

Test Report No: 2420397R-RFUSV07S-A

TEST REPORT FCC Rules&Regulations

Product Name	12 Inch Rugged Tablet
Brand Name	Handheld Group
Model No.	ALGIZ 12XR
FCC ID	YY3-1102420
Applicant's Name / Address	Handheld Group AB Handheld Group AB, Strandgatan 40, SE-531 60 Lidköping, Sweden
Manufacturer's Name	Handheld Group AB
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.225 ANSI C63.10-2013
Verdict Summary	IN COMPLIANCE
Documented By April Chen	April Chen
Tested By Ivan Chuang	April Chen Ivan Chuang Sock HSU
Approved By Jack Hsu	Jack Hsu
Date of Receipt	2024/02/23
Date of Issue	2024/05/03
Report Version	V1.0

INDEX

		page
Compe	etences and Guarantees	4
Genera	al Conditions	4
Revisio	on History	5
Summa	ary of Test Result	6
1.	General Information	7
1.1.	EUT Description	7
1.2.	EUT Information	7
1.3.	Testing Location Information	8
1.4.	Measurement Uncertainty	8
1.5.	List of Test Equipment	9
2.	Test Configuration of EUT	10
2.1.	Test Condition	10
2.2.	Test Frequency Mode	10
2.3.	Measurement Configuration	10
2.4.	Tested System Details	11
2.5.	Configuration of tested System	11
2.6.	EUT Operating Procedures	11
3.	AC Power Line Conducted Emission	12
3.1.	Test Setup	12
3.2.	Test Limit	12
3.3.	Test Procedure	12
3.4.	Test Result of AC Power Line Conducted Emission	12
4.	Emission Bandwidth	13
4.1.	Test Setup	13
4.2.	Test Limit	13
4.3.	Test Procedures	13
4.4.	Test Result of Emission Bandwidth	13
5.	Frequency Stability	14
5.1.	Test Setup	14
5.2.	Test Limit	14
5.3.	Test Procedures	14
5.4.	Test Result of Frequency Stability	14
6.	Field Strength of Fundamental Emissions and Spectrum Mask	15
6.1.	Test Setup	15
6.2.	Test Limit	15
6.3.	Test Procedure	16

6.4.	Test Result of Field Strength of Fundamental Emissions and Spectrum Mask	16
7.	Radiated Emission	17
7.1.	Test Setup	17
7.2.	Test Limit	18
7.3.	Test Procedure	18
7.4.	Test Result of Radiated Emission	18
Append	lix A. Test Result of AC Power Line Conducted Emission	

Appendix B. Test Result of Emission Bandwidth

Appendix C. Test Result of Frequency Stability

Appendix D. Test Result of Field Strength of Fundamental Emissions and Spectrum Mask

Appendix E. Test Result of Radiated Emission

Appendix F. Test Setup Photograph

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- Measurement uncertainties evaluated for each testing system and associated connections are given here to
 provide the system information for reference. Compliance determinations do not take into account
 measurement uncertainties for each testing system, but are based on the results of the compliance
 measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	2024/05/03

Page: 5 of 18

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	AC Power Line Conducted Emission	PASS	-
4	Emission Bandwidth	PASS	-
6	Field Strength of Fundamental Emissions and Spectrum Mask	PASS	-
7	Radiated Emission	PASS	-
5	Frequency Stability	PASS	-

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Page: 6 of 18

1. General Information

1.1. EUT Description

Frequency Range	13.553 ~ 13.567 MHz
Operation Frequency	13.56 MHz
Channel Number	1 Channel
Type of Modulation	ASK

Acces	Accessories Information				
No.	Equipment Name	Brand	Model No.	Rating	Remark
1	Power Adapter	FSP TECHNOLOGY INC.	FSP065-RBBN3	INPUT: AC 100-240V~50-60Hz 1.5A OUTPUT: 19.0V==3.42A 65.0W	With cable out: Non-Shielded, 1.5m, with one ferrite core bonded.
2	Battery	ATEMITECH CORPORATION	ALG10XR-1004	3520mAh DC 11.55V	One 3 Cell Li-Ion Battery Pack
3	Li-ion Rechargeable Battery Pack	Ibase	Tab-InnerB01	7.4VDC: 400mAh 2.96Wh	
No.	Equipment Name	Description			
4	Power Cable	Non-Shielded, 1.8m			

Antenna	a Information		
Item.	Brand Name	Model No.	Туре
1	JW	CT-NFC-C325-01	Coil

1.2. EUT Information

EOT Power Type	EUT Power Type	From Adapter
----------------	----------------	--------------

1.3. Testing Location Information

USA	FCC Registration Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.	
	Linkou Laboratory	
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.	
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist.,Taoyuan City 333411, Taiwan, R.O.C.	
Phone Number	+886-3-275-7255	
Fax Number	+886-3-327-8031	

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual	Test Date
AC Power Line Conducted Emission	Temperature (°C)	10~40 °C	23.7 °C	2023/04/23
AC Fower Line Conducted Emission	Humidity (%RH)	10~90 %	60.8 %	2023/04/23
Dadiated Emission	Temperature (°C)	10~40 °C	22.2 °C	2023/04/10
Radiated Emission	Humidity (%RH)	10~90 %	60.1 %	2023/04/10
RF Conducted Emission	Temperature (°C)	10~40 °C	25.0 °C	2023/04/23
RF Conducted Emission	Humidity (%RH)	10~90 %	50.0 %	2023/04/23

1.4. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Test item	Uncertainty	
AC Power Line Conducted Emission	±3.50 dB	
Field Strength of Fundamental Emissions and Spectrum Mask	± 3.88 dB	
Radiated Emission	9 kHz~30 MHz: ±3.88 dB 30 MHz~1 GHz: ±4.42 dB 1 GHz~18 GHz: ±4.28 dB	
Frequency Stability	±1580.61 Hz	

Page: 8 of 18

1.5. List of Test Equipment

For Conduction Measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
٧	EMI Test Receiver	R&S	ESR7	101601	2023/06/20	2024/06/19
V	Two-Line V-Network	R&S	ENV216	101306	2024/04/01	2025/03/31
V	Two-Line V-Network	R&S	ENV216	101307	2023/08/17	2024/08/16
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2024/01/10	2025/01/09

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 230303 dekra V9.

For Conducted Measurements / HY-SR03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103466	2024/01/05	2025/01/04
V	Temperature Chamber	KSON	THS-D4T-100	A0606	2023/08/10	2024/08/09
V	AC Power Source	eec	6605	1570547	2024/01/30	2025/01/29
	Dual Output Autoranging DC	KEYSIGHT	E36234A	MY59001234	2023/11/09	2024/11/08
	Power Supply					

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.0.14.

For Radiated Measurements /HY-CB02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
V	Loop Antenna	AMETEK	HLA6121	56736	2023/05/23	2024/05/22
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08
	Horn Antenna	RF SPIN	DRH18-E	210503A18ES	2024/02/29	2025/02/28
	Horn Antenna	Com-Power	AH-840	101100	2023/10/02	2025/10/01
V	Pre-Amplifier	SGH	SGH0301-9	20211007-8	2024/01/10	2025/01/09
	Pre-Amplifier	SGH	SGH118-HS	20211102-2	2024/01/10	2025/01/09
	Pre-Amplifier	EMCI	EMC05820SE	980285	2024/01/10	2025/01/09
	Pre-Amplifier	EMCI	EMC184045SE	980369	2024/01/10	2025/01/09
	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2024/01/10	2025/01/09
	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242	2024/01/10	2025/01/09
	Filter	MICRO TRONICS	BRM50702	G249	2024/01/05	2025/01/04
	Filter	MICRO TRONICS	BRM50716	G067	2024/01/05	2025/01/04
V	EMI Test Receiver	R&S	ESR3	102793	2023/12/11	2024/12/10
V	Spectrum Analyzer	R&S	FSV3044	101113	2024/02/05	2025/02/04
V	Coaxial Cable	SGH	HA800	GD20110223-2	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-4	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	202108-5	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	202212-2	2023/11/27	2024/11/26

Note:

- 1. Bi-Log Antenna and Horn Antenna(AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- Test Software Version: e3 230303 dekra V9.

2. Test Configuration of EUT

2.1. Test Condition

EUT Operational Condition			
Testing Voltage	V _{nom} (AC 120V/60Hz)	V _{max} (AC 138V/60Hz)	V _{min} (AC 102V/60Hz)

2.2. Test Frequency Mode

Test Software Version CT_NFC_C3x5_Lib Demo Tool Version 1.0.1.1

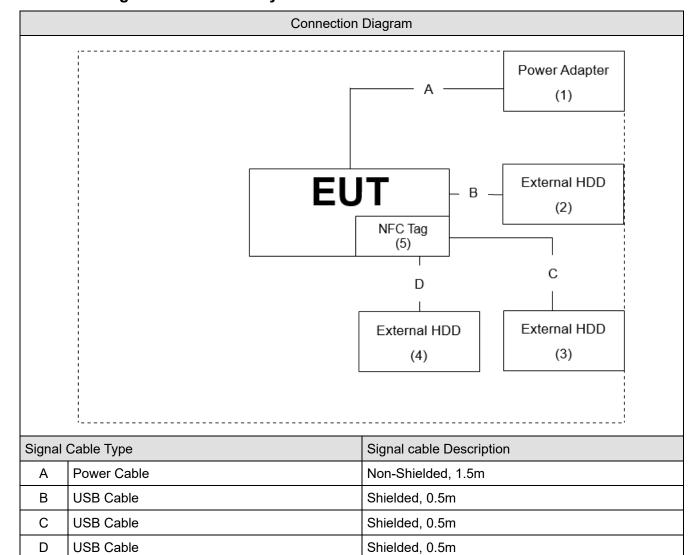
Modulation	Frequency (MHz)	Power Setting
NFC	13.56	N/A

2.3. Measurement Configuration

Test Mode

Note:

- 1. Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. The EUT was performed at X axis, Y axis and Z axis position for radiated emission and band edge tests. The worst case was found at X axis, so the measurement will follow this same test configuration.

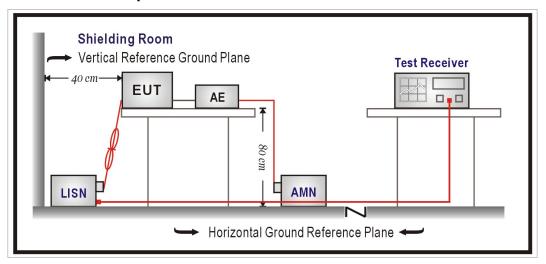

Page: 10 of 18

2.4. Tested System Details

No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	Power Adapter	FSP TECHNOLOGY INC.,	FSP065-RBBN3	N/A	N/A
2	External HDD	Transcend	TS1TSJ25MC	F30467-0003	N/A
3	External HDD	Transcend	TS1TSJ25MC	F30467-0011	N/A
4	External HDD	Transcend	TS1TSJ25H3P	G73393-3868	N/A
5	NFC Tag	ASUS	NFC Tag	N/A	N/A

2.5. Configuration of tested System

2.6. EUT Operating Procedures


1	Setup the EUT as shown in Section 2.5.
2	Execute software "CT_NFC_C3x5_Lib Demo Tool Version 1.0.1.1" on the EUT.
3	Configure the test mode.
4	Verify that the EUT works properly.

Page: 11 of 18

3. AC Power Line Conducted Emission

3.1. Test Setup

3.2. Test Limit

Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

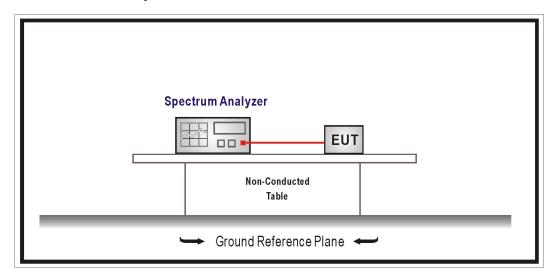
Remarks: In the above table, the tighter limit applies at the band edges.

3.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.


3.4. Test Result of AC Power Line Conducted Emission

Refer as Appendix A

4. Emission Bandwidth

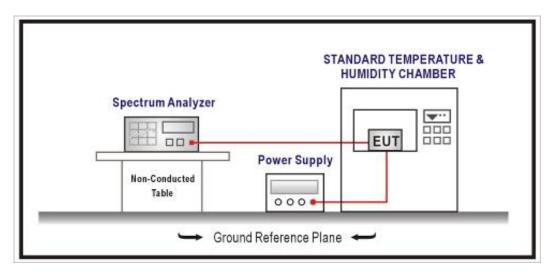
4.1. Test Setup

4.2. Test Limit

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band 13.553 ~ 13.567 MHz.

4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Because the measured signal is CW or CW-like adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.


4.4. Test Result of Emission Bandwidth

Refer as Appendix B

5. Frequency Stability

5.1. Test Setup

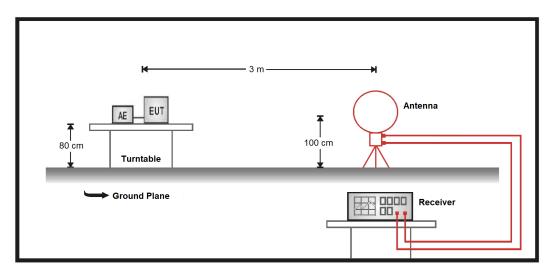
5.2. Test Limit

Carrier frequency stability shall be maintained to ±0.01% (±100 ppm).

5.3. Test Procedures

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.


5.4. Test Result of Frequency Stability

Refer as Appendix C

6. Field Strength of Fundamental Emissions and Spectrum Mask

6.1. Test Setup

6.2. Test Limit

Field Strength of Fundamental Emissions						
Frequencies (MHz)	Field Strength (microvolts/meter) at 30m	Field Strength (dBµV/m) at 10m	Field Strength (dBµV/m) at 3m			
13.553 – 13.567 MHz	15848	103.08 (QP)	124 (QP)			
Quasi peak measurement of the fundamental.						

Spectrum Mask							
Description	Compliance with the spectrum mask is tested using a spectrum analyzer with RBW set to a 9kHz for the band 13.553 – 13.567 MHz.						
	Freq. of Emission (MHz)	Field Strength					
Limit		(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m		
	1.705~13.110	30	29.5	48.6	69.5		
	13.110~13.410	106	40.5	59.6	80.5		
	13.410~13.553	334	50.5	69.6	90.5		
	13.553~13.567	15848	84.0	103.1	124.0		
	13.567~13.710	334	50.5	69.6	90.5		
	13.710~14.010	106	40.5	59.6	80.5		
	14.010~30.000	30	29.5	48.6	69.5		

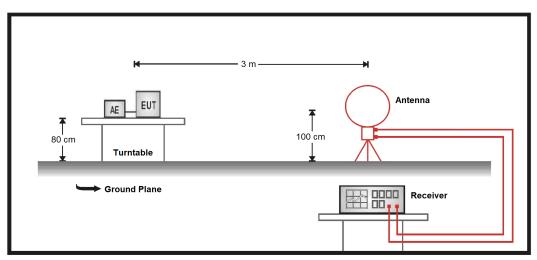
Page: 15 of 18

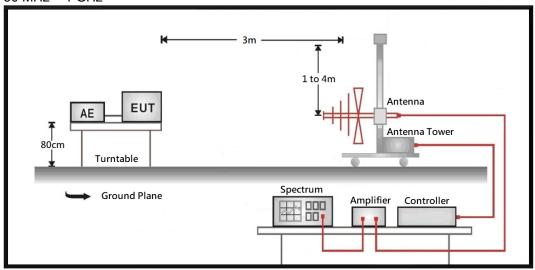
6.3. Test Procedure

- 1. Configure the EUT according to ANSI C63.10: 2013. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested using a spectrum analyzer with RBW set to a 9kHz for the band 13.553 13.567 MHz.

6.4. Test Result of Field Strength of Fundamental Emissions and Spectrum Mask

Refer as Appendix D


Page: 16 of 18


7. Radiated Emission

7.1. Test Setup

9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

7.2. Test Limit

The field strength of any emissions which appear outside of 13.553 ~ 13.567MHz band shall not exceed the general radiated emissions limits.

Frequency	Field strength	Field strength	Measurement distance
(MHz)	(uV/m)	(dBuV/m)	(m)
0.009 - 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 - 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

- 1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

7.3. Test Procedure

- 1. Configure the EUT according to ANSI C63.10: 2013. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

7.4. Test Result of Radiated Emission

Refer as Appendix E