 GHz 0.70 dBm Function Function Result M3 1 2:387 GHz -44.43 dBm Image: Stop 2:406 GHz Function Result Image: Stop 2:406 GHz M4 1 2:387 GHz -44.53 dBm Image: Stop 2:406 GHz Function Result Image: Stop 2:406 GHz M4 1 2:387 GHz -40.80 dBm Image: Stop 2:406 GHz	CF 2.48 G	11								1
-70 dBm			-50 dBm-	· ·				ř				
-60 dBm			-40 dBm— ഹംഗ്രംപംഗംഗം	www.	www.www.chalana		ampadewandy	mumunula	montallanthe	Jurillimana	13 Way Markolub	Ma
-40 dBm		10 dBm	-30 dBm			M4						
-40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm		10 dBm M4 M3 M2 M3	-20 dBm	D1 -18.589	dBm 							
-30 dBm	M4 M3 M0	10 dBm										1/1/1
-20 dBm D1 -18.589 dBm Main	-18.589 dBm	00 dBm 01 -18.589 dBm 44 10 dBm 10 d	0 dBm									ŬM.
-10 dBm	-18.589 dBm	0 dBm 01 -18.589 dBm	10 dBm								2.400	
0 dBm	-18.589 dBm	dBm M1 .0 dBm M2 .0 dBm M2 .0 dBm M2						м	2[1]		-	44.44 dBm
10 dBm M2[1] -44.44 10 dBm 2.40000000 0 0 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -20 dBm 0 0 -30 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0	-18.589 dBm	D dBm M2[1] -44.44 dBm 2.40000000 GHz M1 dBm M1 dBm M1 0 dBm M4 0 dBm M4 0 dBm M4	20 dBm					M	1[1]		2.401	
20 dBm 2.40185000 10 dBm M2[1] -44,44 2.40000000 0 dBm -10 dBm -20 dBm 01 -18.589 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-18.589 dBm	0 dBm 2.40185000 GHz 0 dBm M2[1] 0 dBm 2.40000000 GHz 0 dBm 0.40185000 GHz 0 dBm 0.40185000 GHz 0 dBm 0.1 -18.589 dBm		700/700								

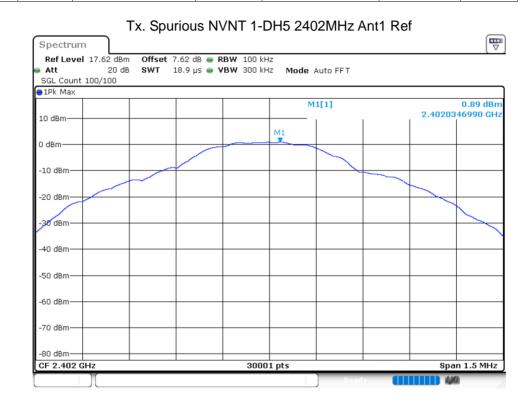
●1Pk Max								
20 dBm				M1[1]		2.479	1.99 dBm 95000 GHz
				M2[1]		-	-43.31 dBm
10 dBm M1 0 dBm							2.400	50000 GH2
-10 dBm	17.905_dBm-							
-201000111	17.505 ubiii <u>-</u>							
-30 dBm								
-40 dBm - 40 dBm	M. pala - have a string	and provides	A Jup war	mound	mathelic	www.	and wanter	tole method was
-50 dBm								
-60 dBm								
-70 dBm Start 2.476 GH			1001	pts			Ston	2.576 GHz
Marker			-					
Type Ref Tr M1	1	- value 2.47995 GHz	Y-value 1.99 dBr		on	Fund	tion Result	<u> </u>
M2 M3	1	2.4835 GHz 2.5 GHz	-43.31 dBr -46.01 dBr					
	1							
M4	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr NVNT 1-D RBW 100 kHz VBW 300 kHz	H5 2480		Int1 Ho	oping R	ef
M4 Banc Spectrum Ref Level 27.6 Att	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	Int1 Ho	oping R	
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	.nt1 Hoj		
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 • 1Pk Max 20 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	.nt1 Hoj		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	.nt1 Hoj		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 • 1Pk Max 20 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	.nt1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8009 • 1Pk Max 20 dBm 10 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	.nt1 Hoj		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 IPR Max 20 dBm 10 dBm 0 dBm -10 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	.nt1 Hoj		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8009 SGL Count 8009 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480 Mode Aut	o FFT	Int1 Ho		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 IPR Max 20 dBm 10 dBm 0 dBm -10 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	Int1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8009 SGL Count 8009 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	.nt1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 GIPK Max 20 dBm 10 dBm -10 dBm -10 dBm -30 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	ant1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	.nt1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 SGL Count 8005 SGL Count 8005 SGL Count 8005 O dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	H5 2480	o FFT	ant1 Hop		2.06 dBm
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	1 Edge(I	2.488 GHz Hopping)	-43.03 dBr	Mode Aut	o FFT	Int1 Hop	2.476	2.06 dBm 114590 GHz
M4 Banc Spectrum Ref Level 27.6 Att SGL Count 8005 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 Edge(I	2.488 GHz Hopping) 5set 7.60 dB • /T 18.9 μs •	-43.03 dBr	Mode Aut	o FFT	.nt1 Hop	2.476	2.06 dBm 114590 GHz

Att SGL Count 70 1Pk Max	40 dB 0/700	SWT 23							
					М	1[1]			1.42 dBm
20 dBm					м	2[1]			995000 GHz -44.99 dBm
10 dBm M1 D/dBm								2.48	350000 GHz
11/11/1									
-20 dBm-D1	-17.938	dBm							
-30 gBm									
-40 dβm	M4	<u>M3</u>							
-50 dBm	monorthe	montenethere	abour rest was	way and when any	philosophytholyad	her have all	eaulister and a straight	onthis marker and	monum
-60 dBm									
-70 dBm									
Start 2.476 G Marker	Hz			1001	pts			Stop	2.576 GHz
Type Ref	Trc 1	X-value	95 GHz	Y-value 1.42 dBr	Func	tion	Fund	tion Resu	lt
M2 M3	1 1	2.48	35 GHz 2.5 GHz	-44.99 dBi -43.95 dBi	m				
				-41.89 dBr					
Spectrum Ref Level 27 Att SGL Count 10	.62 dBm 40 dB	Edge N	.62 dB 😑 RI	DH5 240 BW 100 kHz BW 300 kHz)2MHz /		-Hoppir	ng Ref	
Spectrum Ref Level 27 Att	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A		-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	D-Hoppir		
Spectrum Ref Level 27 Att SGL Count 10 ● 1Pk Max	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	D-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 @ 1Pk Max 20 dBm 10 dBm 0 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm 0 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 @ 1Pk Max 20 dBm 10 dBm -10 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band E	Edge N	VNT 2-1	DH5 240)2MHz / Mode A	uto FFT	p-Hoppir		1.34 dBm
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	62 dBm 40 dB 0/100	Edge N	VNT 2-1	DH5 240	D2MHz A	uto FFT	p-Hoppir	2.40	1.34 dBm 198400 GHz
Spectrum Ref Level 27 Att SGL Count 10 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	62 dBm 40 dB 0/100	Edge N	VNT 2-1	DH5 240	D2MHz A	uto FFT	p-Hoppir	2.40	1.34 dBm 198400 GHz
Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	62 dBm 40 dB 0/100	Edge N	VNT 2-1	DH5 240	D2MHz A	uto FFT		2.40	1.34 dBm 198400 GHz

SGL Count 1 1Pk Max	00/100			VBW 300 kH					
					м	1[1]			0.62 dBm
20 dBm					M	2[1]			195000 GHz -46.60 dBm
10 dBm						1	1	2.40	000000 GHz M1
0 dBm									Ι Å
-10 dBm									
-20 dBmD	1 -18.662	dBm 							
-30 dBm									
-40 dBm			M4					M3	M2 .
վահո^{յա}ւկ_{ան}։ -50 dBm	blocknickerry	Allandar	400mbran Bar	analyringhtumber	Mulphampa	water between the first	Juthneputal	n Anthe Kinhan Hape	your with with
-60 dBm									
-70 dBm									
Start 2.306	GHz			1001	l pts			Stop	2.406 GHz
Marker Type Ref	Trc	X-valu		Y-value	Func	tion	Fun	ction Resul	t]
M1 M2	1		.95 GHz 2.4 GHz	0.62 dB -46.60 dB					
				-45.56 dB	Im				
M3 M4	1		.39 GHz Ю7 GHz	-41.19 dB					
M3 M4 Ba Spectrum Ref Level 2 Att	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F		0H5 240		Ant1 Ho	pping R	a ef ♥
M3 M4 Ba Spectrum Ref Level 2	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz	0H5 240 Mode A	uto FFT	Ant1 Ho	pping R	
Bal Spectrum Ref Level 2 Att SGL Count 8	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz	0H5 240 Mode A		Ant1 Ho		
Bai M4 Spectrum Ref Level 2 Att SGL Count 8 P1Pk Max 20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bal Spectrum Ref Level 2 Att SGL Count 8 P1Pk Max	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz /BW 300 kHz	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bai M4 Spectrum Ref Level 2 Att SGL Count 8 P1Pk Max 20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bai Spectrum Ref Level 2 Att SGL Count 8 91Pk Max 20 dBm 10 dBm 0 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bai Spectrum Ref Level 2 Att SGL Count B 91Pk Max 20 dBm 10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bai Spectrum Ref Level 2 Att SGL Count 8 91Pk Max 20 dBm 10 dBm 0 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
Bai M4 Spectrum Ref Level 2 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT	Ant1 Ho		
M3 M4 Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 nd Edg 7.62 dBm 40 dB	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	0H5 240 Mode A	uto FFT			
M3 M4 Spectrum Ref Level 2 Att SGL Count 80 SGL Count 80 10 10 dBm 10 -10 dBm -10 -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	1 1 7.62 dBm 40 dB 500/8000	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB	DH5 240	uto FFT		2.40.	1.47 dBm 183220 GHz
M3 M4 Spectrum Ref Level 2 Att SGL Count 8i ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 1 7.62 dBm 40 dB 500/8000	2.34 je(Hop offset 7	ю7 GHz ping) N .62 dв 🕳 F	-41.19 dB VNT 2-D RBW 100 kHz 7BW 300 kHz M1	DH5 240	uto FFT	Ant1 Ho	2.40.	1.47 dBm 183220 GHz

20 dsm	😑 1Pk Max	: 1000/1000]
10 dBm 4-3.80 dBm 10 dBm	20 dBm					M	1[1]		2.401	
0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 d						M	2[1]		-	44.38 dBm
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -10							I		2.400	00000 GHz
10 dBm 20 dBm 1 18 529 dBm 1 18 529 dBm 30 dBm 10 16 dBm 10 10 10 10 30 dBm 10 1001 pts Stop 2.406 GHz 1001 pts Stop 2.406 GHz 70 dBm 1 2.4 GHz 1.11 dBm Function Result 10 10 M1 E 1 2.4 GHz 1.11 dBm 1000 dBm	0 dBm									Mide
30 dBm M ⁴ M ⁴ M ⁴ 40 dBm M ⁴ M ⁴ M ⁴ 50 dBm M ⁴ M ⁴ M ⁴ 60 dBm M ⁴ M ⁴ M ⁴ 70 dBm M ⁴ M ⁴ M ⁴ 60 dBm M ⁴ M ⁴ M ⁴ 70 dBm M ⁴ M ⁴ M ⁴ 70 dBm M ⁴ M ⁴ M ⁴ Marker 1 2.4 GHz 1.11 dBm M ¹ 1 2.4 GHz 4.4.38 dBm M ³ 1 2.39 GHz -45.05 dBm M ³ 1 2.3496 GHz -40.06 dBm M ³ 1.3.9 µs VBW 300 Hz Mode Auto FFT SQL Court 100/100 SWT 18.9 µs VBW 300 Hz M ⁴ M ⁴ M ⁴ M ⁴ M ⁴ 10 dBm M ⁴ M ⁴ M ⁴ M ⁴ -0 dBm M ⁴ M ⁴ M ⁴ M ⁴ -0 dBm M ⁴ M ⁴ M ⁴ M ⁴ -0 dBm M ⁴ M ⁴	-10 dBm—									
-40 dBm -44 <	-20 dBm	D1 -18.529	dBm							
-40 dBm	-30 dBm—									
-50 dBm -60 dBm -70 dBm		h and the b		muchae					MB	M2
.70 dBm Stop 2.406 GHz Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Function Function Result Mil 1 2.40195 GHz 1.11 dBm Function Result Mil 1 2.40195 GHz -401.05 dBm Function Result M3 1 2.4012 GHz -401.05 dBm Function Result M4 1 2.399 GHz -400.06 dBm Function Result Function Result M4 1 2.399 GHz -40.06 dBm Function Result Function Result M3 1 2.399 GHz -40.06 dBm Function Result Function Result Ref Level 27.60 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 PIR Max 1.13 dBm 2.47996600 GHz M1[1] 1.36 dBm 20 dBm 0 dBm M1[1] 1.36 dBm -10 dBm M1 M1 M1 M1 -20 dBm M1 M1 M1 M1 M1 -30		ana na	a were any any and	N	0	anastanter and the	lay when a contain	we way to a fear for a	Called Berry Anna	a hanse
Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40195 GHz 1.11 dem Function Function Result M2 1 2.44 Land Hall and the end of	-60 dBm									
Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40195 GHz 1.11 dem Function Function Result M2 1 2.44 Land Hall and the end of										
Type Ref Trc X-value Y-value Function Function Result M1 1 2.4095 GHz 1.11 dBm	Start 2.30	6 GHz			1001	pts			Stop :	2.406 GHz
M1 1 2.40195 GHz 1.11 dBm M2 1 2.4012 -44.30 dBm M3 1 2.39 GHz -45.05 dBm -44.00 dBm M4 1 2.399 GHz -46.05 dBm -44.00 dBm M4 1 2.399 GHz -46.05 dBm -46.05 dBm M4 1 2.399 GHz -46.05 dBm -46.05 dBm M4 1 2.399 GHz -46.06 dBm -46.05 dBm Spectrum WT 18.9 µ5 YBW 300 kHz Mode Auto FFT SGL Court 100/100 SWT 18.9 µ5 YBW 300 kHz Mode Auto FFT 91Pk Max		ef Trc	X-value	1	Y-value	Func	tion	Fund	tion Result	: 1
M3 1 2.39 GHz -45.05 dBm M4 1 2.3496 GHz -40.06 dBm Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Constraint of the second	M1	1	2.40195 (GHz	1.11 dBm	1				
Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"			2.39 (-45.05 dBm	1				
Spectrum The sector of the secto		1	2 2406 (CH2						
20 dbm M M M M 0 dbm M M M M M 0 dbm M M M M M M -10 dbm M	M4 Spectrur Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz	0MHz /		-Hoppir	ng Ref	
0 dBm M Image: Constraint of the second sec	Spectrur Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz	OMHZ / Mode A	uto FFT	-Hoppir	ng Ref	
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70 dBm -60 dBm -70 d	M4 Spectrur Ref Level Att SGL Count 9 IPk Max	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz	OMHZ / Mode A	uto FFT	-Hoppir		1.36 dBm
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -0 -0 -0 -0 -10 -10 -20 dBm -10 -20 dBm -10 -20 dBm -10 -20 dBm -10 -20 dBm -10 -20 dBm -10 -20 dBm -20 dBm -	M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz	OMHZ / Mode A	uto FFT	-Hoppir		1.36 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count PIPk Max 20 dBm- 10 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	-Hoppir		1.36 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count PIPk Max 20 dBm- 10 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	P-Hoppir		1.36 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
-40 dBm -50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
-50 dBm	M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
-50 dBm	M4 Spectrur Ref Level Att SGL Count ISGL Count ID dBm 10 dBm -10 dBm -10 dBm -20 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	P-Hoppir		1.36 dBm
-60 dBm	M4 Spectrur Ref Level Att SGL Count I SGL Count I D dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
-70 dBm 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count I SGL Count I D dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
CF 2.48 GHz 1001 pts Span 8.0 MHz	M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
	M4 Spectrur Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band 27.60 dBm 40 dB	Edge NVN Offset 7.60	NT 2-D	0H5 248 w 100 kHz w 300 kHz	OMHZ / Mode A	uto FFT	p-Hoppir		1.36 dBm
	M4 Spectrur Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band n 27.60 dBm 40 dB 100/100	Edge NVN Offset 7.60	NT 2-D	0H5 248	OMHz /	uto FFT	p-Hoppir	2.479	1.36 dBm 196800 GHz
	M4 Spectrur Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band n 27.60 dBm 40 dB 100/100	Edge NVN Offset 7.60	NT 2-D	0H5 248	OMHz /	uto FFT	p-Hoppir	2.479	1.36 dBm 196800 GHz

				1	м	1[1]			1.34 dBm
20 dBm									995000 GHz
10 dBm					M	2[1]			-44.78 dBm 350000 GHz
0 dem									
-10 cBm									
-20 dBm	D1 -18.642	dBm=====							
-30 dBm—									
-40 dBrivi 2 -	M4	МЗ	10 mm - 1	4		1		a successful d	
/₩ ₩ ₹ ₩ -50 dBm	hundre	White a secret of	www.	Www.	nvilio/NAparthylo	And Maria	sunner	Andrawing	dely toolmentally
-60 dBm									
-70 dBm									
Start 2.47 Marker	6 GHz			1001	pts			Stop	2.576 GHz
Type Re M1	f Trc	X-value	95 GHz	Y-value 1.34 dBr	Func	tion	Fun	ction Resul	t
M2	1	2.48	35 GHz 35 GHz	-44.78 dBr -46.53 dBr	n				
				-40.53 UBI	n				
Spectrun Ref Level Att		2.49 ge(Hopp offset 7.	12 GHz Ding) N ^v 60 dB e R	-41.40 dBi	H5 248		Ant1 Ho	pping R	ef
M4 Spectrun Ref Level Att	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) N ^v 60 dB e R	VNT 2-D	H5 248 Mode A	uto FFT	dv 🚺 Ant1 Ho	pping R	
M4 Spectrum Ref Level Att SGL Count	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) N ^v 60 dB e R	VNT 2-D	H5 248 Mode A		Ant1 Ho		
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) N ^v 60 dB e R	VNT 2-D	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) N ^v 60 dB e R	VNT 2-D	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) N ¹ 60 dB • R 8.9 µs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -10 dBm -20 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A	uto FFT	Ant1 Ho		(♥) 2.14 dBm
M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	and Edg n 27.60 dBm 8000/8000	2.49 ge(Hopp offset 7.	12 GHz Ding) Ν ¹ 60 dB • R 8.9 μs • V	VNT 2-D BW 100 kHz BW 300 kHz	H5 248	uto FFT	Ant1 Ho	2.47	(♥) 2.14 dBm


	um												
Ref Lev	el 27.6	dBm	Offset	7.60 dB (RBW 1	DO kHz							
Att		40 dB	SWT 2	27.5 µs (ө үвж з	DO kHz	Mode /	uto FF	Т				
SGL Co	unt 1000	/1000											
⊜1Pk Ma	x												
							M	1[1]					-1.76 dBm
20 dBm-													95000 GHz
							M:	2[1]					44.24 dBm
10 dBm-												2.483	50000 GHz
OdBm-													
1/1m													
-10 gBm											_		
	D1 .	17.04	dD-r										
-20 cBm	- 10	17.864	dBm-								-		
-30 dBm													
-40 dBm	2 M4		M3										
nu apini	Lagrand	mymil	monder where	walking was	went up and	magnes	provided the	bor-buch	your	anderson	hours	when	housered
-50 dBm	*				· ·	ľ_			·		_		
-60 dBm													
-70 dBm						1001						01	
Start 2.	470 GH	2				1001 pt	.5					stop .	2.576 GHz
Marker													
	Ref Tr		X-valu		Y-va		Funct	ion		Fu	nction	Result	
M1 M2		1		95 GHz		76 dBm 24 dBm							
M2 M3		1		35 GHz 2.5 GHz		24 aBm 58 dBm							
M4		1		98 GHz		42 dBm							

8.7 CONDUCTED RF SPURIOUS EMISSION

• • •	•••==•		••••			
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-41.78	-20	Pass
NVNT	1-DH5	2441	Ant 1	-43.25	-20	Pass
NVNT	1-DH5	2480	Ant 1	-45.42	-20	Pass
NVNT	2-DH5	2402	Ant 1	-45.39	-20	Pass
NVNT	2-DH5	2441	Ant 1	-42	-20	Pass
NVNT	2-DH5	2480	Ant 1	-46.54	-20	Pass

SGL Count 10/10					
			M1[1]		0.64 dBm
10 dBm M1			M2[1]		.401650 GHz -40.89 dBm
0 dBm			 	7	.199719 GHz
-10 dBm	dem				
20 00.0	dBm-				
-30 dBm	Mæ				
-40 dBm	3	M5			
-50 dBm		La contrata la contra	والركر وأعدائه والتركي وروري	المتعملة ورواده	م هد
-60 dBm				and the second	
-70 dBm					
-80 dBm Start 30.0 MHz		30001 pts		Sto	op 25.0 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Resu	ılt
M1 1 M2 1	2.40165 GHz 7.199719 GHz	0.64 dBm -40.89 dBm			
		-50.74 dBm			
M3 1 M4 1	4.803432 GHz				
M4 1 M5 1	7.199719 GHz 9.601833 GHz	-40.89 dBm -50.09 dBm	2441MHz A	Ant1 Ref	
M4 1 M5 1 Spectrum Ref Level 17.78 dBr	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5		Ant1 Ref	
M4 1 M5 1 Spectrum Ref Level 17.78 dBr Att 20 dl SGL Count 100/100	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm		Ant1 Ref	
M4 1 M5 1 Spectrum Ref Level 17.78 dBr Att 20 dl	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5	ode Auto FFT	Ant1 Ref	
M4 1 M5 1 Spectrum Ref Level 17.78 dBr Att 20 dl SGL Count 100/100	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5			₩ 1.08 dBm 1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 IPk Max 10 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 ●1Pk Max	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 IPk Max 10 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm 0 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 d SGL Count 100/100 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 10 dBm 0 -10 dBm -10 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 d SGL Count 100/100 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -40 dBm -	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 d SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -40 dBm -	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -50 dBm -	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 1Pk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT		1.08 dBm
M4 1 M5 1 Ref Level 17.78 dBr Att 20 dl SGL Count 100/100 1Pk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	7.199719 GHz 9.601833 GHz Tx. Spurious	-40.89 dBm -50.09 dBm NVNT 1-DH5 • RBW 100 kHz • VBW 300 kHz M	ode Auto FFT	2.4409	1.08 dBm

●1Pk Max	10/10						
10 dBm					M1[1]		0.63 d
0 dBm	1				M2[1]		2.440770 0 -42.17 d
						1 1	7.317078 0
-10 dBm	01 10.01	0 dBm					
-20 dBm	D1 -18.91	8 uBm					
-30 dBm—		Mæ					
-40 dBm—	N	13	M	15			
-50 dBm—					ار قد تغضاد		
-60 dBm-	The second		and a part of the second s	and the second state of th			
-70 dBm							
Start 30.0	MHz			30001 p	ts		Stop 25.0 GF
Marker			1			-	
Type Re M1	1	X-value 2.44073		Y-value 0.63 dBm	Function	Func	tion Result
M2	1	7.317078		-42.17 dBm -50.39 dBm			
M3							
M3 M4 M5	1	7.317078 9.75748		-42.17 dBm -47.21 dBm			
M4 M5 Spectrur Ref Leve Att	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	15 2480MH		
M4 M5 Spectrur Ref Leve	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FFT		(
M4 M5 Spectrur Ref Leve Att SGL Count	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm			
M4 M5 Spectrur Ref Leve Att SGL Count	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FFT M1[1]		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count IPk Max	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count IPk Max 10 dBm- 0 dBm-	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	n 1 1 1 1 1 17.60 dB 20 c	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d
M4 M5 Spectrur Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d 2.4800515980 C
M4 M5 Spectrur Ref Leve Att SGL Count • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.7574 Tx. Spuri m Offset 7.1	8 GHZ ious N 60 dB •	-47.21 dBm	Mode Auto FF1		1.69 d 2.4800515980 C

SGL Count 10/10	20 dB SWT		/ BW 300 kHz	Mode Auto S				
●1Pk Max				M1[1]				1.52 dBn
10 dBm								79890 GH
0 dBm				M2[1]				-43.74 dBn 33605 GH:
-10 dBm								
-20 dBm-D1 -18	3.315 dBm							
-30 dBm								
-40 dBm	N	18						
	мв		P					
-50 dBm								
r60,dBm			يالي أن والمرجع الماري والمرجع المرجع ال المرجع المرجع				المتحدية الأمريسية الريسية. المتحدية والمحدية ويحديه	an a
-70 dBm								
-80 dBm								
Start 30.0 MHz Marker			30001 pt	ts			Stop	25.0 GHz
Type Ref Trc			Y-value	Function	1	Functi	ion Result	:
M1 1		989 GHz	1.52 dBm -43.74 dBm					
M2 1	7.4336							
M2 1 M3 1	4.959	991 GHz	-51.31 dBm					
M3 1 M4 1 M5 1 Spectrum 1 Ref Level 17.62	4.955 7.4336 9.9135 Tx. Spu	17.62 dB • F	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz			Ref		
M3 1 M4 1 M5 1 Spectrum 1 Ref Level 17.62	4.955 7.4336 9.9135 Tx. Spu	17.62 dB • F	-43.74 dBm -46.04 dBm	5 2402M Mode Auto F		Ref		
M3 1 M4 1 M5 1 Spectrum Ref Level 17.62 Att SGL Count 100/10	4.955 7.4336 9.9135 Tx. Spu	17.62 dB • F	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz			Ref	2.40183	(▼ 1.24 dBn 125060 GH:
M3 1 M4 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1Pk Max	4.955 7.4336 9.9135 Tx. Spu	17.62 dB • F	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1Pk Max	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1Pk Max 10 dBm 0 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1Pk Max 10 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1Pk Max 10 dBm 0 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5GL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5GL Count 100/10 • IPk Max 10 dBm 10 dBm 0 dBm -10 dBm -28 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1 1Pk Max 10 dBm 0 dBm 0 dBm -10 dBm -28 dBm -30 dBm -30 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 5 SGL Count 100/10 1 10 dBm 0 -10 dBm - -20 dBm - -30 dBm -	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att 55 SGL Count 100/10 1 10 dBm 1 0 dBm 10 -10 dBm 1 -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH BW 100 kHz /BW 300 kHz	Mode Auto F		Ref	2.40183	1.24 dBn
M3 1 M4 1 M5 1 M5 1 Spectrum Ref Level 17.62 Att SGL Count 100/10 10 dBm 10 0 dBm 10 -10 dBm 10 -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm	4.955 7.4336 9.9135 Tx. Spu	1505 GHz 158 GHz 7.62 dB ● F 18.9 µs ● V	-43.74 dBm -46.04 dBm /NT 2-DH RBW 100 kHz /BW 300 kHz	Mode Auto F		Ref		1.24 dBn 225060 GH:

1Pk Max					
10 dBm			M1[1]		-1.92 dBm
0 dBm			M2[1]		402490 GHz. -44.16 dBm
-10 dBm					'.199719 GHz
-20 dBm-D1 -18.764.dl	3m				
-30 dBm					
-40 dBm	Ma				
-50 dBm	M	5			
-60 dBm	and a still.	and the second second second	ويعتم فلير أتلاف فلير أرادون م		and the state of the state of the
-70 dBm	And the second sec		A State of the Sta	and a set of some of a state of the set of a set of the	and the state of the
-80 dBm					
Start 30.0 MHz		30001 pts		St	op 25.0 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Res	ult
M1 1 M2 1	2.40249 GHz 7.199719 GHz	-1.92 dBm -44.16 dBm			
M3 1 M4 1	4.800935 GHz 7.199719 GHz	-52.53 dBm -44.16 dBm			
M5 1	9.601833 GHz	-50.37 dBm	Rea	dy (111111)	4/41
M5 1 Tz	x. Spurious N	-50.37 dBm	2441MHz	Ant1 Ref	
M5 1	x. Spurious N Offset 7.78 dB	-50.37 dBm		Ant1 Ref	
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100	x. Spurious N Offset 7.78 dB	-50.37 dBm			₩ 1.19 dBm 8306060 GH2
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 T: Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 T: Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum Transmission Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum T: Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -50 dBm 10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Spectrum T: Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT		1.19 dBm
M5 1 Ref Level 17.78 dBm Att 20 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	X. Spurious N Offset 7.78 dB swr 18.9 µs	-50.37 dBm	ode Auto FFT	2.440	1.19 dBm

								4.4.4.40
10 dBm					M1[1]			-4.14 dBm 441610 GHz
0 dBm 🕂	<u> </u>				M2[1]			-40.82 dBm 317078 GHz
-10 dBm—								
-20 dBm	D1 -18.812	dBm						
-30 dBm—								
-40 dBm—	M	M	MS	5				
-50 dBm—								
-60 dBm	a de la comptetación de la comp						and the strength of the strength os strength of the strength os st	
-70 dBm	a series of the second s							
Start 30.0	MHz			30001 p	ts		Sto	p 25.0 GHz
Marker								
Type Re M1	ef Trc 1	X-value 2.4416	51 GHz	Y-value -4.14 dBm	Function	F	unction Resu	lt
M2 M3	1	7.31707 4.87917		-40.82 dBm -50.09 dBm				
M4 M5	1	7.31707	78 GHz 48 GHz	-40.82 dBm -46.98 dBm				
Ĺ						ite day		
🖷 Att	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	VNT 2-DH			Ref	
Ref Leve	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz			Ref	Ţ
Ref Leve Att SGL Count 1Pk Max	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz				0.46 dBm 011500 GHz
Ref Leve Att SGL Count	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count P1Pk Max 10 dBm-	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -30 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count IDR Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count IDR Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	n 17.60 dBm 20 dB	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F			0.46 dBm
Ref Leve Att SGL Count ID dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	m 20 dBm	Offset 7	7.60 dB 👄 F	RBW 100 kHz /BW 300 kHz M1	Mode Auto F		2.4800	0.46 dBm 011500 GHz
Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	m 20 dBm	Offset 7	7.60 dB 👄 F	RBW 100 kHz YBW 300 kHz	Mode Auto F	-F T	2.4800	0.46 dBm 011500 GHz

Att	evel 1										
		17.60 dBi		_							
	ount 10	20 d	B SWT 250 r	ns 😑 🍾	/BW 300 kHz	Mode /	Auto Sw	reep			
1Pk M		5/10									
					Г Т	M	1[1]				2.15 dBm
10 dBm	MI										2.479890 GHz
	MIL.					M	2[1]				-46.08 dBm
0 dBm–											9.913958 GHz
-10 dBn											
10 000	·										
-20 dBn	n — D1	1 -19.54	4 dBm								
-30 dBn											
-40 dBn											
io abii	·		M	NI NI							
-50 dBn	n — —		48 1							-	
						م در ا	بالمراسط والأور	لالديم	Data Suman		ىرى بىر يىد يىلى بىلى بىلىد.
-60 dBn	n La sul dar	htergenterper	A DESCRIPTION OF THE OWNER OF THE	an an las			ر. راد روزار رادی	the state	Address from	de la la sector de la sector	and a free base deal of
-70 dBn	Colored Dates	and the first	a series a series of the serie			1. I.					
, o abii	.										
-80 dBn											
Start 3	0.0 M	Hz			30001	pts				5	top 25.0 GHz
Marker											
Туре	Ref		X-value		Y-value	Funct	tion		Fun	ction Re	sult
M1		1	2.47989 G		2.15 dBm						
M2		1	9.913958 G		-46.08 dBm						
M3		1	4.956581 G		-54.50 dBm						
M4 M5		1	7.433605 G		-47.16 dBm -46.08 dBm						

END OF REPORT