

TEST REPORT

Report No.:	BCTC2404684919E
Applicant:	Shenzhen Telesin Digital Ltd
Product Name:	Rechargeable Shorty Tripod With Remote Control
Test Model:	S1-CSS-01-TGP
Tested Date:	2024-05-16 to 2024-06-19
Issued Date:	2024-06-19

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005

Page: 1 of 58

Edition: B.2

FCC ID: 2A8ME-S1

Product Name:	Rechargeable Shorty Tripod With Remote Control
Trademark:	N/N
Model/Type reference:	S1-CSS-01-TGP S1-CSS-01-TDJ
Prepared For:	Shenzhen Telesin Digital Ltd
Address:	Room 526, 5/F, Block B, Bairuida Building, Vanke City Community, Bantian Street, Longgang District, Shenzhen, Guangdong, China. 518000
Manufacturer:	Dongguan Thaisam Industrial Co., Ltd.
Address:	No. 29 Shuixin Road, Dalang Town, Dongguan City, Guangdong Province, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-04-25
Sample tested Date:	2024-05-16 to 2024-06-19
Issue Date:	2024-06-19
Report No.:	BCTC2404684919E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth BLE radio test report.

Tested by:

Chen

Lei Chen/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

/Edition: B.2

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	9
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	11
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	13
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	16
7.2	Limit	
7.3	Test Procedure	18
7.4	EUT Operating Conditions	19
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Oper	ation24
8.1	Block Diagram Of Test Setup	24
8.2	Limit	
8.3	Test Procedure	
8.4	EUT operating Conditions	25
8.5	Test Result	26
9.	Power Spectral Density Test	27
9.1	Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions	27
9.2	Limit	27
9.3	Test Procedure	27
9.4	EUT Operating Conditions	27
9.5	Test Result	28
10.	Bandwidth Test	32
10.1	Block Diagram Of Test Setup	32
10.2	Test Result Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions Test Result Peak Output Power Test Plack Diagram Of Test Setup	32
10.3	Test Procedure	32
10.4	EUT Operating Conditions	
10.5	Test Result	
11.	Peak Output Power Test	
11.1	Block Diagram Of Test Setup	37

JC 3C

PR

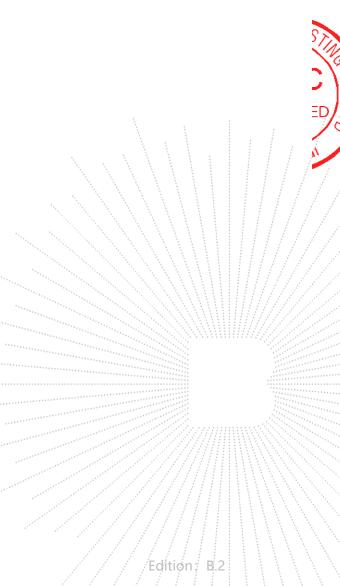
ероі

11.2 Limit	37
11.3 Test Procedure	37
11.4 EUT Operating Conditions	37
11.5 Test Result	37
12. 100 KHz Bandwidth Of Frequency Band Edge	38
12.1 Block Diagram Of Test Setup	38
12.2 Limit	38
12.3 Test Procedure	38
12.4 EUT Operating Conditions	38
12.5 Test Result	39
13. Duty Cycle Of Test Signal	49
13.1 Standard Requirement	49
13.2 Formula	49
13.3 Measurement Procedure	49
13.4 Test Result	49
14. Antenna Requirement	53
14.1 Limit	
14.2 Test Result	53
15. EUT Photographs	54
16. EUT Test Setup Photographs	56

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

TE.


T(ovi

t Sea

1. Version

Report No.	Issue Date	Description	Approved
BCTC2404684919E	2024-06-19	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

C CO.,LTA

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	S1-CSS-01-TGP S1-CSS-01-TDJ	
Model differences:	All the model are	the same circuit and RF module, except model names.
Hardware Version:	V3.1	
Software Version:	V3.1	
Operation Frequency:	2402-2480MHz	
Type of Modulation:	GFSK (1Mbps, 2	Mbps)
Number Of Channel:	40 CH	
Antenna installation:	Chip antenna	
Antenna Gain:	customer, and the	gain of the product comes from the antenna report provided by the e test data is affected by the customer information. gain of the product is provided by the customer, and the test data customer information. USB-C Input: DC 5V 2A, 9V 1.5A, 12V 1A
Ratings:	Shorty Tripod:	USB-C Output: DC 5V 2A, 9V 1.5A, 12V 1A Battery: DC 3.7V
	Remote Control:	DC 5V from Shorty Tripod, DC 3.7V from battery


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

E-1	C-1	E-2	AC
EUT		Adapter	

Radiated Spurious Emission:

PDO

B.2

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Rechargeable Shorty Tripod With Remote Control	N/N	S1-CSS-01-TGP	S1-CSS-01-TDJ	EUT
E-2	Adapte	N/A	CD122	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.3M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2402	11	2422	21	2442	
02	2404	12	2424	22	2444	
03	2406	13	2426	23	2446	
~	~	~	~	~	~	
09	2418	19	2438	39	2478	
10	2420	20	2440	40	2480	

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type			
Mode 1	CH01				
Mode 2	CH20	GFSK 1M			
Mode 3	CH40				
Mode 4	CH01				
Mode 5	CH20	GFSK 2M			
Mode 6	CH40				
Mode 7	Link mode (Conducted emission & Radiated emission)				

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT			
Frequency	2402 MHz	2440 MHz	2480 MHz	
Parameters	DEF	DEF	DEF	

TE, OVI

t Se

No.: BCTC/RF-EMC-005

5. Test Facility And Test Instrument Used

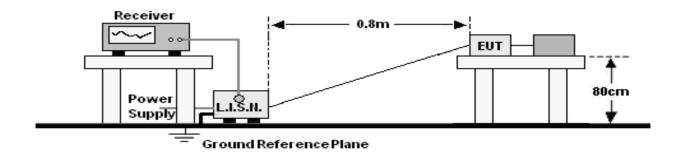
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

Conducted Emissions Test								
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.								
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	EMC-CON 3A1	\	١			
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025			

5.2 Test Instrument Used

RF Conducted Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power meter	Keysight	E4419	\	May 16, 2024	May 15, 2025		
Power Sensor (AV)	Keysight	E9300A	١	May 16, 2024	May 15, 2025		
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025		
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025		
Radio frequency control box	MAIWEI	MW100-RFC B	\ \	· · · · · · · · · · · · · · · · · · ·			
Software	MAIWEI	MTS 8310	Ι	······	A.		


	Radiated Emissions Test (966 Chamber01)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025				
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025				
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025				
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025				
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025				
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 16, 2024	May 15, 2025				
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025				
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025				
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025				
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025				
Software	Frad	EZ-EMC	FA-03A2 RE	\	١				

2 CO.,LTA

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit	(dBuV)
FREQUENCY (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

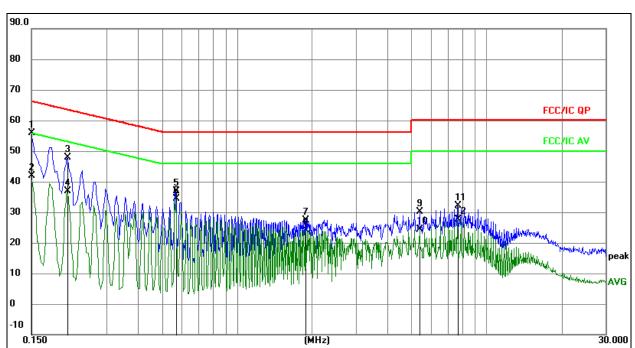
6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT Operating Conditions

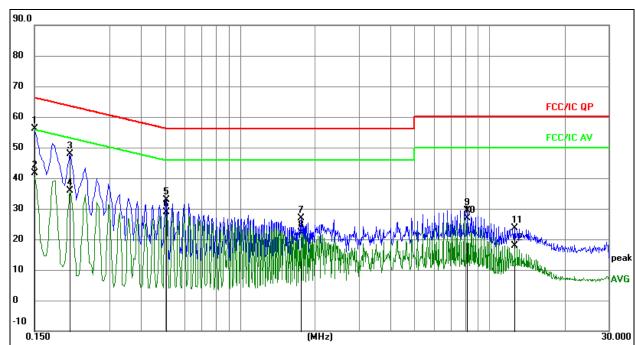
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 7

Remark:

1. All readings are Quasi-Peak and Average values.


2. Factor = Insertion Loss + Cable Loss.

- 3. Measurement=Reading Level+ Correct Factor
- 4. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1500	36.27	19.73	56.00	66.00	-10.00	QP
2		0.1500	22.19	19.73	41.92	56.00	-14.08	AVG
3		0.2085	27.96	19.83	47.79	63.26	-15.47	QP
4		0.2085	17.07	19.83	36.90	53.26	-16.36	AVG
5		0.5684	16.92	19.84	36.76	56.00	-19.24	QP
6		0.5684	14.59	19.84	34.43	46.00	-11.57	AVG
7		1.8824	7.51	19.95	27.46	56.00	-28.54	QP
8		1.8824	4.25	19.95	24.20	46.00	-21.80	AVG
9		5.4015	9.70	20.33	30.03	60.00	-29.97	QP
10		5.4015	4.17	20.33	24.50	50.00	-25.50	AVG
11		7.6605	12.14	19.94	32.08	60.00	-27.92	QP
12		7.6605	7.67	19.94	27.61	50.00	-22.39	AVG

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 7

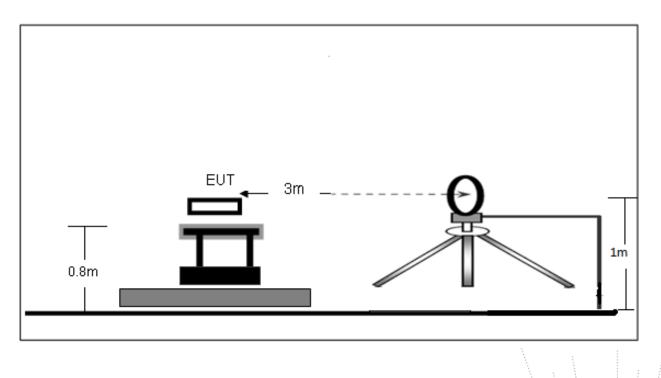
Remark:

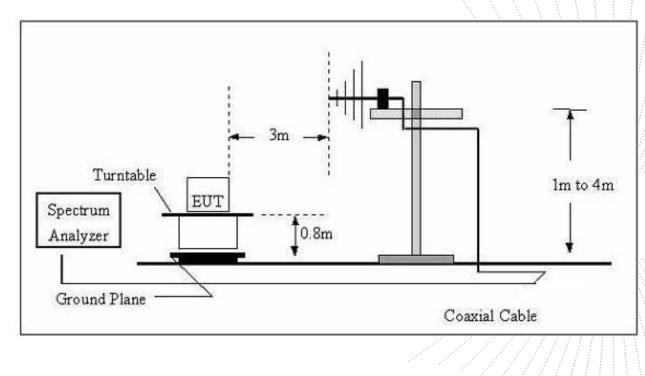
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

3. Measurement=Reading Level+ Correct Factor

4. Over=Measurement-Limit


No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1500	36.36	19.73	56.09	66.00	-9.91	QP
2	0.1500	21.93	19.73	41.66	56.00	-14.34	AVG
3	0.2083	28.07	19.83	47.90	63.27	-15.37	QP
4	0.2083	16.12	19.83	35.95	53.27	-17.32	AVG
5	0.5047	12.93	19.84	32.77	56.00	-23.23	QP
6	0.5047	9.13	19.84	28.97	46.00	-17.03	AVG
7	1.7529	7.04	19.95	26.99	56.00	-29.01	QP
8	1.7529	2.15	19.95	22.10	46.00	-23.90	AVG
9	8.1483	9.51	19.93	29.44	60.00	-30.56	QP
10	8.1483	6.92	19.93	26.85	50.00	-23.15	AVG
11	12.6489	3.82	19.88	23.70	60.00	-36.30	QP
12	12.6489	-1.92	19.88	17.96	50.00	-32.04	AVG

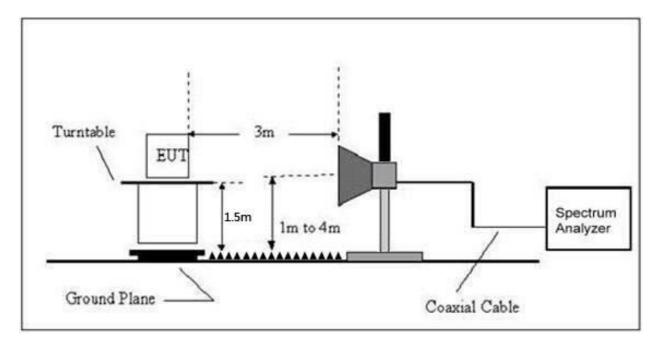

7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

TE,


T

OVI

se

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)
FREQUENCI (MH2)	PEAK AVERAGE
Above 1000	74 54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

) ED

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting			
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average			

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Edition: B.2

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	24%
Pressure:	101 kPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 7	Polarization:	\pm

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
			· · · · · · · · · · · · · · · · · · ·	PASS

Note:

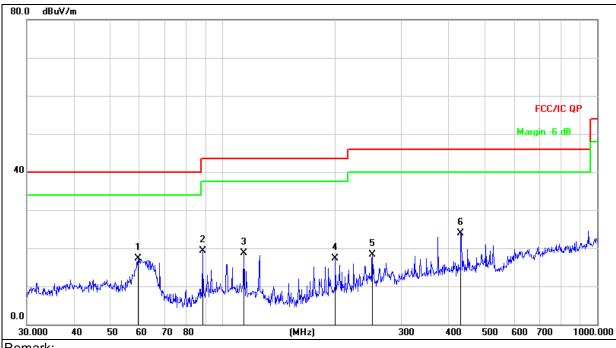
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 7	Remark:	N/A


Measurement=Reading Level+ Correct Fact
Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		113.7143	32.02	-16.89	15.13	43.50	-28.37	QP
2		207.8501	37.94	-15.50	22.44	43.50	-21.06	QP
3		251.1804	38.64	-14.27	24.37	46.00	-21.63	QP
4		360.4476	35.43	-11.35	24.08	46.00	-21.92	QP
5	* (922.5157	36.28	-3.04	33.24	46.00	-12.76	QP
6		1000.000	40.25	-2.36	37.89	54.00	-16.11	QP

No.: BCTC/RF-EMC-005

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 7	Remark:	N/A

Remark:

1.Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		59.4405	32.38	-15.17	17.21	40.00	-22.79	QP
2		88.3421	37.14	-17.79	19.35	43.50	-24.15	QP
3		113.7143	35.54	-16.89	18.65	43.50	-24.85	QP
4		199.9856	33.05	-15.72	17.33	43.50	-26.17	QP
5		251.1804	32.67	-14.27	18.40	46.00	-27.60	QP
6	*	432.5457	34.20	-10.20	24.00	46.00	-22.00	QP

,TC 3C

⊃₽R

ероі

			GFSK	1Mbps						
Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector			
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре			
Low channel										
V	4804.00	70.69	-19.99	50.70	74.00	-23.30	PK			
V	4804.00	61.42	-19.99	41.43	54.00	-12.57	AV			
V	7206.00	62.49	-14.22	48.27	74.00	-25.73	PK			
V	7206.00	51.84	-14.22	37.62	54.00	-16.38	AV			
Н	4804.00	69.03	-19.99	49.04	74.00	-24.96	PK			
Н	4804.00	59.88	-19.99	39.89	54.00	-14.11	AV			
Н	7206.00	61.23	-14.22	47.01	74.00	-26.99	PK			
Н	7206.00	53.15	-14.22	38.93	54.00	-15.07	AV			
			Middle	channel						
V	4880.00	69.06	-19.84	49.22	74.00	-24.78	PK			
V	4880.00	62.36	-19.84	42.52	54.00	-11.48	AV			
V	7320.00	60.70	-13.90	46.80	74.00	-27.20	PK			
V	7320.00	51.40	-13.90	37.50	54.00	-16.50	AV			
Н	4880.00	65.63	-19.84	45.79	74.00	-28.21	PK			
Н	4880.00	55.79	-19.84	35.95	54.00	-18.05	AV			
Н	7320.00	58.06	-13.90	44.16	74.00	-29.84	PK			
Н	7320.00	49.56	-13.90	35.66	54.00	-18.34	AV			
			High c	hannel						
V	4960.00	71.15	-19.68	51.47	74.00	-22.53	PK			
V	4960.00	62.55	-19.68	42.87	54.00	-11.13	AV			
V	7440.00	64.49	-13.57	50.92	74.00	-23.08	PK			
V	7440.00	55.18	-13.57	41.61	54.00	-12.39	AV			
Н	4960.00	68.38	-19.68	48.70	74.00	-25.30	PK			
Н	4960.00	58.37	-19.68	38.69	54.00	-15.31	AV			
Н	7440.00	63.26	-13.57	49.69	74.00	-24.31	PK			
Н	7440.00	54.97	-13.57	41.40	54.00	-12.60	AV			

Between 1GHz – 25GHz

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,...

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

GFSK 2Mbps									
Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре		
		-	Low c	hannel					
V	4804.00	69.87	-19.99	49.88	74.00	-24.12	PK		
V	4804.00	59.97	-19.99	39.98	54.00	-14.02	AV		
V	7206.00	61.39	-14.22	47.17	74.00	-26.83	PK		
V	7206.00	52.19	-14.22	37.97	54.00	-16.03	AV		
Н	4804.00	68.71	-19.99	48.72	74.00	-25.28	PK		
Н	4804.00	59.09	-19.99	39.10	54.00	-14.90	AV		
Н	7206.00	59.40	-14.22	45.18	74.00	-28.82	PK		
Н	7206.00	51.47	-14.22	37.25	54.00	-16.75	AV		
			Middle	channel					
V	4880.00	67.44	-19.84	47.60	74.00	-26.40	PK		
V	4880.00	58.83	-19.84	38.99	54.00	-15.01	AV		
V	7320.00	57.59	-13.90	43.69	74.00	-30.31	PK		
V	7320.00	49.36	-13.90	35.46	54.00	-18.54	AV		
Н	4880.00	63.80	-19.84	43.96	74.00	-30.04	PK		
Н	4880.00	52.94	-19.84	33.10	54.00	-20.90	AV		
Н	7320.00	55.62	-13.90	41.72	74.00	-32.28	PK		
Н	7320.00	47.11	-13.90	33.21	54.00	-20.79	AV		
			High c	hannel					
V	4960.00	69.51	-19.68	49.83	74.00	-24.17	PK		
V	4960.00	61.48	-19.68	41.80	54.00	-12.20	AV		
V	7440.00	61.49	-13.57	47.92	74.00	-26.08	PK		
V	7440.00	52.25	-13.57	38.68	54.00	-15.32	AV		
Н	4960.00	67.41	-19.68	47.73	74.00	-26.27	PK		
Н	4960.00	56.87	-19.68	37.19	54.00	-16.81	AV		
Н	7440.00	59.93	-13.57	46.36	74.00	-27.64	PK		
Н	7440.00	51.03	-13.57	37.46	54.00	-16.54	AV		

Between 1GHz - 25GHz

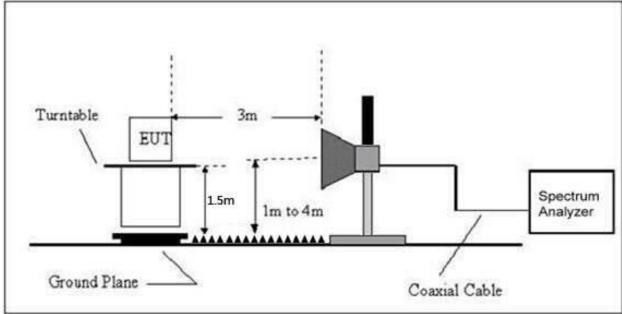
Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.


3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74 54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting		
Attenuation	Auto		
Start Frequency	2300MHz		
Stop Frequency	2520		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits IV/m)	Result	
			(dBuV/m)	(dB)	PK	PK	AV		
	Low Channel 2402MHz								
	Н	2390.00	71.31	-25.43	45.88	74.00	54.00	PASS	
	Н	2400.00	75.98	-25.40	50.58	74.00	54.00	PASS	
	V	2390.00	70.31	-25.43	44.88	74.00	54.00	PASS	
GFSK	V	2400.00	75.05	-25.40	49.65	74.00	54.00	PASS	
1Mbps			Hig	h Channel 248	80MHz	-			
	Н	2483.50	75.31	-25.15	50.16	74.00	54.00	PASS	
	Н	2500.00	70.00	-25.10	44.90	74.00	54.00	PASS	
	V	2483.50	73.56	-25.15	48.41	74.00	54.00	PASS	
	V	2500.00	69.81	-25.10	44.71	74.00	54.00	PASS	
		Low Channel 2402MHz							
	Н	2390.00	71.68	-25.43	46.25	74.00	54.00	PASS	
	Н	2400.00	75.25	-25.40	49.85	74.00	54.00	PASS	
	V	2390.00	72.20	-25.43	46.77	74.00	54.00	PASS	
GFSK	V	2400.00	76.03	-25.40	50.63	74.00	54.00	PASS	
2Mbps			Hig	h Channel 248	80MHz	-	-		
	Н	2483.50	75.46	-25.15	50.31	74.00	54.00	PASS	
	Н	2500.00	70.07	-25.10	44.97	74.00	54.00	PASS	
	V	2483.50	75.67	-25.15	50.52	74.00	54.00	PASS	
	V	2500.00	71.46	-25.10	46.36	74.00	54.00	PASS	

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 26 of 58

Edition: B.2

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

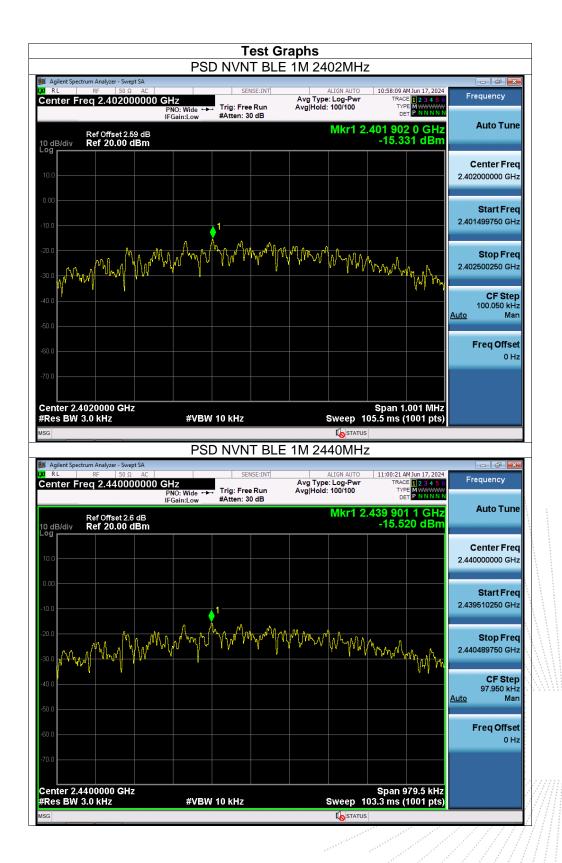
9.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

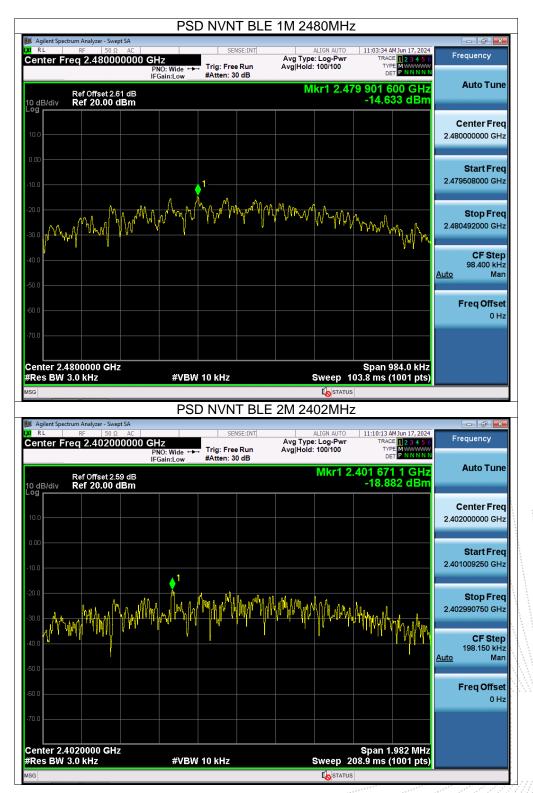
Page: 27 of 58

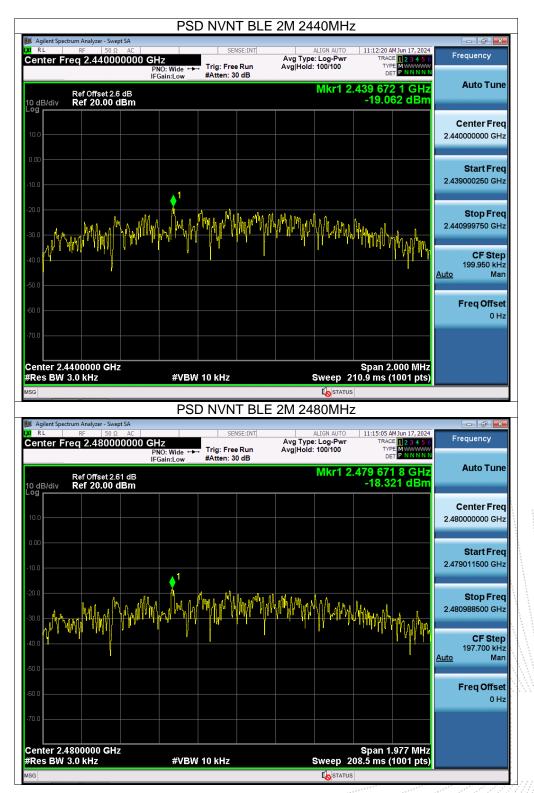
Edition: B.2

PDO


9.5 Test Result

Temperature:	26 ℃		Relative Humic	Relative Humidity:		
Test Mode:	GFSK		Test Voltage:		DC 3.7V	
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)		.imit n/3kHz)	Verdict
NVNT	BLE 1M	2402	-15.33		8	Pass
NVNT	BLE 1M	2440	-15.52		8	Pass
NVNT	BLE 1M	2480	-14.63		8	Pass
NVNT	BLE 2M	2402	-18.88		8	Pass
NVNT	BLE 2M	2440	-19.06		8	Pass
NVNT	BLE 2M	2480	-18.32		8	Pass


Page: 28 of 58



Page: 29 of 58

CHENZHE

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

10.3 Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

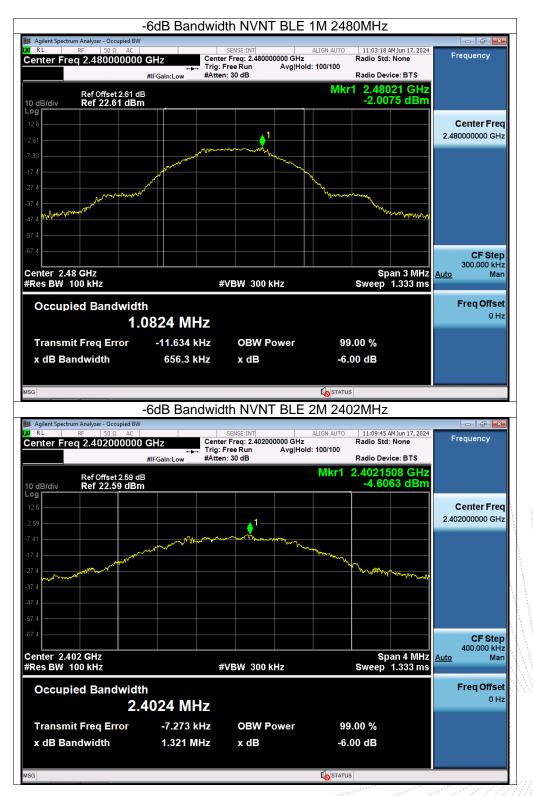
10.4 EUT Operating Conditions

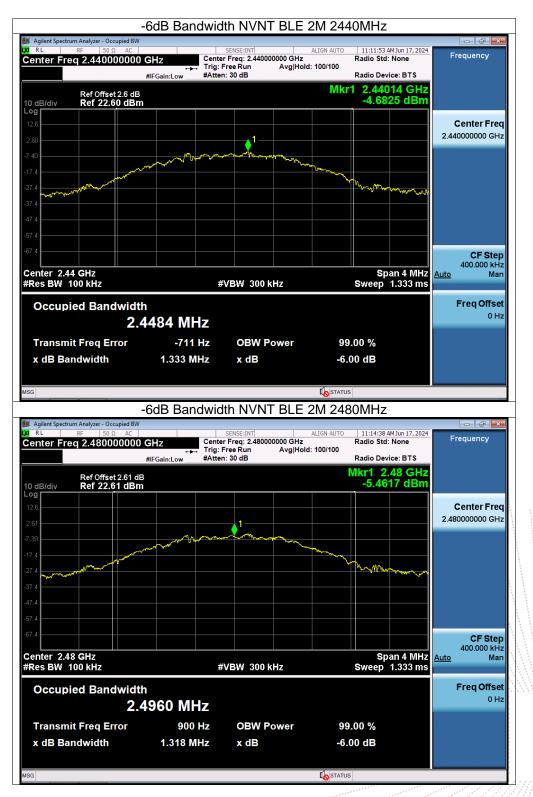
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 32 of 58

10.5 Test Result

Temperature:	26 ℃		Relative Humid	Relative Humidity:		
Test Mode:	GFSK		Test Voltage:	Itage: DC 3.7V		
			-6 dB	Lim	it -6 dB	
Condition	Mode	Frequency (MHz)	Bandwidth (MHz)	Ban	dwidth MHz)	Verdict
NVNT	BLE 1M	2402	0.667		0.5	Pass
NVNT	BLE 1M	2440	0.653		0.5	Pass
NVNT	BLE 1M	2480	0.656		0.5	Pass
NVNT	BLE 2M	2402	1.321		0.5	Pass
NVNT	BLE 2M	2440	1.333		0.5	Pass
NVNT	BLE 2M	2480	1.318		0.5	Pass


JC 3C PR ероі



TE OVE t see

6. CO.,LTA

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C					
Section Test Item		Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

11.5 Test Result

Temperature:	26 °C	Relative Humidity: 54%
Test Mode:	GFSK	Test Voltage: DC 3.7V

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	RVerdict
NVNT	BLE 1M	2402	-1.8	30	Pass
NVNT	BLE 1M	2440	-1.86	30	Pass
NVNT	BLE 1M	2480	-1.09	30	Pass
NVNT	BLE 2M	2402	-1.81	30	Pass
NVNT	BLE 2M	2440	-1.86	30	Pass
NVNT	BLE 2M	2480	-1.08	30	Pass

ENZ

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

12.2 Limit

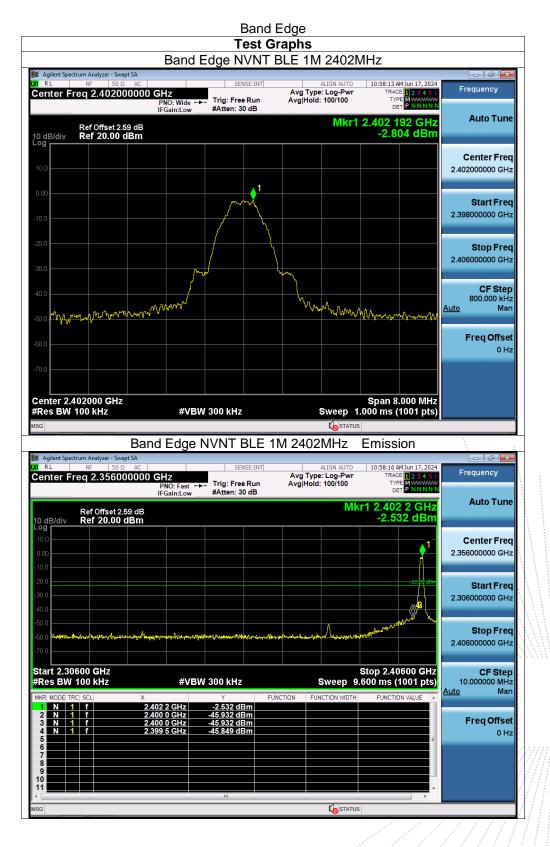
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test Procedure

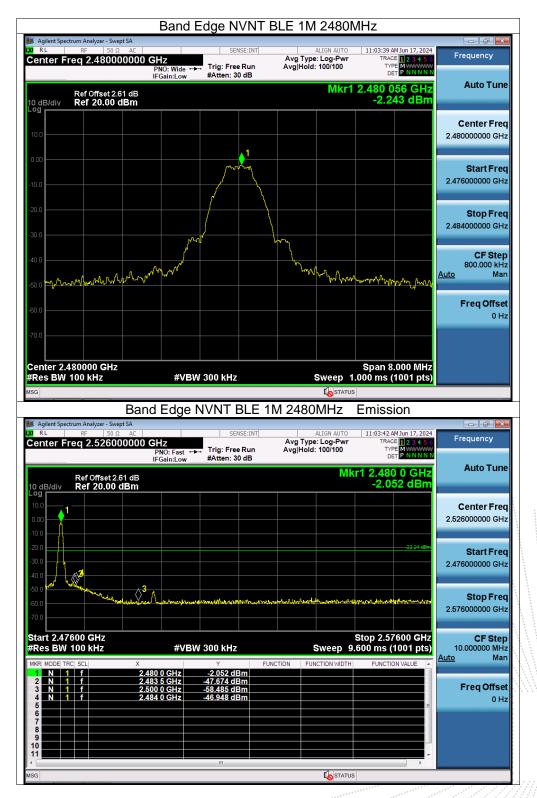
Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

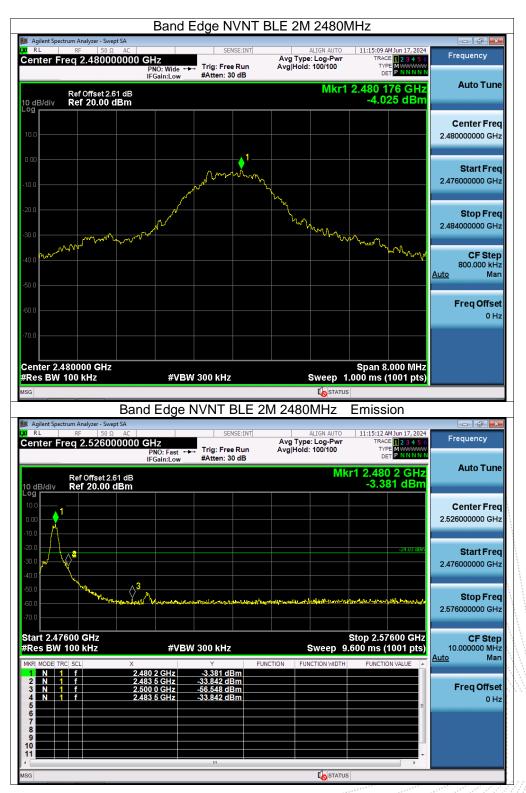
12.4 EUT Operating Conditions

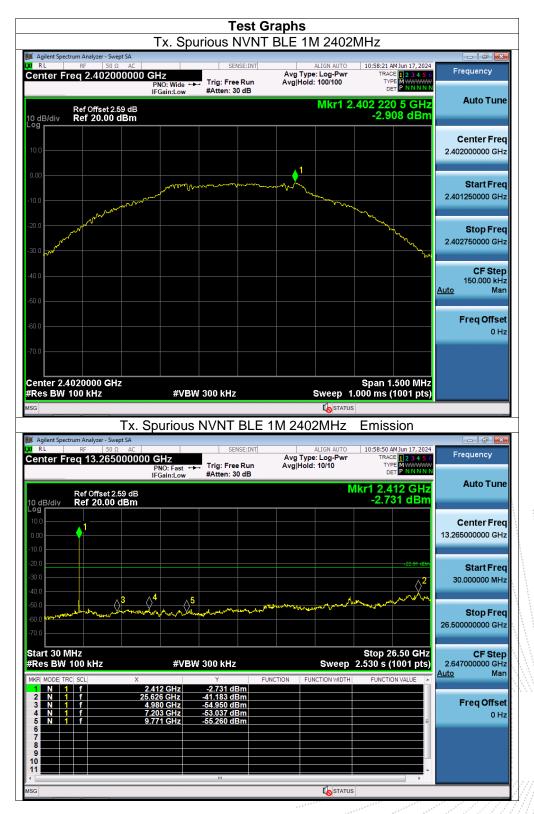

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 38 of 58


Edition: B.2

12.5 Test Result


Edition: B.2


Edition: B.2

C CO., LTA

CHENZHER

JC JC JPR

Edition: B.2

13. Duty Cycle Of Test Signal

13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula

Duty Cycle = Ton / (Ton+Toff)

13.3 Measurement Procedure

- 1. Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

13.4 Test Result

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	
NVNT	BLE 1M	2402	100	
NVNT	BLE 1M	2440	100	
NVNT	BLE 1M	2480	100	
NVNT	BLE 2M	2402	100	
NVNT	BLE 2M	2440	100	
NVNT	BLE 2M	2480	100	

		ycle NVNT I	BLE 1M 2402N	/Hz	
Agilent Spectrum Analyzer - Swept S R L RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	11:18:50 AM Jun 17, 2024	Frequency
enter Freq 2.402000	000 GHz PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	Frequency
Ref Offset 2.59	dB			Mkr1 50.00 ms -1.70 dBm	Auto Tun
9 		1			Center Fre
00		•			2.402000000 GH
).0					Start Fro
0.0					Start Fre 2.402000000 G⊢
).0 .0					
0.0					Stop Fre 2.402000000 G⊢
enter 2.402000000 GH es BW 8 MHz		8.0 MHz	Sweep 10	Span 0 Hz 0.0 ms (10001 pts)	CF Ste 8.000000 MH
R MODE TRC SCL	× 50.00 ms	Y FUI -1.70 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2					Freq Offse
				E	0 H
7					
				· ·	
3		m	STATUS	*	
3	Duty C		BLE 1M 2440N		
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω	AC		BLE 1M 2440N	/Hz	
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω	A AC OOO GHz PNO: Fast ↔	Sycle NVNT I	BLE 1M 2440N	11:19:41 AMJun 17, 2024	Frequency
Agilent Spectrum Analyzer - Swept S RL RF 50Ω enter Freq 2.440000	A AC OOO GHZ PNO: Fast ↔ IFGain:Low		BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Frequency
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω	A AC PNO: Fast IFGain:Low	Sycle NVNT I	BLE 1M 2440N	11:19:41 AMJun 17, 2024 TRACE 2 3 4 5 6 TYPE DET PNNNN	Frequency
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.440000 Ref Offset 2.6 d dB/div Ref 20.00 dB	A AC PNO: Fast IFGain:Low	Sycle NVNT I	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Auto Tun Center Fre
Agilent Spectrum Analyzer - Swept S RL RF 50Ω enter Freq 2.440000 Ref Offset 2.6 d dB/div Ref 20.00 dE	A AC PNO: Fast IFGain:Low	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Frequency Auto Tun
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Ref Offset 2.6 d dB/div Ref 20.00 dE 9 0 0 0 0 0 0	A AC PNO: Fast IFGain:Low	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Frequency Auto Tun Center Fre 2.44000000 GH Start Fre
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Ref Offset 2.6 d dB/div Ref 20.00 dB 9 0 0 0 0 0 0	A AC PNO: Fast IFGain:Low	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Frequency Auto Tun Center Fre
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Ref Offset 2.6 d dB/div Ref 20.00 dB 9 0 0 0 0 0 0 0 0 0 0 0 0 0	A AC PNO: Fast IFGain:Low	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN MKr1 50.00 ms	Frequency Auto Tun Center Fre 2.440000000 GH Start Fre 2.440000000 GH
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Ref Offset 2.6 d dB/div Ref 20.00 dB 9 10 10 10 10 10 10 10 10 10 10	A AC PNO: Fast IFGain:Low	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	11:19:41 AM Jun 17, 2024 TRACE 12 3 4 5 6 TYPE WINNINN DET P.NNNNN Mkr1 50.00 ms	Frequency Auto Tun Center Fre 2.440000000 GH Start Fre 2.440000000 GH
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 G G G G G G G G G G G G G	A AC PNO: Fast IFGain:Low IB B M IZ	Sycle NVNT E	BLE 1M 2440N	AHz 11:19:41 AM Jun 17, 2024 TRACE 12:23 4:5 6 TYPE WWWWWW DET PINNINN Mkr1 50.00 ms -1.75 dBm	Frequency Auto Tun Center Fre 2.440000000 GF Start Fre 2.440000000 GF Stop Fre 2.440000000 GF
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Genter Freq 2.4400000 Ref Offset 2.6 d Ref 20.00 dE 9 9 9 9 9 9 9 9 9 9 9 9 9	A AC PNO: Fast IFGain:Low IB B M IZ	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N	MHz	Frequency Auto Tun Center Fre 2.440000000 GH Start Fre 2.440000000 GH Stop Fre 2.440000000 GH
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 G G G G G G G G G G G G G	A AC 0000 GHz PN0: Fast → IE B M IE IE IE IE IE IE IE IE IE IE	Sycle NVNT E SENSE:INT Trig: Free Run #Atten: 30 dB	BLE 1M 2440N ALIGN AUTO Avg Type: Log-Pwr	AHz 11:19:41 AM Jun 17, 2024 TRACE 12 2 4 5 6 TYPE WWWWWW DET PNNNNN Mkr1 50.00 ms -1.75 dBm Span 0 Hz 0.0 ms (10001 pts)	Frequency Auto Tun Center Fre 2.440000000 GF Start Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF CF Ste 8.000000 MF Auto
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 Genter Freq 2.4400000 Genter Freq 2.4400000 Genter 2.44000000 GH S BW 8 MHz R MODE TRC SCL 1 N 1 t 2 1 t 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A AC O000 GHz PN0: Fast → IFGain:Low IB B M IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IS IS IS IS IS IS IS IS IS	Sycle NVNT E	BLE 1M 2440N ALIGN AUTO Avg Type: Log-Pwr	AHz 11:19:41 AM Jun 17, 2024 TRACE 12 23 4 5 6 TRACE 12 23 4 5 6 TRACE 12 23 4 5 6 TRACE 12 24 5 6 TRACE 12 14 5 6 TRACE 14 5	Frequency Auto Tun Center Fre 2.440000000 GH Start Fre 2.440000000 GH Stop Fre 2.440000000 GH CF Ste 8.000000 MH
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000	A AC O000 GHz PN0: Fast → IFGain:Low IB B M IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IS IS IS IS IS IS IS IS IS	Sycle NVNT E	BLE 1M 2440N ALIGN AUTO Avg Type: Log-Pwr	AHz 11:19:41 AM Jun 17, 2024 TRACE 12 2 4 5 6 TYPE WWWWWW DET PNNNNN Mkr1 50.00 ms -1.75 dBm Span 0 Hz 0.0 ms (10001 pts)	Frequency Auto Tun Center Fre 2.440000000 GF Start Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Freq Offse
Agilent Spectrum Analyzer - Swept S RL RF 50 Ω enter Freq 2.4400000 GB/div Ref 20.00 dE 9 9 9 9 9 9 9 9 9 9 9 9 9	A AC O000 GHz PN0: Fast → IFGain:Low IB B M IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IFGain:Low IS IS IFGain:Low IS IS IS IS IS IS IS IS IS IS	Sycle NVNT E	BLE 1M 2440N ALIGN AUTO Avg Type: Log-Pwr	AHz 11:19:41 AM Jun 17, 2024 TRACE 12 23 4 5 6 TRACE 12 23 4 5 6 TRACE 12 23 4 5 6 TRACE 12 24 5 6 TRACE 12 14 5 6 TRACE 14 5	Frequency Auto Tun Center Fre 2.440000000 GF Start Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Stop Fre 2.440000000 GF Freq Offse

Agilent Spectrum Analyzer - S		Cycle NVNT E	BLE 1M 2480M	Hz	
	0 Ω AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:20:34 AM Jun 17, 2024 TRACE 1 2 3 4 5 6	Frequency
enter Freq 2.460	PNO: Fast ← IFGain:Low	Trig: Free Run #Atten: 30 dB		DET P NNNN	
				/kr1 50.00 ms	Auto Tune
Ref Offset dB/div Ref 20.0				-0.97 dBm	
o.o					Center Fred
).00		│ 			2.48000000 GHz
0.0					
0.0					Start Fred
0.0					2.480000000 GH;
0.0					
0.0					Stop Free
0.0					2.480000000 GH:
enter 2.48000000				Span 0 Hz	CF Step
es BW 8 MHz		W 8.0 MHz	Sweep 100	.0 ms (10001 pts)	8.000000 MH
KR MODE TRC SCL	X		ICTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
1 N 1 t 2	50.00 ms	-0.97 dBm			Erog Offoo
3					Freq Offse 0 Hi
5				E	
8					
9 0					
1	<u> </u>				
G			I STATUS		
	Duty	Cycle NVNT E	BLE 2M 2402M	Hz	
Agilent Spectrum Analyzer - 5	Swept SA 0 Ω AC	SENSE:INT	ALIGN AUTO	11:21:16 AM Jun 17, 2024	
enter Freq 2.402	000000 GHz	Trin Free Day	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast ← IFGain:Low _	#Atten: 30 dB		TYPE WWWWWWW DET P N N N N N	Auto Tune
Ref Offset			Ν	/kr1 50.00 ms -1.63 dBm	Auto Tune
dB/div Ref 20.0	0 dBm			-1.65 dBm	
0.0		1			Center Free
.00					2.402000000 GH:
0.0					
0.0					
0.0					
0.0 0.0 0.0					2.402000000 GH;
					2.402000000 GH2 Stop Fred
0.0					2.402000000 GH: Stop Free
enter 2,402000000			Succor 100	Span 0 Hz	2.402000000 GH2 Stop Free 2.40200000 GH2 CF Step
enter 2.402000000	#VB	W 8.0 MHz		.0 ms (10001 pts)	2.40200000 GH2 Stop Frec 2.40200000 GH2 CF Step 8.00000 MH2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			Sweep 100		2.40200000 GH2 Stop Frec 2.40200000 GH2 CF Step 8.00000 MH2
0.0	#VB	Y FUN		.0 ms (10001 pts)	2.40200000 GHz Stop Frec 2.40200000 GHz CF Step 8.00000 MHz <u>Auto</u> Mar Freq Offset
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	#VB	Y FUN		.0 ms (10001 pts)	2.40200000 GHz Stop Frec 2.40200000 GHz CF Step 8.00000 MHz <u>Auto</u> Mar Freq Offset
0.0	#VB	Y FUN		.0 ms (10001 pts)	2.40200000 GHz Stop Frec 2.40200000 GHz CF Step 8.00000 MHz <u>Auto</u> Mar Freq Offset
0.0	#VB	Y FUN		.0 ms (10001 pts)	Start Free 2.402000000 GHz Stop Free 2.402000000 GHz 2.402000000 GHz 8.00000 MHz Auto Freq Offset 0 Hz
0.0	#VB	Y FUN		.0 ms (10001 pts)	2.40200000 GHz Stop Frec 2.40200000 GHz CF Step 8.00000 MHz <u>Auto</u> Mar Freq Offset

Agilent Spectrum Analyze		Cycle NVNT E	BLE 2M 2440N	Hz	
	50 Ω AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:23:21 AM Jun 17, 2024 TRACE 1 2 3 4 5 6	Frequency
anter Freq 2.44	PNO: Fast · IFGain:Low	Trig: Free Run #Atten: 30 dB		TYPE WWWWWWW DET P N N N N N	
				Mkr1 50.00 ms	Auto Tun
dB/div Ref 20	et 2.6 dB .00 dBm			-1.63 dBm	
					Center Fre
00		¹			2.440000000 GH
1.0					
					Start Fre
).0					2.440000000 GH
.0					
1.0					Stop Fre
					2.440000000 GH
enter 2.4400000	00 GHz			Span 0 Hz	CF Ste
s BW 8 MHz		W 8.0 MHz	Sweep 100	.0 ms (10001 pts)	8.000000 MH
R MODE TRC SCL	X 50.00 mg		ICTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
N 1 t	50.00 ms	-1.63 dBm			Freq Offs
					01
		III		•	
		Cycle NVNT E	BLE 2M 2480N	Hz	
Agilent Spectrum Analyze R L RF	r - Swept SA 50 Ω AC	SENSE:INT	ALIGN AUTO	11:25:02 AM Jun 17, 2024	
enter Freq 2.48	80000000 GHz PNO: Fast	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	Frequency
	IFGain:Low	#Atten: 30 dB			Auto Tun
	et 2.61 dB .00 dBm		'	4 Wkr1 50.00 ms -0.90 dBm	
					0
		¹			Center Fre 2.48000000 GH
1.0					
1.0					Start Fre
					2.480000000 GH
1.0					
).0 					Stop Fre
1.0					2.480000000 GH
				Snon Alto	
enter 2.4800000 es BW 8 MHz		W 8.0 MHz	Sweep 100	Span 0 Hz 0 ms (10001 pts).	CF Ste 8.000000 MH
R MODE TRC SCL	Х		CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
N 1 t	50.00 ms	-0.90 dBm			Eren Offer
					FreqOffse 0 ⊢
				E	
3					
				-	
		m		•	

TE OVE t See

14. Antenna Requirement

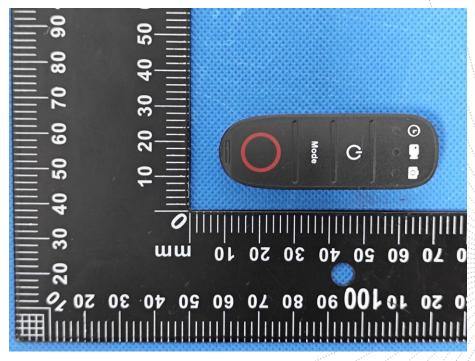
14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2 Test Result

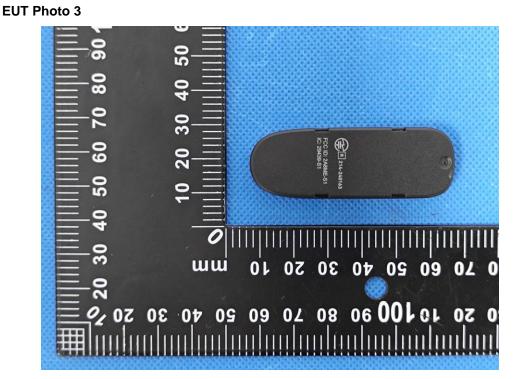
The EUT antenna is Chip antenna, fulfill the requirement of this section.

Page: 53 of 58 Edition: B.2



15. EUT Photographs

EUT Photo 1



EUT Photo 2

No.: BCTC/RF-EMC-005

NOTE: Appendix-Photographs Of EUT Constructional Details.

No.: BCTC/RF-EMC-005

Page: 55 of 58



16. EUT Test Setup Photographs

Conducted emissions Photo

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 58 of 58