

#### Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn



## **TEST REPORT**

**Report Reference No.....: TRE17080228** R/C.....: 15598

FCC ID...... YAMGTW-RFEDEX

Applicant's name...... Hytera Communications Corporation Limited

Road, Nanshan District, Shenzhen, China

Address ...... Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan

Road, Nanshan District, Shenzhen, China

Test item description ...... Patrol Adapter

Trade Mark ...... Hytera

Model/Type reference ...... GTW-RFED\_EX

Listed Model(s)..... -

Standard ...... FCC CFR Title 47 Part 15 Subpart C Section 15.249

Date of receipt of test sample............ Aug. 31, 2017

Date of testing...... Sept. 01, 2017 – Sept. 14, 2017

Date of issue...... Sept. 14, 2017

Result...... PASS

Compiled by

( position+printedname+signature) ..: File administrators Shayne Zhu

Supervised by

(position+printedname+signature) ...: Project Engineer Cary Luo

Approved by

(position+printedname+signature) ...: RF Manager Hans Hu

Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE17080228 Page: 2 of 21 Issued: 2017-09-14

## **Contents**

| <u> </u>    | TEST STANDARDS AND TEST DESCRIPTION      | <u> </u> |
|-------------|------------------------------------------|----------|
|             |                                          |          |
| 1.1.        | Test Standards                           | 3        |
| 1.2.        | Report version                           | 3        |
| <u>2.</u>   | TEST DESCRIPTION                         | 4        |
| <del></del> |                                          |          |
| <u>3.</u>   | SUMMARY                                  | 5        |
| 3.1.        | Client Information                       | 5        |
| 3.2.        | Product Description                      | 5        |
| 3.3.        | EUT operation mode                       | 5        |
| 3.4.        | EUT configuration                        | 5        |
| 3.5.        | Modifications                            | 5        |
| <u>4 .</u>  | TEST ENVIRONMENT                         | 6        |
| 4.1.        | Address of the test laboratory           | 6        |
| 4.2.        | Test Facility                            | 6        |
| 4.3.        | Environmental conditions                 | 7        |
| 4.4.        | Statement of the measurement uncertainty | 7        |
| 4.5.        | Equipments Used during the Test          | 8        |
| <u>5.</u>   | TEST CONDITIONS AND RESULTS              | 9        |
| 5.1.        | Antenna requirement                      | 9        |
| 5.2.        | AC Power Conducted Emissions             | 10       |
| 5.3.        | 20 dB Occupied Bandwidth                 | 11       |
| 5.4.        | Radiated Emissions                       | 12       |
| <u>6.</u>   | TEST SETUP PHOTOS OF THE EUT             | 16       |
| 7 <u>.</u>  | EXTERNAL AND INTERNAL PHOTOS OF THE EUT  | 18       |

Report No: TRE17080228 Page: 3 of 21 Issued: 2017-09-14

## 1. TEST STANDARDS AND TEST DESCRIPTION

#### 1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

#### 1.2. Report version

| Version No. | Date of issue  | Description |
|-------------|----------------|-------------|
| 00          | Sept. 14, 2017 | Original    |
|             |                |             |
|             |                |             |
|             |                |             |
|             |                |             |

Report No: TRE17080228 Page: 4 of 21 Issued: 2017-09-14

## 2. Test Description

| Test Item                                | Section in CFR 47 | Result |
|------------------------------------------|-------------------|--------|
| Antenna requirement                      | 15.203            | Pass   |
| AC Power Line Conducted Emissions        | 15.207            | N/A    |
| 20dB Occupied Bandwidth                  | 15.215/15.249     | Pass   |
| Field strength of the Fundamental signal | 15.249(a)         | Pass   |
| Spurious Emissions                       | 15.209/15.249(a)  | Pass   |
| Band edge Emissions                      | 15.205/15.249(d)  | Pass   |

Remark: The measurement uncertainty is not included in the test result.

Report No: TRE17080228 Page: 5 of 21 Issued: 2017-09-14

## 3. **SUMMARY**

#### 3.1. Client Information

| Applicant:                                              | Hytera Communications Corporation Limited                                                            |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Address:                                                | Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road,<br>Nanshan District, Shenzhen, China |  |
| Manufacturer: Hytera Communications Corporation Limited |                                                                                                      |  |
| Address:                                                | Hytera Tower, Hi-Tech Industrial Park North,9108# Beihuan Road,<br>Nanshan District, Shenzhen, China |  |

## 3.2. Product Description

| Name of EUT:          | Patrol Adapter   |
|-----------------------|------------------|
| Trade Mark:           | Hytera           |
| Model No.:            | GTW-RFED_EX      |
| Listed Model(s):      | -                |
| Power supply:         | DC 3.3V          |
| Adapter information : | -                |
|                       |                  |
| Operation frequency:  | 2450MHz          |
| Channel number:       | 1                |
| Modulation Type:      | GFSK             |
| Antenna type:         | Integral antenna |
| Antenna gain:         | -2.2dBi          |

## 3.3. EUT operation mode

| For RF test items                                                                      |
|----------------------------------------------------------------------------------------|
| The engineering test program was provided and enabled to make EUT continuous transmit. |
| For AC power line conducted emissions:                                                 |
| The EUT was set to connect with large package sizes transmission.                      |

#### 3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

| Manufac | turer: /  |
|---------|-----------|
| Mode    | l No. : / |
| Manufac | turer: /  |
| Mode    | l No. : / |

#### 3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE17080228 Page: 6 of 21 Issued: 2017-09-14

#### 4. TEST ENVIRONMENT

#### 4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

#### 4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

#### IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

#### ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No: TRE17080228 Page: 7 of 21 Issued: 2017-09-14

#### 4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

|   | Temperature:     | 15~35°C     |
|---|------------------|-------------|
|   | lative Humidity: | 30~60 %     |
| Ī | Air Pressure:    | 950~1050mba |

#### 4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system according to ISO/IEC 17025. Further more, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei is reported:

| Test Items                              | MeasurementUncertainty | Notes |
|-----------------------------------------|------------------------|-------|
| Conducted spurious emissions 9KHz-30MHz | 3.39 dB                | (1)   |
| Radiated Emissions 30~1000MHz           | 4.24 dB                | (1)   |
| Radiated Emissions 1~18GHz              | 5.16 dB                | (1)   |
| Radiated Emissions 18-40GHz             | 5.54 dB                | (1)   |
| Occupied Bandwidth                      |                        | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE17080228 Page: 8 of 21 Issued: 2017-09-14

## 4.5. Equipments Used during the Test

| Line ( | Line Conducted Emission (AC Main) |              |           |            |            |  |
|--------|-----------------------------------|--------------|-----------|------------|------------|--|
| Item   | Test Equipment                    | Manufacturer | Model No. | Serial No. | Last Cal.  |  |
| 1      | EMI Test Receiver                 | R&S          | ESCI      | 101247     | 2016/11/13 |  |
| 2      | Artificial Mains                  | Shwarzbeck   | NNLK 8121 | 573        | 2016/11/13 |  |
| 3      | Pulse Limiter                     | R&S          | ESH3-Z2   | 101488     | 2016/11/13 |  |
| 4      | Test Software                     | R&S          | ES-K1     | N/A        | N/A        |  |
| 5      | Test cable                        | ENVIROFLEX   | 3651      | 1101902    | 2016/11/13 |  |

| 20dB | 20dB Occupied Bandwidth     |               |           |              |            |  |
|------|-----------------------------|---------------|-----------|--------------|------------|--|
| Item | Test Equipment              | Manufacturer  | Model No. | Serial No.   | Last Cal   |  |
| 1    | Spectrum Analyzer           | Rohde&Schwarz | FSP       | 1164.4391.40 | 2016/11/13 |  |
| 2    | Power Meter                 | Anritsu       | ML2480B   | 100798       | 2016/11/13 |  |
| 3    | Power Sensor                | Anritsu       | MA2411B   | 100258       | 2016/11/13 |  |
| 4    | Test cable                  | FARPU         | MCX-J     | N/A          | 2016/11/13 |  |
| 5    | Temporary antenna connector | D-LENP        | NJ-SMAK   | N/A          | 2016/11/13 |  |

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

|      | Field strength of the Fundamental signal/ Spurious Emissions/ Band edge |                   |           |                 |            |
|------|-------------------------------------------------------------------------|-------------------|-----------|-----------------|------------|
| Item | Test Equipment                                                          | Manufacturer      | Model No. | Serial No.      | Last Cal.  |
| 1    | EMI Test Receiver                                                       | Rohde&Schwarz     | ESI 26    | 100009          | 2016/11/13 |
| 2    | RF Test Panel                                                           | Rohde&Schwarz     | TS / RSP  | 335015/0017     | N/A        |
| 3    | EMI Test Software                                                       | Rohde&Schwarz     | ESK1      | N/A             | N/A        |
| 4    | Loop Antenna                                                            | Rohde&Schwarz     | HZ-9      | 838622\013      | 2016/11/13 |
| 5    | Ultra-Broadband<br>Antenna                                              | ShwarzBeck        | VULB9163  | 538             | 2016/11/13 |
| 6    | Horn Antenna                                                            | ShwarzBeck        | 9120D     | 1011            | 2016/11/13 |
| 7    | Broadband<br>Horn Antenna                                               | Shwarzbeck        | BBHA9170  | BBHA917047<br>2 | 2016/11/13 |
| 8    | Preamplifier                                                            | Shwarzbeck        | BBV9742   | 9742-196        | 2016/11/13 |
| 9    | Broadband<br>Preamplifer                                                | Shwarzbeck        | BBV 9721  | 9721-102        | 2016/11/13 |
| 10   | Broadband<br>Preamplifer                                                | Shwarzbeck        | BBV 9718  | 9718-247        | 2016/11/13 |
| 11   | Turn Table                                                              | MATURO            | TT2.0     | /               | N/A        |
| 12   | Antenna Mast                                                            | MATURO            | TAM-4.0-P | /               | N/A        |
| 13   | EMI Test Software                                                       | Audix             | E3        | N/A             | N/A        |
| 14   | Test Software                                                           | R&S               | ES-K1     | N/A             | N/A        |
| 15   | Test cable                                                              | Siva Cables Italy | RG 58A/U  | W14.02          | 2016/11/13 |

The Cal.Interval was one year

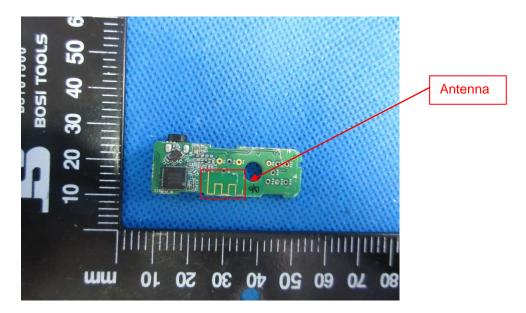
Report No: TRE17080228 Page: 9 of 21 Issued: 2017-09-14

### 5. TEST CONDITIONS AND RESULTS

#### 5.1. Antenna requirement

#### Requirement

#### FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

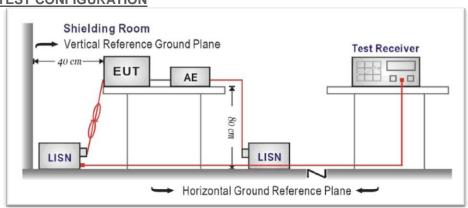
#### **Test Result:**

The directional gain of the antenna less than -2.2dBi, please refer to the below antenna photo.



Report No: TRE17080228 Page: 10 of 21 Issued: 2017-09-14

#### 5.2. AC Power Conducted Emissions


#### **LIMIT**

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

| Eroguenov rongo (MHz) | Limit (d   | BuV)      |
|-----------------------|------------|-----------|
| Frequency range (MHz) | Quasi-peak | Average   |
| 0.15-0.5              | 66 to 56*  | 56 to 46* |
| 0.5-5                 | 56         | 46        |
| 5-30                  | 60         | 50        |

<sup>\*</sup> Decreases with the logarithm of the frequency.

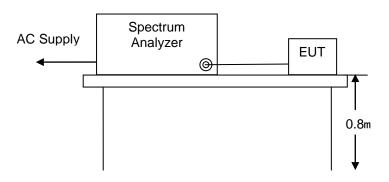
#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

#### **TEST RESULTS**


 Report No: TRE17080228 Page: 11 of 21 Issued: 2017-09-14

#### 5.3. 20 dB Occupied Bandwidth

#### Limit

Operation frequency range 2400MHz~2483.5MHz.

#### **TEST CONFIGURATION**



#### TEST PROCEDURE

- 1.As required by 47 CFR 15.215 and 47 CFR 15.249
- 2. The EUT connected to the spectrum analyzer was operated in linear scale and 5.0MHz span mode after tuning to the transmitter frequency.

#### **TEST RESULTS**

| Channel Frequency(MHz) | 20dB Bandwidth(MHz) | Result |  |  |
|------------------------|---------------------|--------|--|--|
| 2450                   | 1.11                | PASS   |  |  |

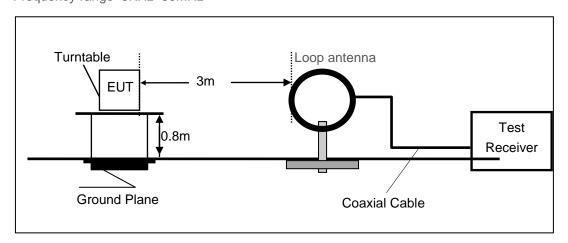


Report No: TRE17080228 Page: 12 of 21 Issued: 2017-09-14

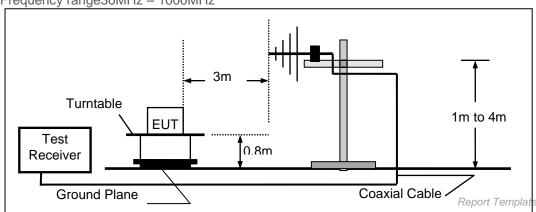
#### 5.4. Radiated Emissions

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table:

| Frequency (MHz) | Distance(Meters) | Radiated(dBµV/m)     | Radiated(µV/m) |
|-----------------|------------------|----------------------|----------------|
| 0.009 - 0.490   | 300              | 20*log(2400/F(kHz))  | 2400/F(kHz)    |
| 0.490 - 1.705   | 30               | 20*log(24000/F(kHz)) | 24000/F(kHz)   |
| 1.705 - 30.0    | 30               | 29.54                | 30             |
| 30-88           | 3                | 40.0                 | 100            |
| 88-216          | 3                | 43.5                 | 150            |
| 216-960         | 3                | 46.0                 | 200            |
| Above 960       | 3                | 54.0                 | 500            |


Remark:At frequencies below 30MHz, Limit 3m(dBuV)=Limit xm(dBuV)+20log(xm/3m); At frequencies below 30MHz, Limit 3m(dBuV)=Limit xm(dBuV)+40log(xm/3m),x replace the number 10.30.300.

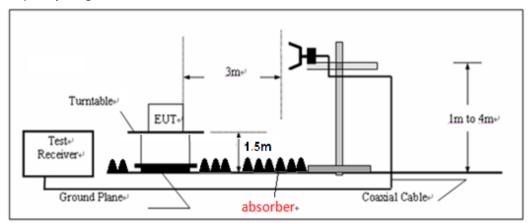
In addition to the provisions of §15.249, the field strength of emissions from intentional radiators operated under this section shall not exceed thefollowing:


|                       | 3                             |                                                |  |  |  |  |  |  |  |  |
|-----------------------|-------------------------------|------------------------------------------------|--|--|--|--|--|--|--|--|
| Fundamental frequency | Field strength of fundamental | Field strength of harmonics (microvolts/meter) |  |  |  |  |  |  |  |  |
|                       | (millivolts/meter)            |                                                |  |  |  |  |  |  |  |  |
| 902-928 MHz           | 50                            | 500                                            |  |  |  |  |  |  |  |  |
| 2400-2483.5 MHz       | 50                            | 500                                            |  |  |  |  |  |  |  |  |
| 5725-5875 MHz         | 50                            | 500                                            |  |  |  |  |  |  |  |  |
| 24.0-24.25 GHz        | 250                           | 2500                                           |  |  |  |  |  |  |  |  |

#### **TEST CONFIGURATION**

Radiated Emission Test Set-Up Frequency range 9KHz-30MHz




Frequency range30MHz - 1000MHz



Report Template Version: H01 (2017-03)

Report No: TRE17080228 Page: 13 of 21 Issued: 2017-09-14

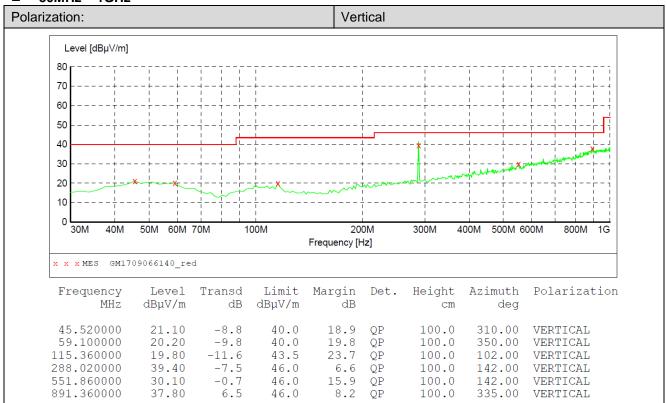
Frequency range above 1GHz-25GHz

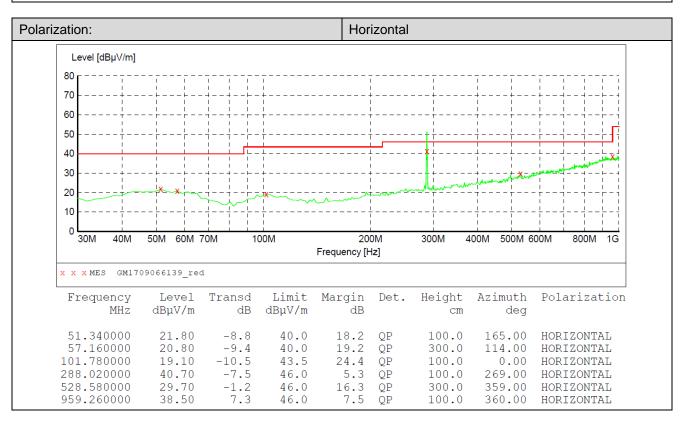


#### **TEST PROCEDURE**

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8/1.5 meter above ground plane. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=QP, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
  - (3) Above 1GHz, RBW=1MHz, VBW=3MHz Peak detetor for Peak value RBW=1MHz, VBW=3MHz RMS detetor for Average value.

Remark: "floor-standing equipment" Where possible, the antenna(s) of the EUT shall be located at a height of 1.5 m above the floor, and the intentional radiator circuitry shall be located within the system at a height of at least 0.8 m above the floor.


#### **TEST RESULTS**


#### ■ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9KHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

Report No: TRE17080228 Page: 14 of 21 Issued: 2017-09-14

#### ■ 30MHz ~ 1GHz





Report No: TRE17080228 Page: 15 of 21 Issued: 2017-09-14

#### ■ 1GHz ~ 25GHz

| Radiated emissions of fundamental emissions |                         |                           |                       |                          |                          |                                 |                |          |              |  |  |
|---------------------------------------------|-------------------------|---------------------------|-----------------------|--------------------------|--------------------------|---------------------------------|----------------|----------|--------------|--|--|
| Frequency<br>(MHz)                          | Read<br>Level<br>(dBµV) | Antenna<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBµV/m)<br>@3m | FCC<br>Limit<br>(dBµV/m)<br>@3m | Margin<br>(dB) | Detector | Polarization |  |  |
| 2450                                        | 86.81                   | 27.40                     | 6.81                  | 37.88                    | 83.14                    | 114                             | -30.86         | Peak     | Horizontal   |  |  |
| 2450                                        | 93.94                   | 27.40                     | 6.81                  | 37.88                    | 90.27                    | 114                             | -23.73         | Peak     | Vertical     |  |  |

|                    | Radiated emissions of harmonics emissions |                           |                       |                          |                          |                                 |                |          |              |  |  |  |
|--------------------|-------------------------------------------|---------------------------|-----------------------|--------------------------|--------------------------|---------------------------------|----------------|----------|--------------|--|--|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBµV)                   | Antenna<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBµV/m)<br>@3m | FCC<br>Limit<br>(dBµV/m)<br>@3m | Margin<br>(dB) | Detector | Polarization |  |  |  |
| 4900               | 44.65                                     | 31.41                     | 9.61                  | 36.68                    | 48.99                    | 74                              | -25.01         | Peak     | Horizontal   |  |  |  |
| 4900               | 41.32                                     | 31.41                     | 9.61                  | 36.68                    | 45.66                    | 74                              | -28.34         | Peak     | Vertical     |  |  |  |
| 7350               | 34.62                                     | 36.29                     | 11.99                 | 34.94                    | 47.96                    | 74                              | -26.04         | Peak     | Horizontal   |  |  |  |
| 7350               | 32.85                                     | 36.29                     | 11.99                 | 34.94                    | 46.19                    | 74                              | -27.81         | Peak     | Vertical     |  |  |  |

|                    | Spurious radiated emissions |                           |                       |                          |                          |                                 |                |          |              |  |  |
|--------------------|-----------------------------|---------------------------|-----------------------|--------------------------|--------------------------|---------------------------------|----------------|----------|--------------|--|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBµV)     | Antenna<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBµV/m)<br>@3m | FCC<br>Limit<br>(dBµV/m)<br>@3m | Margin<br>(dB) | Detector | Polarization |  |  |
| 1431.15            | 37.24                       | 25.87                     | 25.87                 | 5.09                     | 36.50                    | 74                              | -42.3          | Peak     |              |  |  |
| 5031.42            | 33.45                       | 31.63                     | 31.63                 | 9.70                     | 36.37                    | 74                              | -35.59         | Peak     | Horizontal   |  |  |
| 6377.16            | 33.36                       | 33.25                     | 33.25                 | 10.99                    | 35.31                    | 74                              | -31.71         | Peak     | Honzontai    |  |  |
| 7158.56            | 32.51                       | 35.95                     | 35.95                 | 11.86                    | 35.02                    | 74                              | -28.7          | Peak     |              |  |  |
| 1398.74            | 37.49                       | 25.9                      | 25.90                 | 5.00                     | 36.46                    | 74                              | -42.07         | Peak     |              |  |  |
| 3196.36            | 37.59                       | 28.8                      | 28.80                 | 7.72                     | 38.20                    | 74                              | -38.09         | Peak     | Vortical     |  |  |
| 6470.19            | 33.24                       | 33.79                     | 33.79                 | 11.12                    | 35.33                    | 74                              | -31.18         | Peak     | Vertical     |  |  |
| 8663.68            | 32.26                       | 37.68                     | 37.68                 | 12.96                    | 34.44                    | 74                              | -25.54         | Peak     |              |  |  |

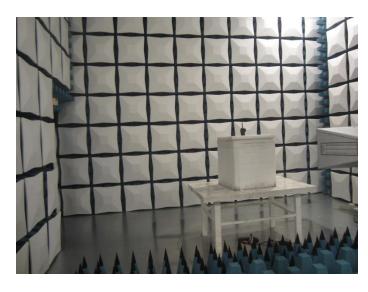
|                    | Band edge emissions     |                           |                       |                          |                   |                           |                         |              |          |  |  |
|--------------------|-------------------------|---------------------------|-----------------------|--------------------------|-------------------|---------------------------|-------------------------|--------------|----------|--|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBµV) | Antenna<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBµV/m) | Limit<br>Line<br>(dBµV/m) | Margin<br>Limit<br>(dB) | Polarization | Detector |  |  |
| 2400               | 45.62                   | 27.60                     | 6.77                  | 37.90                    | 42.09             | 74                        | -31.91                  | Horizontal   |          |  |  |
| 2400               | 46.62                   | 27.60                     | 6.77                  | 37.90                    | 43.09             | 74                        | -30.91                  | Vertical     | Dook     |  |  |
| 2483.5             | 44.62                   | 27.85                     | 6.83                  | 37.87                    | 41.43             | 74                        | -32.57                  | Horizontal   | Peak     |  |  |
| 2483.5             | 46.52                   | 27.85                     | 6.83                  | 37.87                    | 43.33             | 74                        | -30.67                  | Vertical     |          |  |  |

Note:

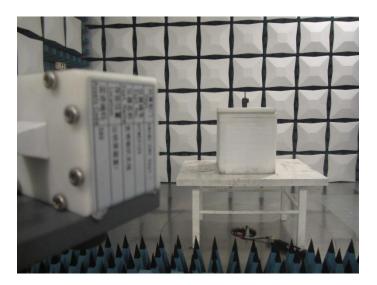
Level= Read Level+ Antenna Factor+ Cable Loss- Preamp Factor

Margin Limit = Level- Limit Line

Peak Level lower than the average limit, so the average Level don't show on the report.


Report No: TRE17080228 Page: 16 of 21 Issued: 2017-09-14

## 6. Test Setup Photos of the EUT

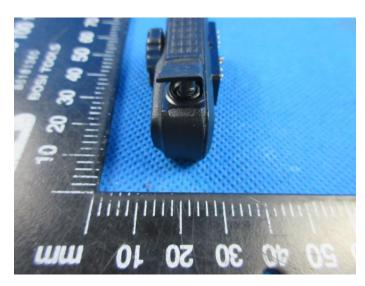

Radiated Emissions







Report No: TRE17080228 Page: 17 of 21 Issued: 2017-09-14

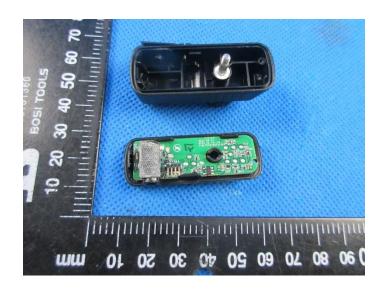


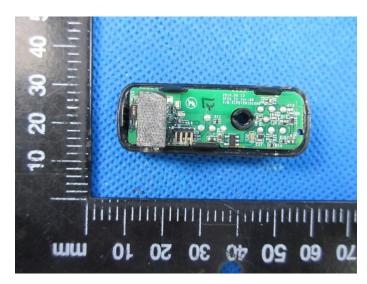

Report No: TRE17080228 Page: 18 of 21 Issued: 2017-09-14

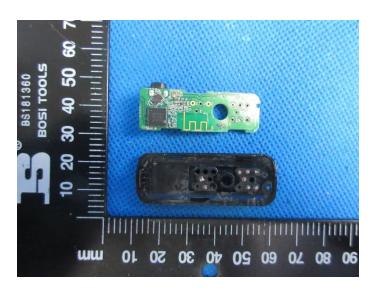
# 7. External and Internal Photos of the EUT External Photos of the EUT

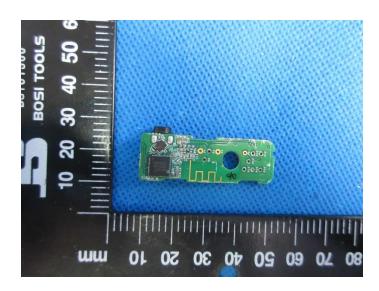


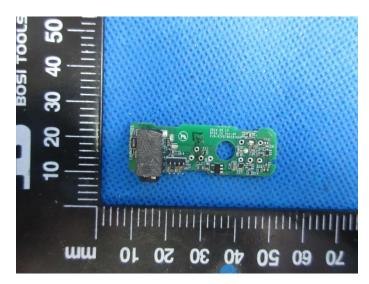






Report No: TRE17080228 Page: 19 of 21 Issued: 2017-09-14





Report No: TRE17080228 Page: 20 of 21 Issued: 2017-09-14


## **Internal Photos of the EUT**











-----End of Report-----