

TEST Report

Applicant:	Guangzhou Siyuetian Electronic Technology Co., Ltd.
Address of Applicant:	4th Floor, No. 75, Street 1, Xiajiao Lingnan E-commerce Park, Panyu District, Guangzhou, China
Manufacturer :	TPV Audio-Visual Technology (Shenzhen) Co., Ltd.
Address of Manufacturer :	Room 4201, Block A, Building 2, Shenzhen Bay Innovation and Technology Center, 3156 South Keyuan Road, Yuehai Subdistrict, Nanshan District, Shenzhen
Equipment Under Test (El	JT)
Product Name:	Earphones
Model No.:	TAT3469
Series model:	N/A
Trade Mark:	PHILIPS
FCC ID:	2BMBA-TAT3469
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Mar. 25, 2025
Date of Test:	Mar. 25, 2025 ~ Mar. 31, 2025
Date of report issued:	Mar. 31, 2025
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar. 31, 2025	Original

Tested/ Prepared By

Heber He Date:

Mar. 31, 2025

Project Engineer

Bruce Zhu Date:

Mar. 31, 2025

Reviewer

Mar. 31, 2025

Approved By :

Check By:

2. Contents

Page

1.	VERSION	.2
2.	CONTENTS	.3
3.	TEST SUMMARY	.4
4.	GENERAL INFORMATION	.5
	 4.1. GENERAL DESCRIPTION OF EUT	7 7 7 7 7
5.	TEST INSTRUMENTS LIST	.8
6.	TEST RESULTS AND MEASUREMENT DATA	9
6.	TEST RESULTS AND MEASUREMENT DATA 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 1 6.3. 20DB EMISSION BANDWIDTH 6.4. FREQUENCIES SEPARATION 6.5. HOPPING CHANNEL NUMBER 6.6. DWELL TIME 6.7. BAND EDGE 6.7.1. Conducted Emission Method 6.7.2. Radiated Emission Method 6.8. SPURIOUS EMISSION 6.8.1. Conducted Emission Method 6.8.2. Radiated Emission Method 6.9. ANTENNA REQUIREMENT	.9 2 3 6 8 0 2 4 2 7 2 9 3 3
	6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 1 6.3. 20DB EMISSION BANDWIDTH 6.4. FREQUENCIES SEPARATION 6.5. HOPPING CHANNEL NUMBER 1 6.6. DWELL TIME 6.7. BAND EDGE 6.7.1. Conducted Emission Method 6.7.2. Radiated Emission Method 6.8. SPURIOUS EMISSION 6.8.1. Conducted Emission Method 6.8.2. Radiated Emission Method	.9 2 3 6 8 0 4 4 7 9 9 3 0

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.12 dB	(1)	
Radiated Emission	30~1000MHz	4.37 dB	(1)	
Radiated Emission	1~18GHz	5.40 dB	(1)	
Radiated Emission	18-40GHz	5.45 dB	(1)	
Conducted Disturbance 0.15~30MHz 2.68 dB				
Note (1): The measurement uncer	rtainty is for coverage factor of k	=2 and a level of confidence of §	95%.	

4. General Information

4.1. General Description of EUT

Product Name:	Earphones
Model No.:	TAT3469
Series model:	N/A
Test sample(s) ID:	HTT2025031082-1(Engineer sample) HTT2025031082-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	Chip Antenna
Antenna gain:	3.0 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz		
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz		
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz		
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz		
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz		
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz		
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz		
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz		
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz		
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz		
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz		
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz		
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz		
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz		
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz		
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz		
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz		
20	2421MHz	40	2441MHz	60	2461MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

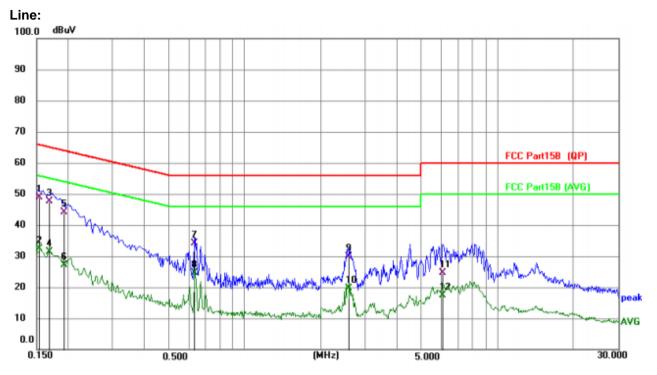
5. Test Instruments list T

5.	i est instrume				.	
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software		EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

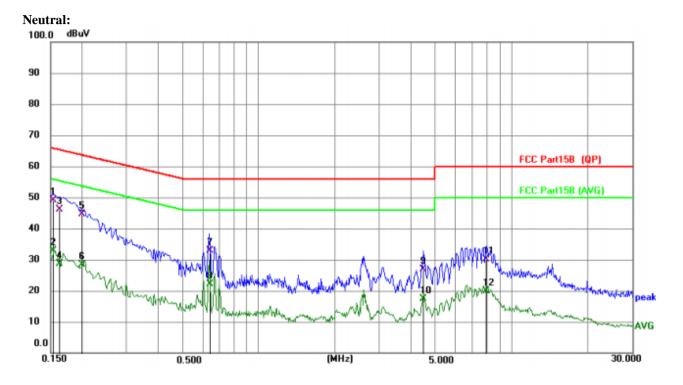
Tel: 0755-23595200 Fax: 0755-23595201

6. Test results and Measurement Data

6.1. Conducted Emissions


	-						
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:		Limi	t (dBuV)				
	Frequency range (MHz)	Quasi-peak	Ave	erage			
	0.15-0.5	66 to 56*		o 46*			
	0.5-5	56		46			
	5-30	60	5	50			
Test setup:							
Test procedure:	 * Decreases with the logarithm of the frequency. Reference Plane Iso a constraint of the frequency. Reference Plane Iso a constraint of the frequency. Remark: EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed.						
Test Instruments:	Refer to section 6.0 for details	5					
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz	I	1				
-							
Test results:	Pass						

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:


Report No.: HTT2025031082F01

Measurement data:

		Deedier	Carrot	Magazin			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1532	38.79	10.08	48.87	65.82	-16.95	QP
2	0.1532	22.42	10.08	32.50	55.82	-23.32	AVG
3	0.1680	37.68	10.07	47.75	65.06	-17.31	QP
4	0.1680	21.41	10.07	31.48	55.06	-23.58	AVG
5	0.1932	33.95	10.16	44.11	63.90	-19.79	QP
6	0.1932	16.86	10.16	27.02	53.90	-26.88	AVG
7	0.6326	23.88	10.22	34.10	56.00	-21.90	QP
8	0.6326	14.51	10.22	24.73	46.00	-21.27	AVG
9	2.5762	19.62	10.20	29.82	56.00	-26.18	QP
10	2.5762	9.48	10.20	19.68	46.00	-26.32	AVG
11	6.0712	14.40	10.11	24.51	60.00	-35.49	QP
12	6.0712	7.30	10.11	17.41	50.00	-32.59	AVG

. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1535	38.85	10.16	49.01	65.81	-16.80	QP
0.1535	22.61	10.16	32.77	55.81	-23.04	AVG
0.1630	36.04	10.20	46.24	65.31	-19.07	QP
0.1630	18.53	10.20	28.73	55.31	-26.58	AVG
0.1996	34.32	10.20	44.52	63.63	-19.11	QP
0.1996	18.20	10.20	28.40	53.63	-25.23	AVG
0.6408	22.74	10.19	32.93	56.00	-23.07	QP
0.6408	11.99	10.19	22.18	46.00	-23.82	AVG
4.4806	16.66	10.16	26.82	56.00	-29.18	QP
4.4806	7.26	10.16	17.42	46.00	-28.58	AVG
7.9854	19.97	10.18	30.15	60.00	-29.85	QP
7.9854	9.67	10.18	19.85	50.00	-30.15	AVG
	MHz 0.1535 0.1535 0.1630 0.1630 0.1996 0.1996 0.6408 0.6408 4.4806 4.4806 7.9854	K. Freq. Level MHz 0.1535 38.85 0.1535 22.61 0.1630 0.1630 36.04 0.1630 0.1630 18.53 0.1996 0.1996 34.32 0.1996 0.6408 22.74 0.6408 0.6408 11.99 4.4806 16.66 7.9854 19.97	K. Freq. Level Factor MHz dB 0.1535 38.85 10.16 0.1535 22.61 10.16 0.1535 22.61 10.16 0.1630 36.04 10.20 0.1630 18.53 10.20 0.1996 34.32 10.20 0.1996 18.20 10.20 0.6408 22.74 10.19 0.6408 11.99 10.19 4.4806 16.66 10.16 4.4806 7.26 10.18 7.9854 19.97 10.18	K. Freq. Level Factor ment MHz dB dBuV 0.1535 38.85 10.16 49.01 0.1535 22.61 10.16 32.77 0.1630 36.04 10.20 46.24 0.1630 18.53 10.20 28.73 0.1996 34.32 10.20 28.40 0.6408 22.74 10.19 32.93 0.6408 11.99 10.19 22.18 4.4806 16.66 10.16 26.82 4.4806 7.26 10.16 17.42 7.9854 19.97 10.18 30.15	K. Freq. Level Factor ment Limit MHz dB dBuV dBuV dBuV dBuV 0.1535 38.85 10.16 49.01 65.81 0.1535 22.61 10.16 32.77 55.81 0.1535 22.61 10.16 32.77 55.81 0.1630 36.04 10.20 46.24 65.31 0.1630 18.53 10.20 28.73 55.31 0.1996 34.32 10.20 28.40 53.63 0.1996 18.20 10.20 28.40 53.63 0.6408 22.74 10.19 32.93 56.00 0.6408 11.99 10.19 22.18 46.00 4.4806 16.66 10.16 26.82 56.00 4.4806 7.26 10.16 17.42 46.00 7.9854 19.97 10.18 30.15 60.00	K. Freq. Level Factor ment Limit Over MHz dB dBuV dBuV dB dBuV dB 0.1535 38.85 10.16 49.01 65.81 -16.80 0.1535 22.61 10.16 32.77 55.81 -23.04 0.1630 36.04 10.20 46.24 65.31 -19.07 0.1630 18.53 10.20 28.73 55.31 -26.58 0.1996 34.32 10.20 28.40 53.63 -19.11 0.1996 18.20 10.20 28.40 53.63 -25.23 0.6408 22.74 10.19 32.93 56.00 -23.07 0.6408 11.99 10.19 22.18 46.00 -23.82 4.4806 16.66 10.16 26.82 56.00 -29.18 4.4806 7.26 10.16 17.42 46.00 -28.58 7.9854 19.97 10.18 30.15 <td< td=""></td<>

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

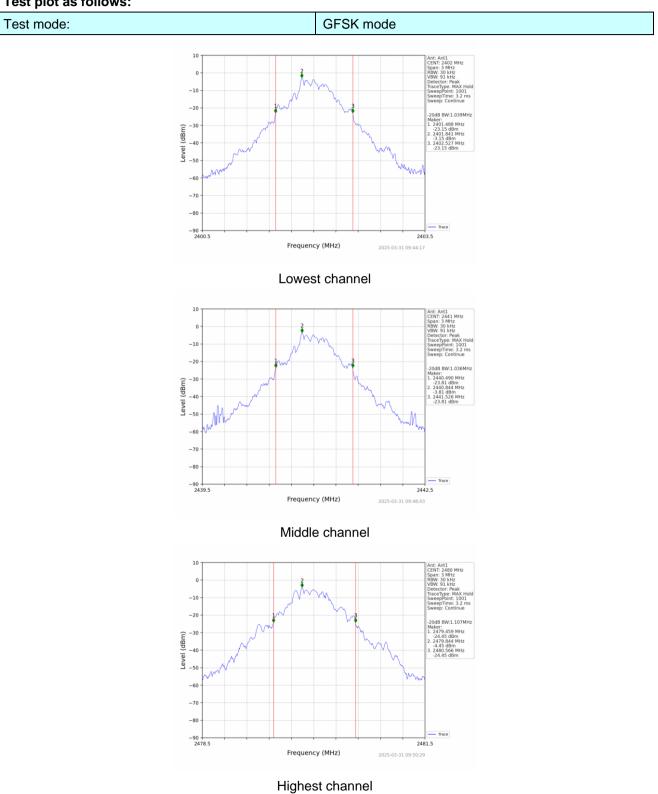
Test Requirement: FCC Part15 C Section 15.247 (b)(3) Test Method: ANSI C63.10:2013 Limit: 30dBm(for GFSK),20.97dBm(for EDR) Power sensor and Spectrum analyzer Test setup: E.U.T Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results: 52% Press.: Test environment: Temp.: 25 °C Humid.: 1012mbar

6.2. Conducted Peak Output Power

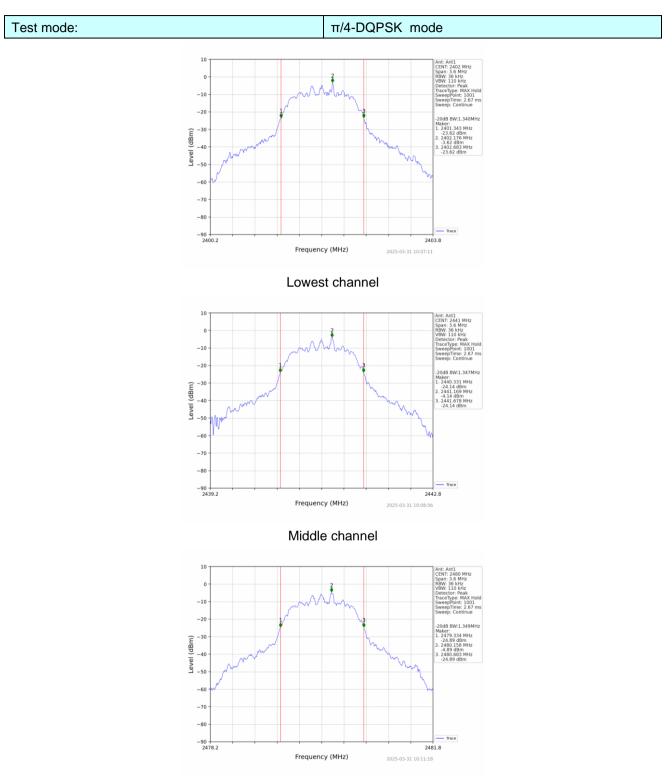
Measurement Data

Mode .	TX	Frequency	Packet	ANT	Maximum·Peak·0 Power	Verdict		
	51 ··· · · · · · · · · · · · · · · · · ·	(MHz)	(MHz) Type		ANT1	Limit		
	2402	DH5	1	-0.74	20.97	Pass		
GFSK	SISO	2441	DH5	1	-1.55	20.97	Pass	
		2480	DH5	1	-1.96	20.97	Pass	
		2402	2DH5	1	-0.43	20.97	Pass	
Pi/4DQPSK	SISO	2441	2DH5	1	-1.32	20.97	Pass	
		2480	2DH5	1	-1.6	20.97	Pass	

FCC Part15 C Section 15.247 (a)(2) **Test Requirement:** Test Method: ANSI C63.10:2013 Limit: N/A Test setup: Spectrum Analyzer E.U.T G Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass 52% 1012mbar Test environment: Temp.: 25 °C Humid.: Press.:


6.3. 20dB Emission Bandwidth

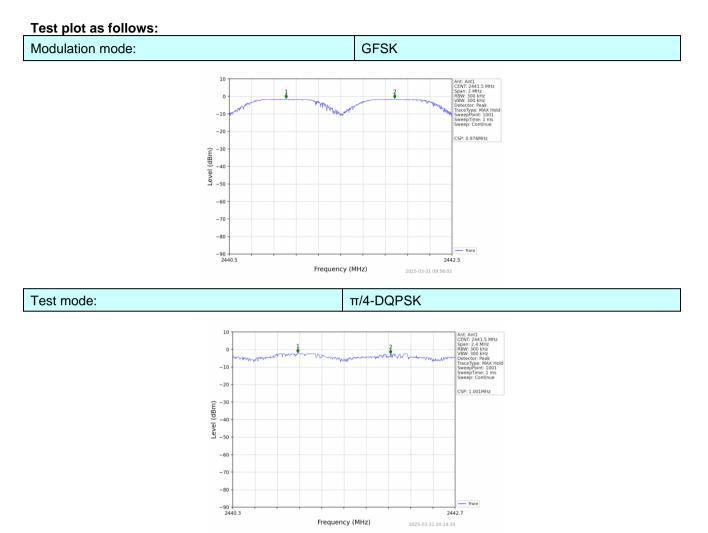
Measurement Data


Mada	TX	Frequency	Packet	ANT	20dB Band	Verdict	
Mode Type	(MHz)	Туре		Result	Limit	verdici	
		2402	DH5	1	1.039	/	Pass
GFSK	SISO	2441	DH5	1	1.036	/	Pass
		2480	DH5	1	1.107	/	Pass
		2402	2DH5	1	1.340	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.347	/	Pass
		2480	2DH5	1	1.349	/	Pass

Test plot as follows:

Highest channel

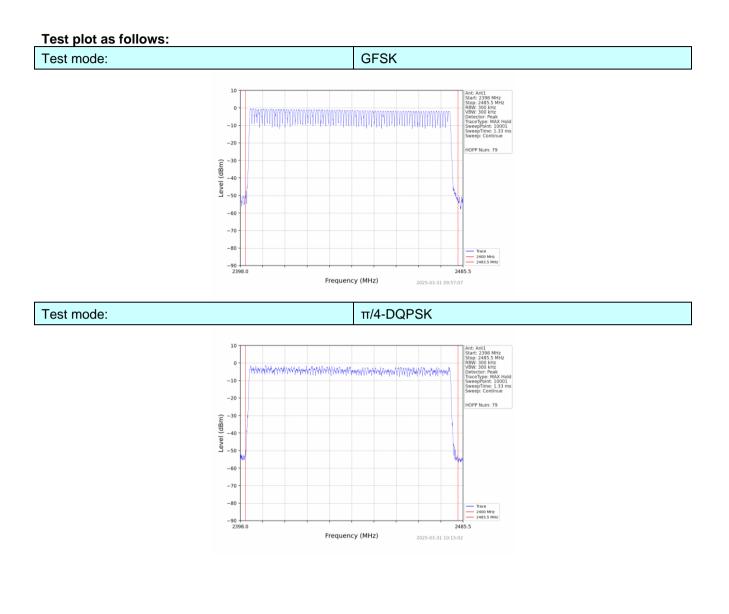
6.4. Frequencies Separation


· · ·									
Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:	RBW=100	RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π /4-DQPSK /8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sr Sr								
Test Instruments:	Refer to se	ction 6.0 for a	details						
Test mode:	Refer to se	ction 5.2 for a	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

				Ant1			
Mode	ТΧ	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict
woue	Туре	(MHz)	Туре	(MHz)	(MHz)	(MHz)	verdict
GFSK	SISO	HOPP	DH5	0.976	1.107	>=0.738	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	1.001	1.349	>=0.899	Pass

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.10:2013							
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channels							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

6.5. Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	245	Pass
π/4-DQPSK	79	≥15	Pass

6.6. Dwell Time

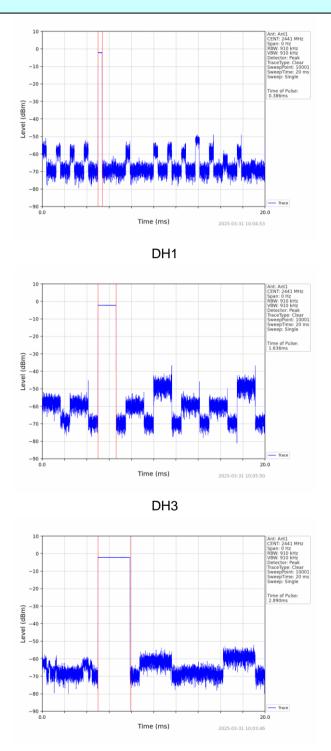
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=1MHz	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak							
Limit:	0.4 Second	0.4 Second							
Test setup:	Spe								
Test Instruments:	Refer to sec	tion 6.0 for c	letails						
Test mode:	Refer to sec	tion 5.2 for c	letails						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result
	DH1	0.386	123.520		
GFSK	DH3	1.636	260.124	400	Pass
	DH5	2.890	283.220		
	2-DH1	0.390	124.020		
	2-DH3	1.648	258.736		
π/4DQPSK	2-DH5	2.896	304.080	400	Pass
	3-DH3	0.386	123.520		
	3-DH5	1.636	260.124		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 \div 2 \div 79) ×31.6 Second for DH1, 2-DH1,


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for DH5, 2-DH5

Test plot as follows:

GFSK mode

DH5

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

10 Ant: Ant1 CENT: 2441 MHz Span: 0 Hz RBW: 1 MHz VBW: 1 MHz Detector: Peak C Detector: Peak TraceType: Clear SweepPoint: 1000 SweepTime: 20 m Sweep: Single -10 -20 Time of Pulse: 0.390ms -30 Level (dBm) -40 -50 -60 -70 -80 -90 ↓ 0.0 20.0 Time (ms) 2DH1 10 Ant: Ant1 CENT: 2441 MHZ Span: 0 HZ RBW: 1 MHZ VBW: 1 MHZ VBW: 1 MHZ Detector: Peak TraceType: Clear SweepPoint: 100 SweepTime: 20 r SweepTime: Sinpla C -10 -20 Time of Pulse 1.648ms -30 Level (dBm) -40 -50 -60 -70 -80 -90 + 0.0 Trace 20.0 Time (ms) 2DH3 10 Ant: Ant1 CENT: 2441 MHz Span: 0 Hz RBW: 1 MHz VBW: 1 MHz Detector: Peak C Detector: P TraceType: SweepPoint SweepTime Sweep: Sin -10 -20 Time of Pulse: 2.896ms -30 -40 -50 -60 -70 -80 -90 ∔-0.0 Trace 20.0 Time (ms) 2025-03-31 10:15:16

2DH5

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

6.7. Band Edge

6.7.1. Conducted Emission Method

Test Descriptions	FOO Dentified O Dentified AF 0.47 (-1)						
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Pre	ess.: 1012mbar					

Test plot as follows:

GFSK Mode:

-90 2472.0

Report No.: HTT2025031082F01

Test channel Lowest channel 10 -10 -10 -20 -20 -21.23 dBn .850 MHz (dBm) -30 -31 Level (dBm) -40 -40) -+--50 -50 had chall boot in the have a share adding a d -60 -6 -70 -70 -80 -80 Trace Limit 2410.0 2410.0 Frequency (MHz) Frequency (MHz) 2025-03-31 09:53:53 2025-03-31 09:44:36 No-hopping mode Hopping mode Test channel: Highest channel 10 0 -10 -1 -20 21 23 dF 21 23 - 2498.992 Mi -52.81 dBm -2483.500 Mi -61.60 dBm (dBm) -30 (dBm) .916 M -30 -40 -4 -40 –40 –50) -40 Panal -50 MANAMAMAN 1 -60 -60 -70 -70 -80 -80 Trace Limit Trace Limit

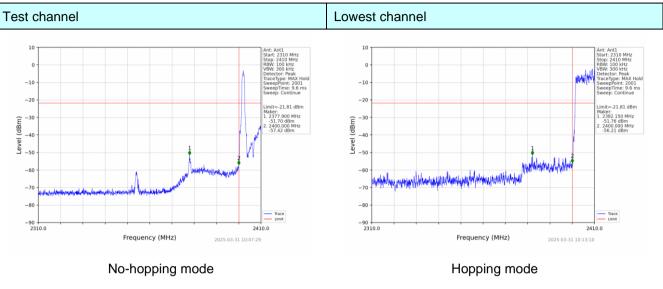
No-hopping mode

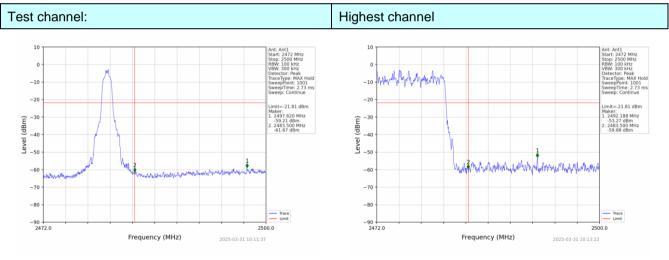
Frequency (MHz)

2500.0

2025-03-31 09:50:47

Hopping mode


Frequency (MHz)


2500.0

2025-03-31 09:54:13

π /4-DQPSK Mode:

No-hopping mode

Hopping mode

6.7.2.	Radiated E	mission Me	ethod					
Test Require	ement:	FCC Part15 C Section 15.209 and 15.205						
Test Method	:	ANSI C63.1	0:2013					
Test Freque	ncy Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:		Measureme	ent Distance:	3m				
Receiver set	up:	Frequenc	cy Deteo	ctor RB	W VBW	V Re	emark	
		Above 1G	Hz Pea				k Value	
			Pea				ge Value	
Limit:		Fre	equency	Limit (c	dBuV/m @3m	/	emark	
		Abo	ve 1GHz		54.00 74.00		ge Value k Value	
		Tum Table <150cm.			Antenna- 4m >v			
Test Procedu	ure:	 ground a determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and then and the rmaximur 5. The test-Specified 6. If the em limit spece EUT wou 10dB ma 	was placed at a 3 meter c te the position was set 3 m which was n and height is o determine t al and vertica ment. a suspected e the antenna rota table was n reading. receiver syst d Bandwidth v ission level o cified, then te uld be reporte argin would be method as sp	amber. The tan of the higher eters away frounted on the varied from the maximum polarizations mission, the was tuned to sturned from em was set to with Maximum f the EUT in sting could b ed. Otherwise ere-tested or	able was rota st radiation. om the interf he top of a va- one meter to value of the s of the anter EUT was arra heights from 0 degrees to n Hold Mode peak mode w e stopped an the emission he by one usi	erence-receiv riable-height four meters a field strength anged to its v anged to its v anged to its v anged to its v a 1 meter to 4 o 360 degrees ct Function ar vas 10dB low d the peak van s that did no ng peak, qua	rees to ving antenna above the . Both make the worst case meters s to find the and er than the alues of the t have usi-peak or	
Test Instrum	ents:		ction 6.0 for d					
Test mode:	0.110.		ction 5.2 for d					
Test results:		Pass						
Test environ	ment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
	mont.	romp	25 0	Turnu	0270	1 1000.	TOTZINDAL	

Padiated Emission Method 7 0

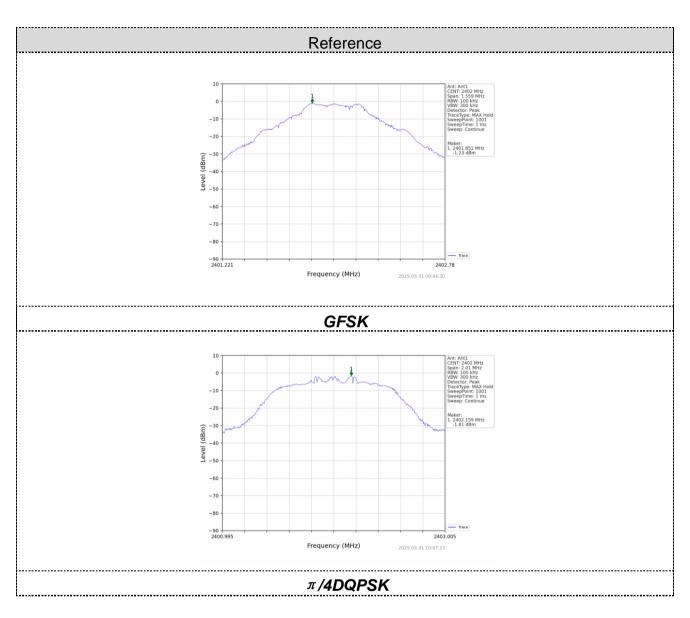
Shenzhen HTT Technology Co.,Ltd.

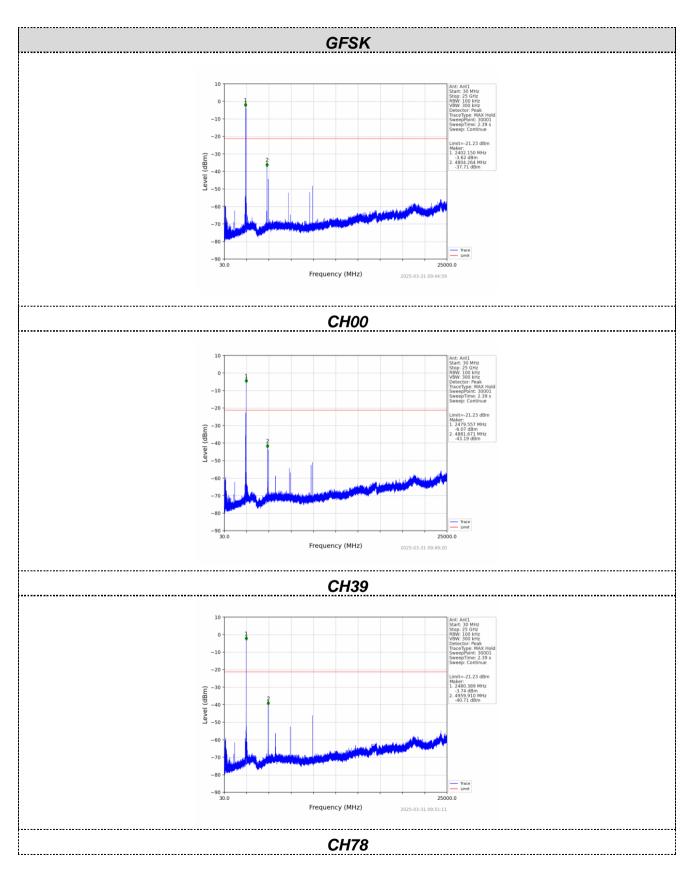
Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

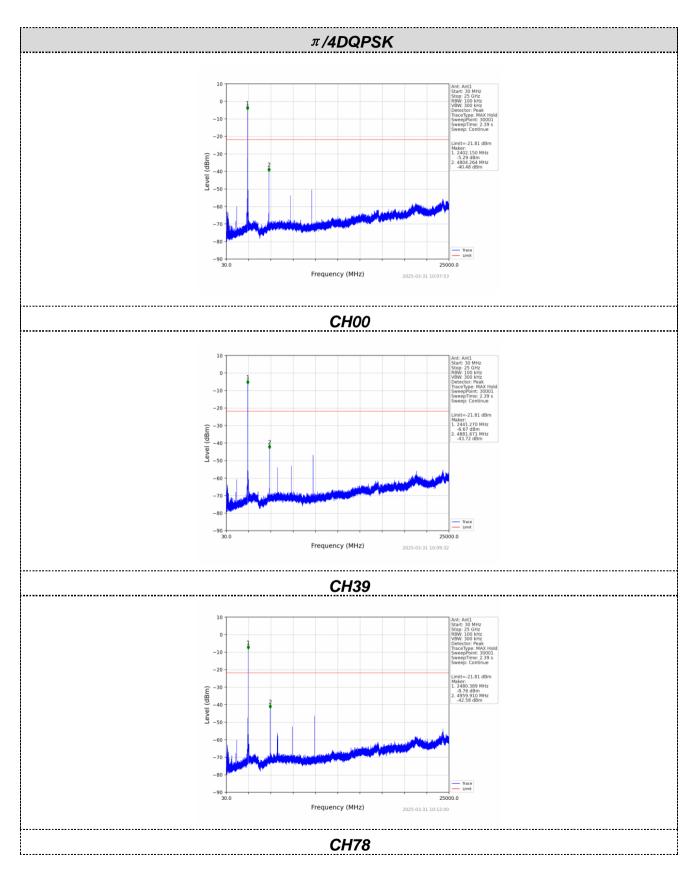
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK


Freque	ncy(MHz)	:	24	02	Pola	arity:	Н		NL
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.47	PK	74	13.53	61.86	27.2	4.31	32.9	-1.39
2390.00	45.63	AV	54	8.37	47.02	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.33	PK	74	14.67	60.72	27.2	4.31	32.9	-1.39
2390.00	47.23	AV	54	6.77	48.62	27.2	4.31	32.9	-1.39
Freque	Frequency(MHz):		24	80	P olarity:		н	IORIZONTA	AL.
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.20	PK	74	17.80	57.13	27.4	4.47	32.8	-0.93
2483.50	44.94	AV	54	9.06	45.87	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.85	PK	74	18.15	56.78	27.4	4.47	32.8	-0.93
2483.50	43.94	AV	54	10.06	44.87	27.4	4.47	32.8	-0.93


6.8.	Spurious Emission
6.8.1	. Conducted Emission Method

FCC Part15 C Section 15.247 (d) **Test Requirement: Test Method:** ANSI C63.10:2013 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer E.U.T r. Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results: 52% Test environment: Temp.: 25 °C Humid.: Press.: 1012mbar

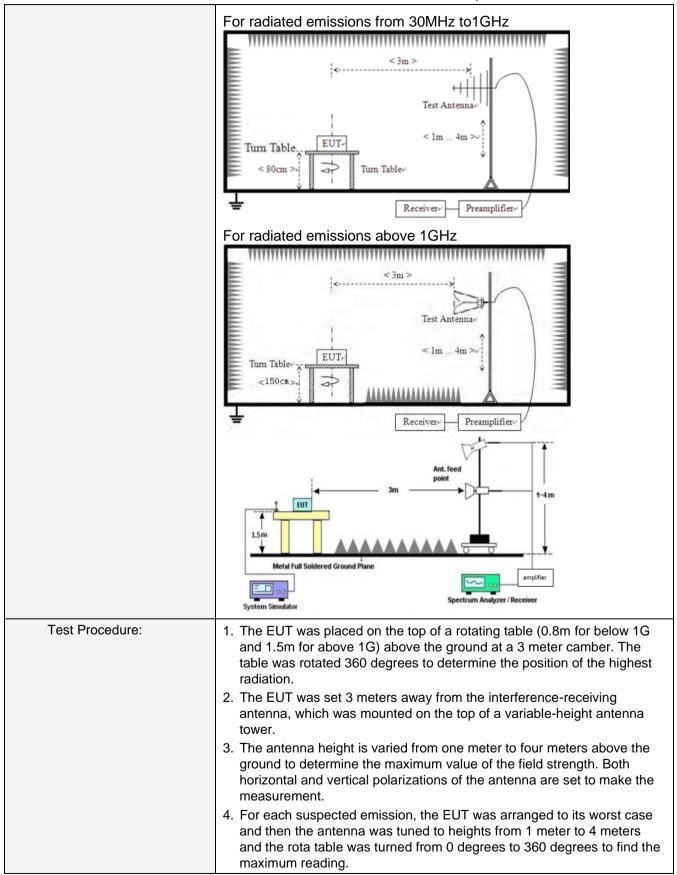


 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China



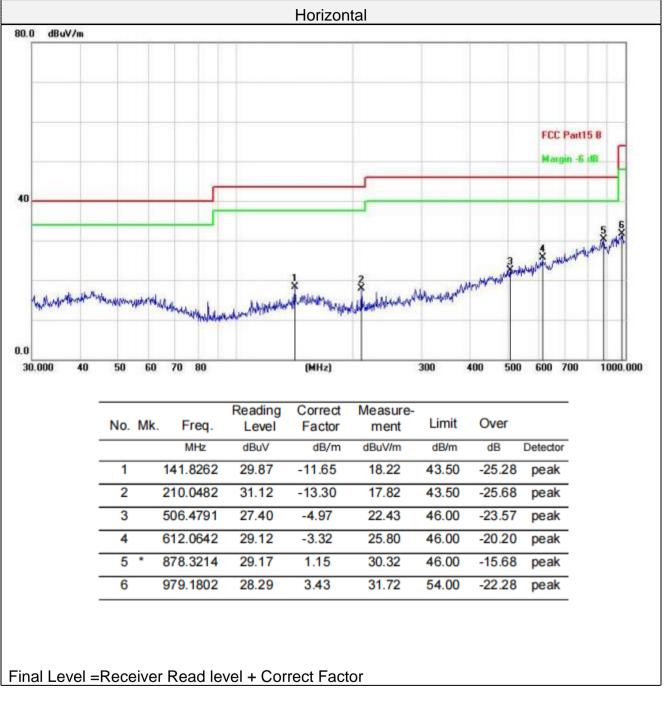
6.8.2. Radiated E	mission Method									
Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector	RB\	N	VBW	'	Value		
	9KHz-150KHz	Qı	uasi-peak	200H	Ηz	600Hz	z	Quasi-peak		
	150KHz-30MHz	Qı	uasi-peak	9K⊢	lz	30KH:	z	Quasi-peak		
	30MHz-1GHz	Qı	uasi-peak	120K	Hz	300KH	lz	Quasi-peak		
	Above 1GHz		Peak	1M⊦	łz	3MHz	z	Peak		
	7.0010112		Peak	1M⊦	łz	10Hz		Average		
Limit:	Frequency		Limit (u\	//m)	V	alue	Ν	leasurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m			
	1.705MHz-30MH	30		QP			30m			
	30MHz-88MHz	100		QP						
	88MHz-216MHz	150		QP						
	216MHz-960MH	200		QP			3m			
	960MHz-1GHz		500		QP					
	Above 1GHz		500		Average					
			5000		P	Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z				
	Tum Table	and	< 3m > Test A um Table~	ntenna lm Receiver						

6.8.2. Radiated Emission Method

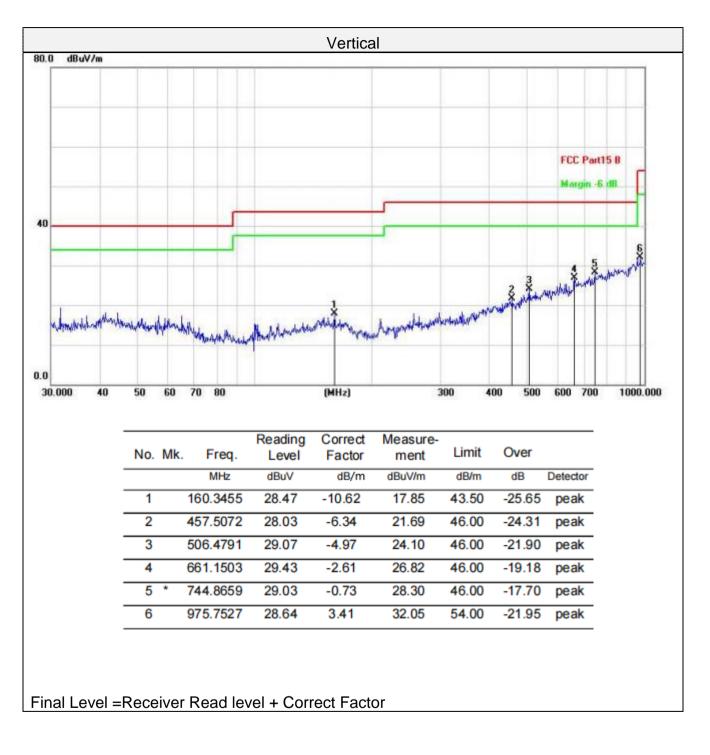
Report No.: HTT2025031082F01

	Report No.: HTT2025031082F01								
	5. The test-receiver system was set to Peak Detect Function and Spec Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test Instruments:	Refer to see	ction 6.0 for a	details						
Test mode:	Refer to see	ction 5.2 for c	details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								

Measurement data:


Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:



Report No.: HTT2025031082F01

For 30MHz-1GHz

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	59.85	PK	74	14.15	54.15	31	6.5	31.8	5.7		
4804.00	42.61	AV	54	11.39	36.91	31	6.5	31.8	5.7		
7206.00	54.53	PK	74	19.47	41.88	36	8.15	31.5	12.65		
7206.00	44.08	AV	54	9.92	31.43	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
4804.00	(ави 58.46	V/m) PK	74	15.54	(dBuV) 52.76	(dB/m) 31	(dB) 6.5	(dB) 31.8	(dB/m) 5.7		
4804.00	42.60	AV	54	11.40	36.90	31	6.5	31.8	5.7		
7206.00	53.34	PK	74	20.66	40.69	36	8.15	31.5	12.65		
7206.00	42.67	AV	54	11.33	30.02	36	8.15	31.5	12.65		

Frequency(MHz):			2441		Polarity:		HORIZONTAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.80	PK	74	13.20	54.64	31.2	6.61	31.65	6.16	
4882.00	44.37	AV	54	9.63	38.21	31.2	6.61	31.65	6.16	
7323.00	52.44	PK	74	21.56	39.49	36.2	8.23	31.48	12.95	
7323.00	43.67	AV	54	10.33	30.72	36.2	8.23	31.48	12.95	

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,

Freque	ncy(MHz)	:	2441		Pola	arity:	VERTICAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.70	PK	74	13.30	54.54	31.2	6.61	31.65	6.16	
4882.00	42.41	AV	54	11.59	36.25	31.2	6.61	31.65	6.16	
7323.00	53.39	PK	74	20.61	40.44	36.2	8.23	31.48	12.95	
7323.00	43.82	AV	54	10.18	30.87	36.2	8.23	31.48	12.95	

Frequency(MHz):			2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	61.82	PK	74	12.18	55.16	31.4	6.76	31.5	6.66	
4960.00	41.44	AV	54	12.56	34.78	31.4	6.76	31.5	6.66	
7440.00	53.72	PK	74	20.28	40.42	36.4	8.35	31.45	13.3	
7440.00	45.63	AV	54	8.37	32.33	36.4	8.35	31.45	13.3	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency	Emission Level		Limit Margin		Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor		
(MHz)	MHz) (dBuV/m) (dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)					
4960.00	64.04	PK	74	9.96	57.38	31.4	6.76	31.5	6.66		
4960.00	44.05	AV	54	9.95	37.39	31.4	6.76	31.5	6.66		
7440.00	54.32	PK	74	19.68	41.02	36.4	8.35	31.45	13.3		
7440.00	45.53	AV	54	8.47	32.23	36.4	8.35	31.45	13.3		

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----