

Engineering Test Report No. 2402725-01					
Report Date	January 7, 2025				
Manufacturer Name	Elkay Manufacturing Company				
Manufacturer Address	2222 Camden Ct Oak Brook, IL 60523				
Test Item Name Model No.	ezH20 Floor-Standing Bottle Filling Sta	tion – DSSBF8SP			
Date Received	December 18, 2024				
Test Dates	December 18, 2024 – December 26, 20	024			
Specifications	FCC "Code of Federal Regulations" Tit Innovation, Science, and Economic De Innovation, Science, and Economic De	•			
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515 FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107				
Signature	Nathanul Bouchie				
Tested by	Nathaniel Bouchie				
Signature	Raymond J Klouda,				
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894				
PO Number	1075956				

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 and RSS-Gen test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
2.1.	Scope of Tests	
2.2.	Purpose	
2.3.	Identification of the EUT	4
3.	Power Input	
4.	Grounding	
5.	Support Equipment	
6.	Interconnect Leads	
7.	Modifications Made to the EUT	
8.	Mode of Operation	
8.1.	Tx @ 13.56MHz	5
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	6
17.	Photographs of EUT	7
18.	Equipment List	9
19.	Block Diagram of Test Setup	10
20.	Powerline Conducted Emissions (AC Mains)	11
21.	Frequency Stability	18
22.	Occupied Bandwidth – 20dB	21
23.	Occupied Bandwidth – 99%	23
24.	Radiated Emissions	25
25.	Scope of Accreditation	30

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
– 10 JAN 2025 Ini		Initial Release of Engineering Test Report No. 2402725-01

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on the Elkay Manufacturing Company ezH20 Floor-Standing Bottle Filling Station (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by Elkay Manufacturing Company located in Oak Brook, IL.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Chapter I, Subchapter A, §15.225.

The test series was also performed to determine if the EUT meets the RF emission requirements of the Industry Canada Radio Standards Specification RSS-Gen and Industry Canada Radio Standards Specification RSS-210 for Transmitters.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification				
Product Description	ezH20 Floor-Standing Bottle Filling Station			
Model/Part No.	DSSBF8SP			
Serial No.	Sample 1			
Size of EUT	47.5 in x 21.5 in x 14.5 in			
Device Type	Digitally Modulated Transmission Device			
Band of Operation	13.553 – 13.567MHz			
Antenna Type	Trace			
20dB Bandwidth	5.59kHz			
Occupied Bandwidth (99% CBW)	27.26kHz			

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 115VAC 60Hz power via a 3 wire, unshielded power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Support Equipment

No support equipment was used during the tests.

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Mode of Operation

The EMC tests were performed with the EUT operating in the test mode described below.

8.1. Tx @ 13.56MHz

This mode was achieved by applying power to the device, with the NFC radioactive and transmitting at 13.56MHz.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C, Section 225 "Operation within the band 13.110-14.010 MHz"
- ANSI C63.4-2014 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
- ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Radio Standard Specification RSS-Gen Issue 5, February 2020, Amendment 2 "General Requirements for Compliance of Radio Apparatus"
- Radio Standard Specification RSS-210 Issue 10, April 2020, Amendment 2 "License-Exempt Radio Apparatus: Category I Equipment"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Elkay Manufacturing Company and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225, Innovation, Science, and Economic Development Canada, RSS-210, and ANSI C63.10-2013 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value		
Temperature	21.3°C		
Relative Humidity	33%		
Atmospheric Pressure	1023mb		

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Method	Results
Powerline Conducted Emissions (AC Mains)	FCC 15.207 RSS-GEN	ANSI C63.10:2013	Conforms
Frequency Stability	FCC 15.225(e) ISED RSS-210	ANSI C63.10:2013	Conforms
Occupied Bandwidth – 20dB	FCC 15.215(c)	ANSI C63.10:2013	Conforms
Occupied Bandwidth – 99%	ISED RSS-210	ANSI C63.10:2013	Conforms
Radiated Emissions	FCC 15.225(a)(d) ISED RSS-210	ANSI C63.10:2013	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$.

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS
$$(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$$

To convert the Field Strength $dB\mu V/m$ term to $\mu V/m$, the $dB\mu V/m$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu V/m$ terms.

Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

15. Statement of Conformity

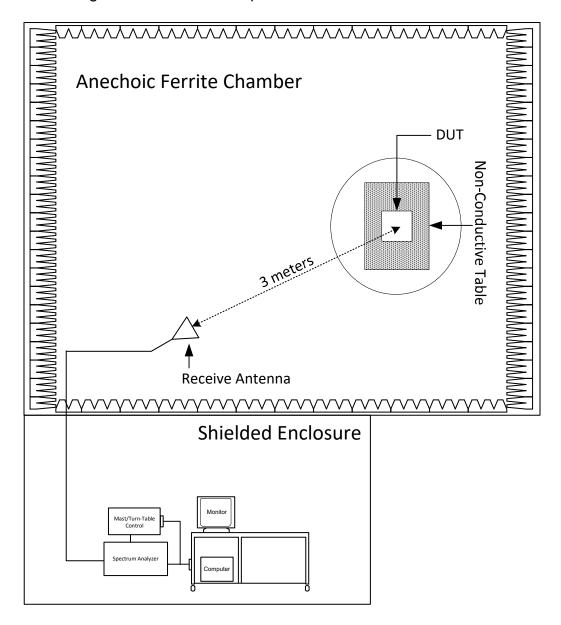
The Elkay Manufacturing Company ezH20 Floor-Standing Bottle Filling Station (Model No. DSSBF8SP, Serial No. Sample 1) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.225 and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List


Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW10	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0- 10-12-SFF	PL11685/1241	1GHZ-20GHZ	3/20/2024	3/20/2025
CDY0	WORKSTATION	ELITE	WORKSTATION		WINDOWS 7	N/A	
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
ENVE33	TEMPERATURE/ALTITUDE CHAMBER	THERMOTRON	FA-64-CHM-705- 705	16037	-73 TO 180 C/10K-79KFT	8/15/2024	8/15/2025
GRB0	1MHZ, LISN SIGNAL CHECKER	ELITE	LISNCHKR1M	1	1MHZ	10/2/2024	10/2/2026
NTA2	BILOG ANTENNA	TESEQ	6112D	28040	25-2000MHz	6/21/2024	6/21/2026
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	6/24/2024	6/24/2026
PLF2	CISPR16 50UH LISN	ELITE	CISPR16/70A	002	150kHz-30MHz	3/26/2024	3/26/2025
PLF4	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	150kHz-30MHz	3/26/2024	3/26/2025
R23P	ROOM 23			001		CNR	
R29F	3M ANECHOIC CHAMBER NSA	EMC TEST SYSTEMS	3M ANECHOIC		30MHZ-18GHZ	6/12/2023	6/12/2025
RBD0	EMI ANALYZER	ROHDE & SCHWARZ	ESU40	100010	20Hz-40GHz	8/1/2024	8/1/2025
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	6/16/2024	6/16/2025
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	3/16/2024	3/16/2025
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
SPR1	AC/DC PROGRAMMABLE POWER SUPPLY	PREEN	AFV-P-1250B	F121090013	0-310VAC/0- 420VDC	NOTE 1	
T1E12	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5691	DC-18GHZ	12/19/2023	12/19/2025
VBR8	COMMERCIAL CONDUCTED EMISSIONS.EXE	ELITE				N/A	
VBV2	COMMERCIAL RADIATED EMISSIONS.EXE	ELITE				N/A	
XLT18	5W, 50Ω TERMINATION	JFW INDUSTRIES	50T-199 N M		DC-18 GHZ	12/20/2023	12/20/2025

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Powerline Conducted Emissions (AC Mains)

Test Information				
Manufacturer	Elkay Manufacturing Company			
Product	Product ezH20 Floor-Standing Bottle Filling Station			
Model No. DSSBF8SP				
Serial No.	Sample 1			
Mode	Tx @ 13.56MHz			

Test Setup Details				
Setup Format	Floor Standing			
Type of Test Site	Type of Test Site Reverberation Chamber			
Test Site Used	R23P			
Notes	None			

Measurement Uncertainty			
Measurement Type Expanded Measurement Uncertainty			
Conducted disturbance (mains port) (150 kHz – 30 MHz)	2.7		

Requirement All radio frequency voltages on the power lines for any frequency or frequencies of an intentional radiator shall not exceed the limits in the following table.

Conducted Emissions Limits				
Frequency of Emission (MHz)	Conducted Limits (dBµV)			
(IVITZ)	Quasi-peak	Average		
0.15 – 0.5	66 to 56*	56-46*		
0.5 – 5	56	46		
5 – 30 60 50				
* The lower limit shall apply at the transition frequencies.				

Procedure

The interference on each power lead of the EUT was measured by connecting the measuring equipment to the appropriate meter terminal of the Line Impedance Stabilization Network (LISN). The meter terminal of the LISN not under test was terminated with 50Ω .

- 1) The EUT was operated in the Tx @ 13.56MHz mode.
- 2) Measurements were first made on the 120VAC high line.
- 3) The frequency range from 150kHz to 30MHz was broken up into smaller frequency sub-bands.
- 4) Conducted emissions measurements were taken on the first frequency sub-band using a peak detector.
- 5) The data thus obtained was then searched by the computer for the highest levels. Any emissions levels that were within 10dB of the average limit were then measured again using both a quasi-peak detector and an average detector. (If no peak readings were within 10dB of the average limit, quasi-peak and average readings were taken on the highest emissions levels measured during the peak detector scan.)
- 6) Steps (4) and (5) were repeated for the remainder of the frequency sub-bands until the entire frequency range from 150kHz to 30MHz was investigated. The peak trace was automatically plotted. The plot also shows quasi-peak and average readings that were taken on discrete frequencies. A table showing the quasi-peak and average readings was also generated. This tabular data compares the quasi-peak and average conducted emissions to the applicable conducted emissions limits. The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$

7) Steps (3) through (6) were repeated on the 120VAC return line.

Significant Emissions Data

VBR8 12/06/2024

Manufacturer : ELKAY Model : DSSBF8SP

DUT Revision : 1.0

Serial Number

DUT Mode : TX @ 13.56MHZ

Line Tested : 120VAC 60HZ HIGH LINE

Scan Step Time [ms] : 30 Meas. Threshold [dB] : -10

Notes

Test Engineer : T. Jozefczyk RBW : 9 kHz Limit : Class B

Test Date : Dec 18, 2024 11:14:12 AM

Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB

margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.236	19.5	62.3		13.6	52.3	
0.495	17.6	56.1		11.9	46.1	
0.559	17.6	56.0		11.9	46.0	
0.828	16.9	56.0		11.0	46.0	
1.327	15.1	56.0		9.3	46.0	
2.079	13.7	56.0		8.0	46.0	
4.952	12.3	56.0		6.6	46.0	
7.052	16.3	60.0		9.8	50.0	
13.775	34.4	60.0		12.7	50.0	
18.103	10.8	60.0		5.1	50.0	

Cumulative Data

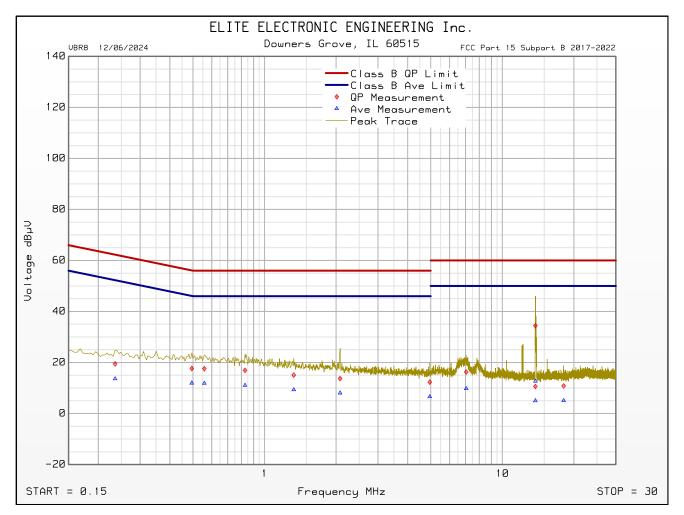
VBR8 12/06/2024

Manufacturer : ELKAY Model : DSSBF8SP

DUT Revision : 1.0

Serial Number

DUT Mode : TX @ 13.56MHZ


Line Tested : 120VAC 60HZ HIGH LINE

Scan Step Time [ms] : 30 Meas. Threshold [dB] : -10

Notes

Test Engineer : T. Jozefczyk RBW : 9 kHz Limit : Class B

Test Date : Dec 18, 2024 11:14:12 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

Significant Emissions Data

VBR8 12/06/2024

Manufacturer : ELKAY Model : DSSBF8SP

DUT Revision : 1.0

Serial Number

DUT Mode : TX @ 13.56MHZ

Line Tested : 120VAC 60HZ NEUTRAL LINE

Scan Step Time [ms] : 30 Meas. Threshold [dB] : -10

Notes

Test Engineer : T. Jozefczyk RBW : 9 kHz Limit : Class B

Test Date : Dec 18, 2024 11:08:21 AM

Data Filter : Up to 80 maximum levels detected with 6 dB level excursion threshold over 10 dB

margin below limit

Freq MHz	Quasi-peak Level dBµV	Quasi-peak Limit dBµV	Excessive Quasi-peak Emissions	Average Level dBµV	Average Limit dBµV	Excessive Average Emissions
0.272	19.4	61.1		13.5	51.1	
0.382	18.6	58.2		12.7	48.2	
0.559	17.5	56.0		11.8	46.0	
0.891	22.4	56.0		12.2	46.0	
1.395	14.8	56.0		9.1	46.0	
1.994	13.8	56.0		8.1	46.0	
4.291	12.4	56.0		6.6	46.0	
6.778	20.2	60.0		9.7	50.0	
13.645	41.0	60.0		15.7	50.0	
20.133	11.1	60.0		5.5	50.0	

Cumulative Data

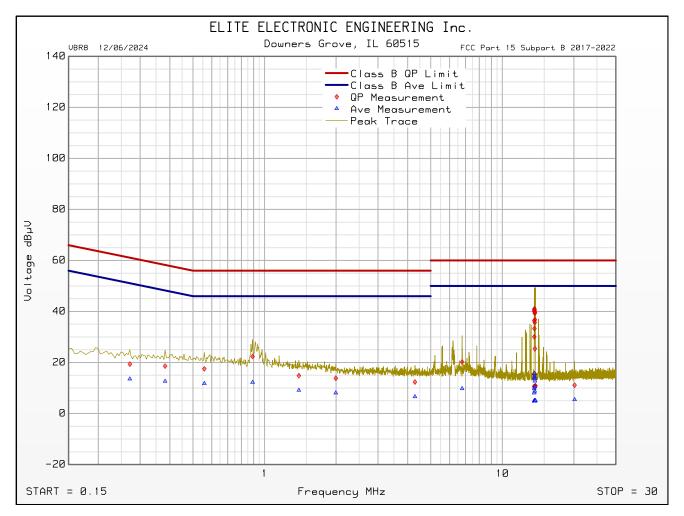
VBR8 12/06/2024

Manufacturer : ELKAY Model : DSSBF8SP

DUT Revision : 1.0

Serial Number

DUT Mode : TX @ 13.56MHZ


Line Tested : 120VAC 60HZ NEUTRAL LINE

Scan Step Time [ms] : 30 Meas. Threshold [dB] : -10

Notes

Test Engineer : T. Jozefczyk RBW : 9 kHz Limit : Class B

Test Date : Dec 18, 2024 11:08:21 AM

Emissions Meet QP Limit Emissions Meet Ave Limit

21. Frequency Stability

EUT Information		
Manufacturer	Elkay Manufacturing Company	
Product	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	
Test Date	December 20, 2024	

Test Site Information		
Type of Test Site	Temperature Chamber	
Test Site Used	ENVE33	
Type of Antennas Used	Loop (or equivalent)	
Note	None	

Requirements

Per $\S15.225(e)$, the frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20° C to $+50^{\circ}$ C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20° C.

Per RSS-210 Annex B Section B.6.(b), the carrier frequency stability shall not exceed ±100 ppm.

Per RSS-GEN Section 6.11, the following conditions apply:

- a. at the temperatures of -20°C, +20°C, and +50°C, and at the manufacturer's rated supply voltage
- b. at the temperature of +20°C and at ±15% of the manufacturer's rated supply voltage

Procedure

- 1) The EUT was placed in a temperature chamber set to normal temperature (21°C).
- 2) The temperature chamber was then set to -20°C and once the temperature was stabilized, the EUT was allowed to soak for 30 minutes.
- 3) After soaking, the EUT was set in the Tx @ 13.56MHz mode and the frequency was noted at nominal voltage.
- 4) Steps (2) and (3) were repeated for every +10°C increment until +50°C.
- 5) Step (3) was repeated at 20°C for nominal, 85%, and 115% voltage.

Test Setup for Frequency Stability

Test Details		
Manufacturer	Elkay Manufacturing Company	
EUT	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	
Frequency Tested	13.56MHz	
Notes	Nominal Voltage: 120VAC 85% of Nominal Voltage: 102VAC 115% of Nominal Voltage: 138VAC	

				Fre	quency Variation i	n %	
		Nominal	Measured	Lower	Measured	Upper	
Temperature	Input	Frequency	Frequency	Limit	Variation	Limit	
пС	Voltage	MHz	MHz	%	%	%	Pass/Fail
-20	120	13.56	13.56	-0.01	0.00000	0.01	Pass
-10	120	13.56	13.5598	-0.01	-0.00147	0.01	Pass
0	120	13.56	13.5597	-0.01	-0.00221	0.01	Pass
+10	120	13.56	13.5598	-0.01	-0.00147	0.01	Pass
+20	120	13.56	13.5601	-0.01	0.00074	0.01	Pass
+20	102	13.56	13.56005	-0.01	0.00037	0.01	Pass
+20	138	13.56	13.5599	-0.01	-0.00074	0.01	Pass
+30	120	13.56	13.56015	-0.01	0.00111	0.01	Pass
+40	120	13.56	13.56015	-0.01	0.00111	0.01	Pass
+50	120	13.56	13.5602	-0.01	0.00147	0.01	Pass

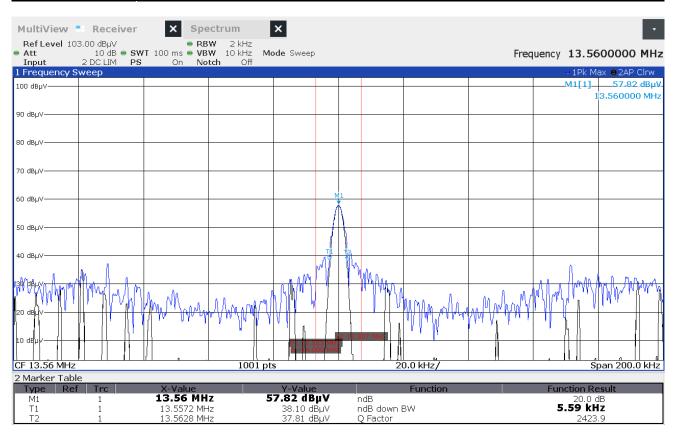
22. Occupied Bandwidth - 20dB

EUT Information		
Manufacturer	Elkay Manufacturing Company	
Product	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	

Test Setup Details		
Setup Format	Floor Standing	
Measurement Method	Radiated	
Type of Test Site	Semi-Anechoic Chamber	
Test Site Used	Room 29	
Type of Antenna Used	Loop (or equivalent)	

Requirement

FCC 15.215(c):


Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Procedure

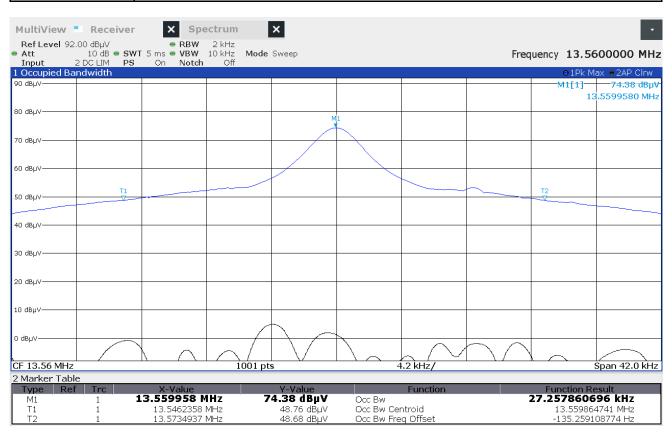
- 1) The EUT was set to transmit continuously.
- 2) With an antenna positioned nearby, occupied bandwidth emissions were displayed on the receiver.
- 3) The resolution bandwidth was set to 2kHz and span was set to 200kHz.
- 4) A screen capture was taken of the frequency spectrum near the carrier using a screen dump function on the receiver.

Test Details		
Manufacturer	Elkay Manufacturing Company	
EUT	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	
Frequency Tested	13.56MHz	
Result	20dB BW = 5.59kHz	
Notes	Lower Limit = 13.553MHz Upper Limit = 13.567MHz	

23. Occupied Bandwidth - 99%

EUT Information		
Manufacturer	Elkay Manufacturing Company	
Product	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	

Test Setup Details		
Setup Format	Floor Standing	
Measurement Method	Radiated	
Type of Test Site	Semi-Anechoic Chamber	
Test Site Used	Room 29	
Type of Antenna Used	Loop (or equivalent)	


Procedure

The EUT was setup inside the chamber. The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency.

The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.

Test Details		
Manufacturer	Elkay Manufacturing Company	
EUT	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	
Frequency Tested	13.56MHz	
Result	99% OBW = 27.26kHz	
Notes	None	

24. Radiated Emissions

EUT Information		
Manufacturer	Elkay Manufacturing Company	
Product	ezH20 Floor-Standing Bottle Filling Station	
Model No.	DSSBF8SP	
Serial No.	Sample 1	
Mode	Tx @ 13.56MHz	

Test Setup Details				
Setup Format	Floor Standing			
Type of Test Site	Semi-Anechoic Chamber			
Test Site Used	Room 29			
Type of Antennas Used	Loop (or equivalent)			
Notes	None			

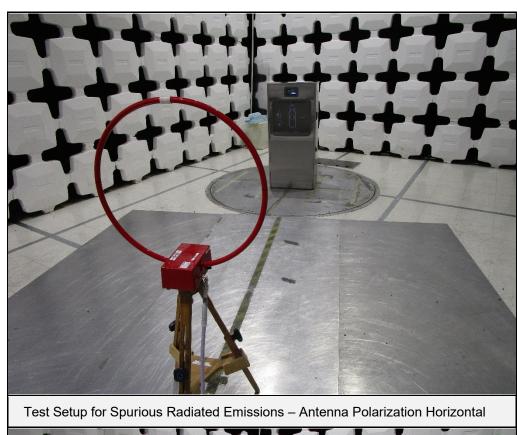
Measurement Uncertainty			
	Expanded		
Measurement Type	Measurement		
	Uncertainty		
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3		
site) (30 MHz – 1000 MHz)	4.3		

Requirement				
Per §15.225(b), the field strength of the EUT within the 13.553 – 13.567MHz bands shall not exceed 15,848				
microvolts/meter at 30 meters.				

Per RSS-210 B.6 (a), the field strength of the EUT within the band 13.553-13.567 MHz shall not exceed 15.848 mV/m (84 dB μ V/m) at 30 meters.

Procedure

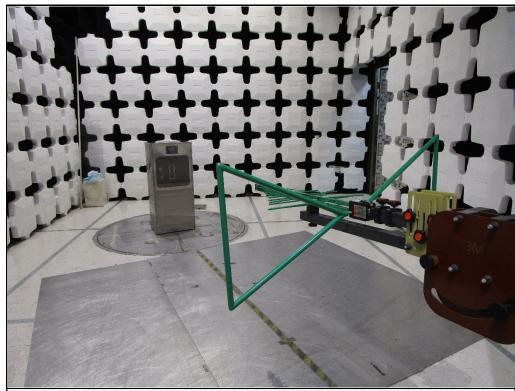
All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.


The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

A preliminary radiated emissions test was performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 9kHz to 1GHz was investigated using a peak detector function.

The final emission tests were then manually performed over the frequency range of 9kHz to 1GHz.

- 1) Between 9kHz and 30MHz, a loop antenna was used as the pick-up device. The EUT was centered on the turntable.
- 2) A peak detector with a resolution bandwidth of 10kHz was used on the spectrum analyzer.
- 3) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.



Test Setup for Spurious Radiated Emissions – Antenna Polarization Vertical

Test Setup for Spurious Radiated Emissions, 30-1000MHz – Antenna Polarization Horizontal

Test Setup for Spurious Radiated Emissions, 30-1000MHz – Antenna Polarization Vertical

	Test Details
Manufacturer	Elkay Manufacturing Company
EUT	ezH20 Floor-Standing Bottle Filling Station
Model No.	DSSBF8SP
Serial No.	Sample 1
Mode	Tx @ 13.56MHz
Frequency Tested	13.58MHz
Notes	Field Strength of the Fundamental Limit = 15848µV/m

										Specified	
		Meter		CBL	Ant	Dist.				Test	
Freq.	Ant	Reading		Fac	Fac	Corr.	Total	Total	Limit	Distance	Margin
(MHz)	Pol	(dBuV)	Ambient	(dB)	(dB/m)	(dB)	(dBuV/m)	(uV/m)	(uV/m)	(meters)	(dB)
13.560	H	45.6	Ambient	0.2	10.1	-40.0	15.9	6.2	15848.0	30.0	-68.1
13.560	V	29.8		0.2	10.1	-40.0	0.1	1.0	15848.0	30.0	-83.9
			*								
27.120	Н	14.9	*	0.3	8.3	-40.0	-16.5	0.1	30.0	30.0	-46.1
27.120	V	15.3		0.3	8.3	-40.0	-16.1	0.2	30.0	30.0	-45.7
40.680	Н	12.0	*	0.3	18.6	0.0	30.9	35.2	100.0	3.0	-9.1
40.680	V	12.2	*	0.3	18.6	0.0	31.0	35.6	100.0	3.0	-9.0
54.240	Н	12.1	*	0.4	13.2	0.0	25.6	19.1	100.0	3.0	-14.4
54.240	V	12.4	*	0.4	13.2	0.0	26.0	19.9	100.0	3.0	-14.0
67.800	Н	12.4	*	0.4	12.3	0.0	25.1	18.0	100.0	3.0	-14.9
67.800	V	12.8	*	0.4	12.3	0.0	25.5	18.8	100.0	3.0	-14.5
81.360	Н	11.8	*	0.5	13.3	0.0	25.5	18.8	100.0	3.0	-14.5
81.360	V	11.7	*	0.5	13.3	0.0	25.4	18.7	100.0	3.0	-14.6
94.920	Н	12.2	*	0.5	16.3	0.0	29.0	28.1	150.0	3.0	-14.6
94.920	V	11.6	*	0.5	16.3	0.0	28.4	26.4	150.0	3.0	-15.1
108.480	Н	11.9	*	0.5	18.0	0.0	30.5	33.5	150.0	3.0	-13.0
108.480	V	12.5	*	0.5	18.0	0.0	31.1	35.8	150.0	3.0	-12.5
122.040	Н	11.4	*	0.6	18.4	0.0	30.4	33.1	150.0	3.0	-13.1
122.040	V	11.3	*	0.6	18.4	0.0	30.3	32.6	150.0	3.0	-13.3
135.600	Н	11.8	*	0.6	17.6	0.0	30.0	31.6	150.0	3.0	-13.5
135.600	V	11.2	*	0.6	17.6	0.0	29.4	29.5	150.0	3.0	-14.1

25. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.

1516 Centre Circle Downers Grove, IL 60515

Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168

Email: rbugielski@elitetest.com

Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112

Email: cfanning@elitetest.com

Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163

Email: blugo@elitetest.com

Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123

Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2025 Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic compatibility and other electrical tests:</u>

Test Technology:	Test Method(s) ¹ :
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3;
(Max Voltage 60ViMax current 100A)	ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
	CS-11979, Section 6.4; CS.00054, Section 5.9;
	EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
	GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;
	ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008);
(Up to +/-25kV)	CS-11979 Section 7.0; CS.00054, Section 5.10;
	EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
	CISPR 25 (2016), Sections 6.3 and 6.4;
	CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2;
	EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421, CE 430, CE440)

(A2LA Cert. No. 1786.01) 08/15/2023

Page 1 of 9

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u> <u>Test Method(s)¹:</u>

Radiated Emissions Anechoic CISPR 25 (2002, 2008), Section 6.4;

(Up to 6GHz) CISPR 25 (2016), Section 6.5;

CS-11979, Section 5.3; CS.00054, Section 5.6.3;

GMW 3097, Section 3.3.1;

EMC-CS-2009.1 (RE 310); FMC1278 (RE310, RE320);

Vehicle Radiated Emissions CISPR 12; CISPR 36; ICES-002;

ECE Regulation 10.06 Annex 5

Bulk Current Injection (BCI) ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1;

(1 to 400MHz 500mA) GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112);

ECE Regulation 10.06 Annex 9

Radiated Immunity Anechoic ISO 11452-2;

(Up to 6GHz and 200V/m) CS-11979, Section 6.2; CS.00054, Section 5.8.2;

(Including Radar Pulse 600 V/m) GMW 3097, Section 3.4.2;

EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21;

ECE Regulation 10.06 Annex 9

Radiated Immunity Magnetic Field ISO 11452-8; FMC 1278 (RI140)

 Radiated Immunity Reverb
 ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3;

 (360MHz to 6GHz and 100V/m)
 EMC-CS-2009.1 (RI114); FMC1278 (RI114);

ISO 11452-11

Radiated Immunity ISO 11452-9;

(Portable Transmitters) EMC-CS-2009.1 (RI115); FMC1278 (RI115);

(Up to 6GHz and 20W) GMW 3097, Sec 3.4.4

Vehicle Radiated Immunity (ALSE) ISO 11451-2; ECE Regulation 10.06 Annex 6

Vehicle Product Specific EMC EN 14982; EN ISO 13309; ISO 13766; EN 50498;

Standards EC Regulation No. 2015/208; EN 55012

Electrical Loads ISO 16750-2

Stripline ISO 11452-5

Transverse Electromagnetic (TEM) ISO 11452-3

Cell

(A2LA Cert. No. 1786.01) 08/15/2023

Page 2 of 9

Test Technology: Test Method(s)1: Emissions Radiated and Conducted 47 CFR, FCC Part 15 B (using ANSI C63.4:2014); (3m Semi-anechoic chamber, 47 CFR, FCC Part 18 (using FCC MP-5:1986); up to 40 GHz) ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband); ECE Regulation 10.06 Annex 8 (Narrowband); ECE Regulation 10.06 Annex 14 (Conducted) Cellular Radiated Spurious Emissions ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124; ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124 Current Harmonics IEC 61000-3-2; IEC 61000-3-12; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11 Flicker and Fluctuations IEC 61000-3-3; IEC 61000-3-11; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12 Immunity Electrostatic Discharge IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001 Radiated Immunity IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;

KS C 9610-4-3; IEEE C37.90.2 2004

(A2LA Cert. No. 1786.01) 08/15/2023

- T

Test Technology:	Test Method(s)1:
Immunity (cont'd)	
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07);
	IEC 61000-4-4, Ed. 2.1 (2011);
	EC 61000-4-4 (1995) + A1(2000) + A2(2001);
	KN 61000-4-4 (2008-5);
	RRL Notice No. 2008-5 (May 20, 2008);
	EC 61000-4-4; EN 61000-4-4; KN 61000-4-4;
	KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000);
	IEC 61000-4-5, Ed 1.1 (2005-11);
	EN 61000-4-5 (1995) + A1(2001);
	KN 61000-4-5 (2008-5);
	RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;
	KS C 9610-4-5;
	IEEE C37.90.1 2012; IEEE STD C62.41.2 2002;
	ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000);
	IEC 61000-4-6, Ed 2.0 (2006-05);
	IEC 61000-4-6 Ed. 3.0 (2008);
	KN 61000-4-6 (2008-5);
	RRL Notice No. 2008-4 (May 20, 2008);
	EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6;
	EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field	EC 61000-4-8 (1993) + A1(2000); EC 61000-4-8 (2009);
Immunity (Down to 3 A/m)	EN 61000-4-8 (1994) + A1(2000);
	KN 61000-4-8 (2008-5);
	RRL Notice No. 20084 (May 20, 2008);
	IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line	IEC 61000-4-11, Ed. 2 (2004-03);
Voltage Variations	KN 61000-4-11 (2008-5);
	RRL Notice No. 20084 (May 20, 2008);
	IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11;
	KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09);
	EN 61000-4-12:2006;
	IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12;
	IEEE STD C62.41.2 2002

(A2LA Cert. No. 1786.01) 08/15/2023

Page 4 of 9

Test Technology: Test Method(s)1: Generic and Product Specific EMC IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; Standards KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2 TxRx EMC Requirements EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20 European Radio Test Standards ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4 Canadian Radio Tests RSS-102 measurement (RF Exposure Evaluation); RSS-102 measurement (Nerve Stimulation); SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN Mexico Radio Tests IFT-008-2015; NOM-208-SCFI-2016 Japan Radio Tests Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18 Taiwan Radio Tests LP-0002 (July 15, 2020)

(A2LA Cert. No. 1786.01) 08/15/2023

Test Technology: Test Method(s)1: Australia/New Zealand Radio Tests AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)

Hong Kong Radio Tests HKCA 1039 Issue 6: HKCA 1042; HKCA 1033 Issue 7; HKCA 1061;

HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073

KN 301 489-1; KN 301 489-3; KN 301 489-9; Korean Radio Test Standards

KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125;

KS X 3130; KS X 3126; KS X 3129

Vietnam Radio Test Standards QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT;

QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT

Vietnam EMC Test Standards QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT;

QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT

Unlicensed Radio Frequency Devices

(3 Meter Semi-Anechoic Room)

47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and

FCC KDB 905462 D02 (v02))

Licensed Radio Service Equipment 47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87,

> 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)

OIA (Over the Air) Performance

GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16

Large Device/Laptop/Tablet Testing Integrated Device Testing

WiFi 802.11 a/b/g/n/a

CTIA Test Plan for Wireless Device Over-the-Air

Performance (Method for Measurement for Radiated Power

and Receiver Performance) V3.8.2:

CTIA Test Plan for RF Performance Evaluation of WiFi

Mobile Converged Devices V2.1.0

(A2LA Cert. No. 1786.01) 08/15/2023

Test Technology: Test Method(s)¹:

Electrical Measurements and Simulation

FAA AC 150/5345-10H;
FAA AC 150/5345-43J;
FAA AC 150/5345-44K;
FAA AC 150/5345-46E;
FAA AC 150/5345-47C;
FAA EB 67D

Power Factor / Efficiency / Crest Factor (Power to 30kW)

Resistance (1mΩ to 4000MΩ)

Surge

(Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.12

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Page 7 of 9

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - General Requirements-Accreditation of ISO-IEC 17025 Laboratories.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A. 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Unlicensed Personal Communication		Ç. ———
Systems Devices Part 15D	ANSI C63 17:2013	40000
2027 80 00 8000	11101 003.11.2013	10000
U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
<u>U-NII</u> with DFS Intentional Radiators Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed		
Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
General Mobile Radio Services (FCC Licensed Radio Service Equipment)		
Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Citizens Broadband Radio Services (FCC		
Licensed Radio Service Equipment)		
Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Maritime and Aviation Radio Services		
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
Microwave and Millimeter Bands Radio		
Services Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Page 8 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A. 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Signal Boosters Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90 219	ANSI C63.26:2015	40000

 $^{^2}$ Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 1786.01) 08/15/2023

Page 9 of 9

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15^{th} day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.