

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address: 1200 E. 151st Street

Olathe, Kansas, 66062, USA

Lane

Product: A04540

Test Report No: R20221213-20-E1

Approved by:

Fox Lane,

EMC Test Engineer

DATE: February 8, 2023

Total Pages: 39

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Garmin International, Inc. Prepared for:

REVISION PAGE

Rev. No.	Date	Description		
		Issued by FLane		
0	7 February 2023	Reviewed by KVepuri		
		Prepared by FLane		

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 2 of 39

Report Number:

Prepared for:

R20221213-20-E1

Garmin International, Inc.

Rev

0

CONTENTS

Rev	ision Pa	ge	2
1.0	Sun	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	
	2.3	Description of support units	
2.0		•	
3.0		oratory and General Test Description	
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	9
	4.1	Output Power	10
	4.2	Bandwidth	11
	4.3	Duty Cycle	12
	4.4	Radiated emissions	13
	4.5	Conducted AC Mains Emissions	19
	4.6	Conducted Spurious Emissions	22
	4.7	Band edges	25
	4.8	Power Spectral Density	27
Арр	endix A	: Sample Calculation	28
Арр	endix B	- Measurement Uncertainty	30
Арр	endix C	– Graphs and Tables	31
REF	ORT EN	ND	39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

FCC Part 15.247

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass			
FCC Part 15.247(b)(3) RSS-247 Issue 2 Section 5.4(d)	Peak output power	Pass			
FCC Part 15.247(a)(2) RSS-247 Issue 2 Section 5.2	Bandwidth	Pass			
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 2 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass			
FCC Part 15.247(e) RSS-247 Issue 2 Section 5.2	Power Spectral Density	Pass			
FCC Part 15.209, 15.247(d) RSS-247 Issue 2 Section 5.5	Band Edge Measurement	Pass			
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	Pass			

Lincoln, NE 68521 Page 4 of 39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	A04540
IC	1792A-04540
FCC ID	IPH-04540
EUT Received	1 December 2022
EUT Tested	1 December 2022- 9 January 2023
Serial No. 3419589455 (Radiated Measurements) 3419589465 (Conducted Measurements)	
Operating Band	2400 – 2483.5 MHz
Device Type	☑ GMSK ☐ GFSK ☐ BT BR ☐ BT EDR 2MB ☐ BT EDR 3MB ☐ 802.11x
Power Supply / Voltage	12VDC Marine battery / 5VDC USB Garmin MN: PSAI05R-050Q PN: 362-00072-00 (Representative power supply for Conducted AC Emissions)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

GMSK Transmissions

Channel	Frequency
Low	2402 MHz
Mid	2440 MHz
High	2480 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 5 of 39

Report Number:	R20221213-20-E1	Rev	0

Prepared for: | Garmin International, Inc.

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)

4740 Discovery Drive

Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of 35 \pm 4%

Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Fox Lane	Test Engineer	Review/Testing and Report
2	Blake Winter	Toot Engineer	Tooting
	blake Willer	Test Engineer	Testing
4	Ethan Schmidt	Test Technician	Testing

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)**	N9038A	MY59050109	July 19, 2022	July 19, 2024
Keysight MXE Signal Analyzer (26.5GHz)**	N9038A	MY56400083	July 19, 2022	July 19, 2024
Keysight EXA Signal Analyzer**	N9010A	MY56070862	July 20, 2021	July 20, 2023
SunAR RF Motion	JB1	A082918-1	July 26, 2022	July 26, 2023
ETS EMCO Red Horn Antenna	3115	00218655	July 21, 2022	July 21, 2023
Com-Power LISN, Single Phase**	LI-220C	20070017	July 18, 2022	July 18, 2024
8447F POT H64 Preamplifier*	8447F POT H64	3113AD4667	March 21, 2022	March 21, 2024
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	August 22, 2022	August 22, 2024
Trilithic High Pass Filter*	6HC330	23042	March 21, 2022	March 21, 2024
ETS – Lindgren- VSWR on 10m Chamber***	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2023
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 25, 2022	May 25, 2024
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)*	MFR-57500	90-195-040	August 22, 2022	August 22, 2024
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	September 24, 2021	September 24, 2023
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3864	September 24, 2021	September 24, 2023
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	September 24, 2021	September 24, 2023
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	September 24, 2021	September 24, 2023
N connector bulkhead (control room)*	PE9128	NCEEBH2	September 24, 2021	September 24, 2023

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 7 of 39

^{**2} Year Cal Cycle

^{***3} Year Cal Cycle

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 2 - Radiated Emissions Test Setup

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 8 of 39

Prepared for: Garmin International, Inc.

4.0 **RESULTS**

	DTS Radio Measurements							
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	6 dB Bandwidth (kHz)	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	PSD (dBm)	RESULT	
Low	GMSK 1Mb	1040.1	702.4	5.532	3.574	-9.571	PASS	
Mid	GMSK 1Mb	1045.4	705.9	5.434	3.495	-10.113	PASS	
High	GMSK 1Mb	1041.9	711.9	4.496	2.816	-10.196	PASS	
Occupied Ba	andwidth = N/A ;	6 dB Bandwidth Li	mit = 500 kHz	Peak Output Pov	wer Limit = 30	dBm; PSD Li	mit = 8 dBm	
			Unrestricted E	Band-Edge				
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Delta (dB)	Min Delta (dB)	Result	
Low	GMSK 1Mb	2400.00	54.025	105.597	51.572	20.00	PASS	
High	GMSK 1Mb	2483.50	49.854	111.527	61.673	20.00	PASS	
		P	eak Restricted	l Band-Edge				
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin (dB)	Result	
Low	GMSK 1Mb	2390.00	53.881	Peak	73.98	20.099	PASS	
High	GMSK 1Mb	2483.50	55.741	Peak	73.98	18.239	PASS	
*Limit showr	is the peak limi	t taken from FCC	Part 15.209					
	·	Ave	erage Restricte	ed Band-Edge				
CHANNEL	Mode	Band edge /Measurement Frequency	Highest out of band level (dBuV/m @	Detector	Limit (dBuV/m @ 3m)	Margin (dB)	Result	

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin (dB)	Result
---------	------	---	---	----------	---------------------------	----------------	--------

Average

Average

53.98

53.98

9.469

7.609

PASS

PASS

2390.00

2483.50

44.511

46.371

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

GMSK 1Mb

GMSK 1Mb

Low

High

Page 9 of 39

^{*}Limit shown is the average limit taken from FCC Part 15.209

Highest out of band level = Peak Average out of band level + DCCF (as per C63.10 Sec. 11.12.2.5.2)

Prepared for: | Garmin International, Inc.

4.1 OUTPUT POWER

Test Method: All measurements were performed using the section 11.9.2.2.2 from ANSI C63.10.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 10 of 39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International Inc		

4.2 BANDWIDTH

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 11 of 39

Report Number: R20221213-20-E1 Rev 0

Prepared for: Garmin International, Inc.

4.3 DUTY CYCLE

Test Method:

Manufacturer declares worst-case real world duty cycle to be 34% DCCF = 20*log(0.34) = -9.37dB

Prepared for:

Garmin International, Inc.

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.
- 4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worst-case emissions are presented.

Page 13 of 39

 Report Number:
 R20221213-20-E1
 Rev
 0

 Prepared for:
 Garmin International, Inc.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Prepared for: | Garmin International, Inc.

Test setup:

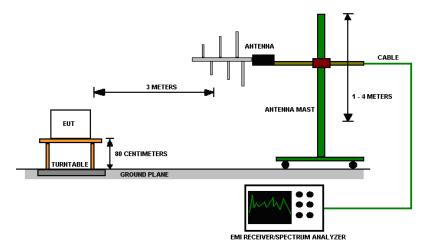


Figure 3 - Radiated Emissions Test Setup

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Page 15 of 39

Prepared for: Garmin International, Inc.

Test results:

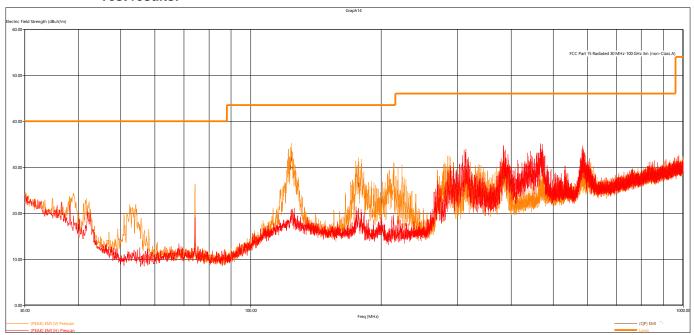


Figure 4 - Radiated Emissions Plot, Receive

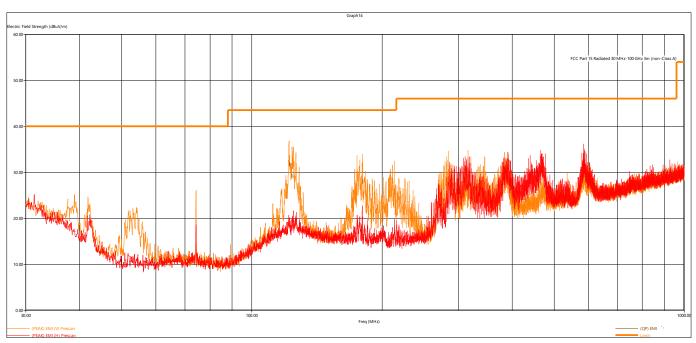


Figure 5 - Radiated Emissions Plot, GMSK 1MB

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

	Quasi-Peak Measurements, GMSK							
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
121.968960	31.69	43.52	11.83	115.00	302.00	V	Low	GMSK 1MB
123.628560	29.06	43.52	14.46	112.00	359.00	V	Low	GMSK 1MB
180.139920	27.92	43.52	15.60	117.00	77.00	V	Low	GMSK 1MB
383.748720	27.75	46.02	18.27	215.00	273.00	Н	Receive	
123.589440	29.85	43.52	13.67	112.00	337.00	V	Receive	
124.055280	31.72	43.52	11.80	108.00	326.00	V	Receive	
177.382800	26.05	43.52	17.47	118.00	80.00	V	Re	ceive

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above.

All other measurements were found to be at least 6 dB below the limit.

Prepared for: | Garmin International, Inc.

	Peak Measurements, GMSK							
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBμV/m	dBµV/m	dB	cm.	deg.			
2401.694000	102.57	NA	NA	391.00	120.00	Н	Low	GMSK 1MB
2439.736000	103.26	NA	NA	161.00	133.00	Н	Mid	GMSK 1MB
2479.674000	100.31	NA	NA	155.00	140.00	Н	High	GMSK 1MB
4803.566000	53.47	73.98	20.51	357.00	347.00	Н	Low	GMSK 1MB
7206.998000	56.44	73.98	17.54	122.00	218.00	Н	Low	GMSK 1MB
4879.340000	53.97	73.98	20.01	277.00	347.00	Н	Mid	GMSK 1MB
7320.040000	56.34	73.98	17.64	260.00	74.00	Н	Mid	GMSK 1MB
4960.500000	55.37	73.98	18.61	559.00	345.00	Н	High	GMSK 1MB
7438.898000	54.56	73.98	19.42	262.00	234.00	Н	High	GMSK 1MB
9918.782000	53.49	73.98	20.49	203.00	140.00	V	High	GMSK 1MB

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above.

All other measurements were found to be at least 6 dB below the limit.

	Average Measurements, GMSK							
Freq.	Avg Level	Limit	Margin	Height	Angle	Pol	Ch.	Mod.
MHz	dBμV/m	dBµV/m	dB	cm.	deg.			
2401.694000	93.20	NA	NA	391.00	120.00	Н	Low	GMSK 1MB
2439.736000	93.89	NA	NA	161.00	133.00	Н	Mid	GMSK 1MB
2479.674000	90.94	NA	NA	155.00	140.00	Н	High	GMSK 1MB
4803.566000	44.10	53.98	9.88	357.00	347.00	Н	Low	GMSK 1MB
7206.998000	47.07	53.98	6.91	122.00	218.00	Н	Low	GMSK 1MB
4879.340000	44.60	53.98	9.38	277.00	347.00	Н	Mid	GMSK 1MB
7320.040000	46.97	53.98	7.01	260.00	74.00	Н	Mid	GMSK 1MB
4960.500000	46.00	53.98	7.98	559.00	345.00	Н	High	GMSK 1MB
7438.898000	45.19	53.98	8.79	262.00	234.00	Н	High	GMSK 1MB
9918.782000	44.12	53.98	9.86	203.00	140.00	V	High	GMSK 1MB

Avg Level = Peak Level + DCCF (See section 4.3 for more information on Duty Cycle)

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the table above.

All other measurements were found to be at least 6 dB below the limit.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 39

Report Number:	R20221213-20-E1	Rev	0

Prepared for: Ga

Garmin International, Inc.

4.5 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.8 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 39

Prepared for: | Garmin International, Inc.

Test Results:

Figure 6 - Conducted Emissions Plot, Line, TX

Figure 7 - Conducted Emissions Plot, Neutral, TX

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 20 of 39

Prepared for: | Garmin International, Inc.

Figure 8 - Conducted Emissions Plot, Line, IDLE

Figure 9 - Conducted Emissions Plot, Neutral, IDLE

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 39

Prepared for: | Garmin International, Inc.

4.6 CONDUCTED SPURIOUS EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 20dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Note that the limit shown on the plots does not apply. It is a line for reference only. All measurements were found to be at least 6 dB below any applicable limits.

Page 22 of 39

Prepared for: | Garmin International, Inc.

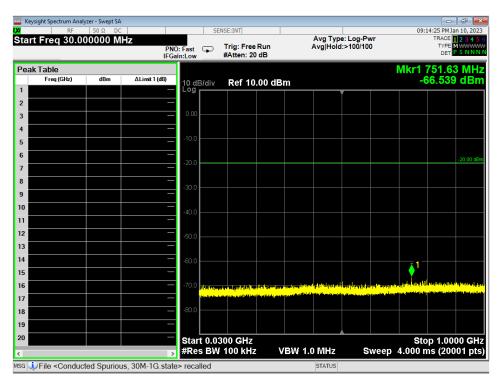


Figure 10 - Radiated Emissions Plot, GMSK 1MB, 30MHz - 1GHz, Low

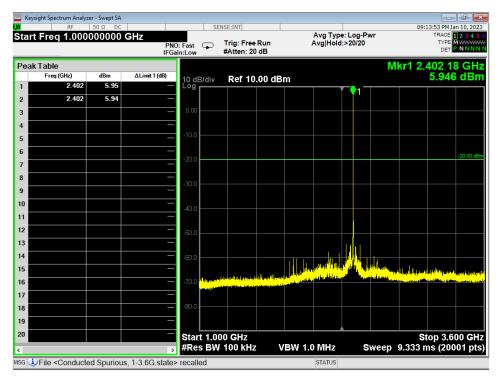


Figure 11 - Radiated Emissions Plot, GMSK 1MB, 1GHz - 3.6GHz, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 39

Prepared for: | Garmin International, Inc.

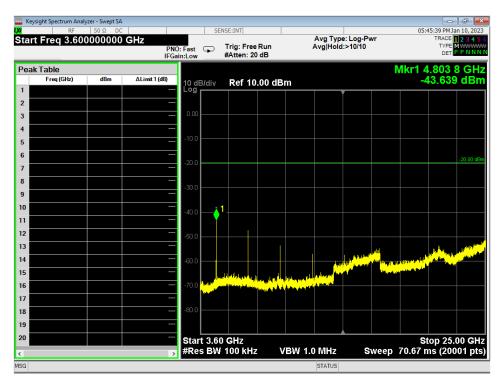


Figure 12 - Radiated Emissions Plot, GMSK 1MB, 3.6GHz - 25GHz, Low

Page 24 of 39

Prepared for: Garmin International, Inc.

4.7 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, Section 11.12.2.5.2. Details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Page 25 of 39

 Report Number:
 R20221213-20-E1
 Rev
 0

 Prepared for:
 Garmin International, Inc.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in the Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209.
- 4. Tabulated data is listed in section 4.0.

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

4.8 POWER SPECTRAL DENSITY

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in the Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Page 27 of 39

Report Number:	R20221213-20-E1	Rev	0

Prepared for: | Garm

Garmin International, Inc.

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 dB\mu V/m$$

The 48.1 dB_μV/m value can be mathematically converted to its corresponding level in μV/m.

Level in $\mu V/m = Common Antilogarithm [(48.1 dB<math>\mu V/m)/20$]= 254.1 $\mu V/m$

AV is calculated by the taking the $20*log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 28 of 39

R20221213-20-E1 Report Number: Rev 0

Prepared for: Garmin International, Inc.

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = 10^{Power} (dBm)/10] / 1000

Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 29 of 39

Report Number:	R20221213-20-E1	Rev	0
Prepared for:	Garmin International, Inc.		

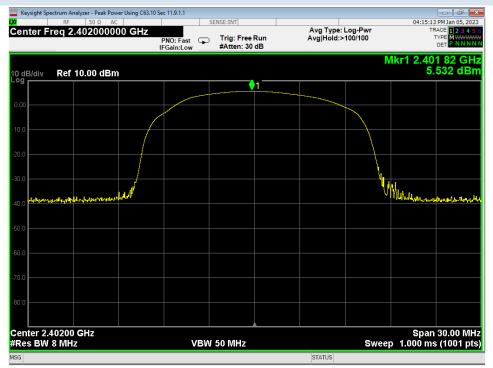
APPENDIX B - MEASUREMENT UNCERTAINTY

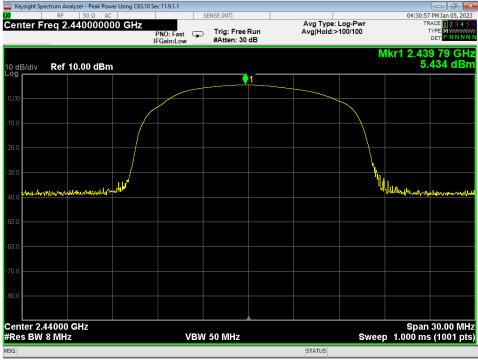
Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03

Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

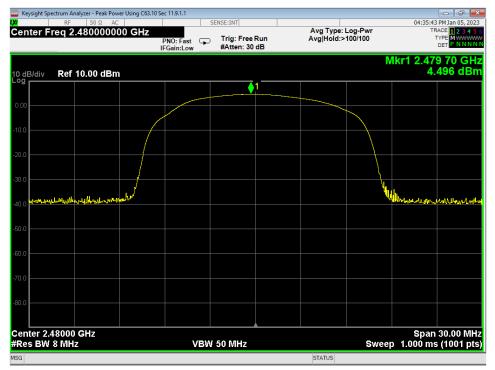

Page 30 of 39


Prepared for:

Garmin International, Inc.

APPENDIX C - GRAPHS AND TABLES

01 Peak Power, Low Channel, GMSK 1MB


02 Peak Power, Mid Channel, GMSK 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 39

Prepared for: | Garmin International, Inc.

03 Peak Power, High Channel, GMSK 1MB

04 6dB Bandwidth, Low Channel, GMSK 1MB

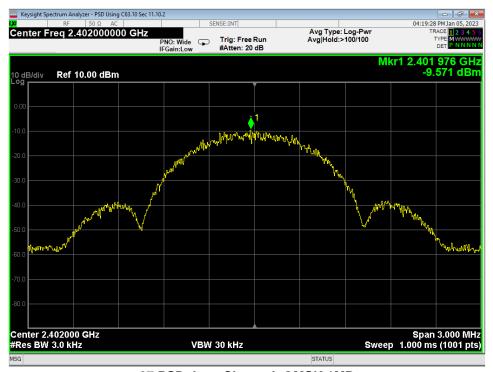
The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 39

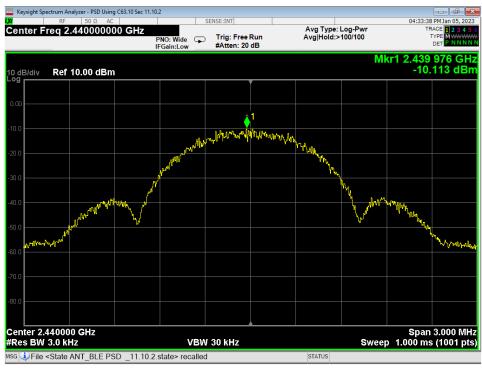
Prepared for:

Garmin International, Inc.

05 6dB Bandwidth, Mid Channel, GMSK 1MB


06 6dB Bandwidth, High Channel, GMSK 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

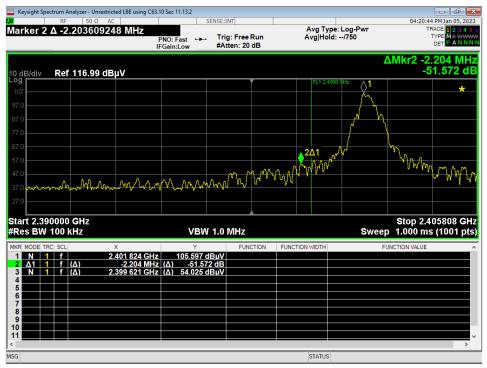

Page 33 of 39

Prepared for: | Garmin International, Inc.

07 PSD, Low Channel, GMSK 1MB


08 PSD, Mid Channel, GMSK 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 34 of 39

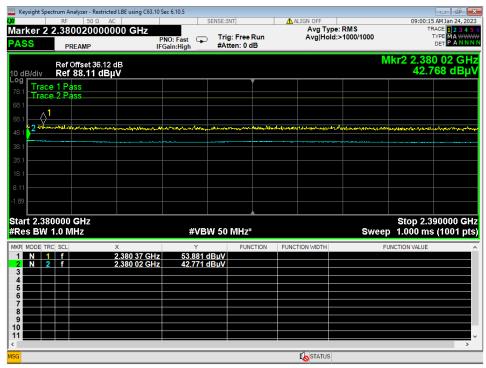
Prepared for: | Garmin International, Inc.

09 PSD, High Channel, GMSK 1MB

10 LBE, unrestricted GMSK 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 35 of 39



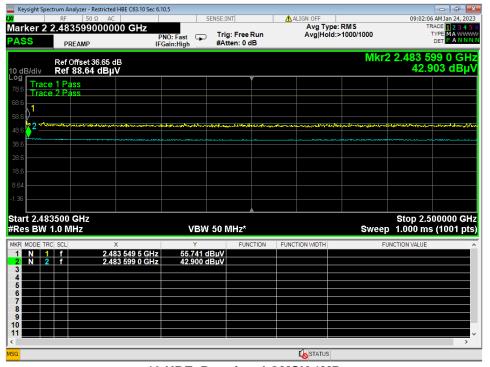
Prepared for: | Garmin II

Garmin International, Inc.

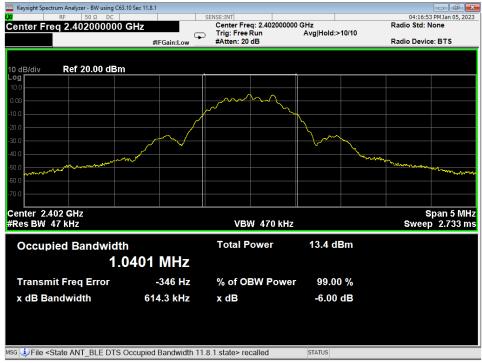
11 HBE, unrestricted GMSK 1MB

12 LBE, Restricted GMSK 1MB

*Ignore the average measurement in this plot. Average measurement for restricted band edge in section 4.0 is calculated by subtracting DCCF from section 4.3 from peak measurement.


The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 36 of 39

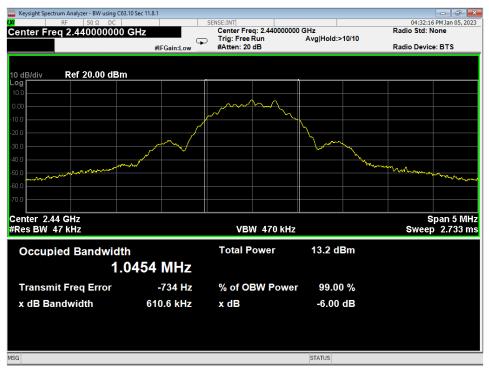

Prepared for: | Garmi

Garmin International, Inc.

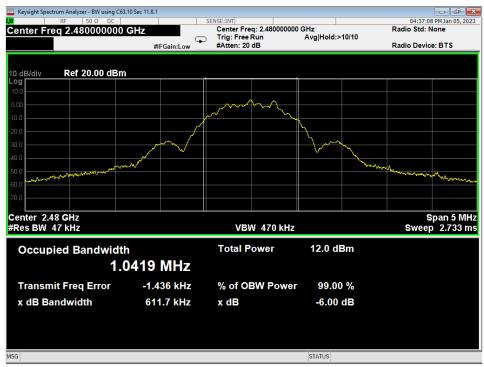
13 HBE, Restricted GMSK 1MB

*Ignore the average measurement in this plot. Average measurement for restricted band edge in section 4.0 is calculated by subtracting DCCF from section 4.3 from peak measurement.

14 Occupied Bandwidth, Low Channel, GMSK 1MB


The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 37 of 39



Prepared for:

Garmin International, Inc.

15 Occupied Bandwidth, Mid Channel, GMSK 1MB

16 Occupied Bandwidth, High Channel, GMSK 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 38 of 39

 Report Number:
 R20221213-20-E1
 Rev
 0

 Prepared for:
 Garmin International, Inc.

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 39 of 39