

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

	Revision History							
Rev. Number Date Changes								
Initial	Aug 15, 2013							
Rev 2	Dec 15, 2014	Added equipment used for 802.11a Hotspot mode SAR testing 1. Page 51-69						

2(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Certificate No: ES3-3225_Jan13

S

CALIBRATION CERTIFICATE

ES3DV3 - SN:3225

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure(s)

Calibration procedure for dosimetric E-field probes

January 10, 2013 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Function Signature Name Laboratory Technician Calibrated by: Jeton Kastrati Approved by: Katja Pokovic Technical Manager Issued: January 14, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3225_Jan13

Page 1 of 11

Document

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **3(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques" December 2003
- Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z ** ConvF* whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3225_Jan13

Page 2 of 11

Page **4(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014 December 8-12, 2014 RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

ES3DV3 - SN:3225

January 10, 2013

Probe ES3DV3

SN:3225

Manufactured: Calibrated: September 1, 2009 January 10, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3225_Jan13

Page 3 of 11

5(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

ES3DV3- SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.29	1.19	1.31	± 10.1 %
DCP (mV) ^B	100.5	101.5	99.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	×	0.0	0.0	1.0	0.00	157.5	±2.7 %
		Y	0.0	0.0	1.0		158.4	
		Z	0.0	0.0	1.0		165.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3225_Jan13

Page 4 of 11

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSI, (see Pages 5 and 6),

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value

6(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

ES3DV3-SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.42	1.54	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.43	1.52	± 12.0 %
1810	40.0	1.40	5.35	5,35	5.35	0.63	1.39	± 12.0 %
1950	40.0	1.40	5.09	5.09	5.09	0.80	1.23	± 12.0 %
2450	39.2	1.80	4.65	4.65	4.65	0.61	1.63	± 12.0 %
2600	39.0	1.96	4.43	4.43	4.43	0.80	1.32	± 12.0 %

Certificate No: ES3-3225_Jan13

Page 5 of 11

The frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of issue parameters (ϵ and ϵ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of issue parameters (ϵ and ϵ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

7(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

ES3DV3- SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) C	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.48	1,51	± 12.0 %
900	55.0	1.05	6.12	6.12	6.12	0.73	1.25	± 12.0 %
1810	53.3	1.52	5.04	5.04	5.04	0.57	1.47	±12.0 %
1950	53.3	1.52	4.94	4.94	4.94	0.58	1,50	± 12.0 %
2450	52,7	1.95	4.35	4,35	4.35	0.70	1.16	±12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.67	0.99	± 12.0 %

Certificate No: ES3-3225_Jan13

Page 6 of 11

Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and ϵ) can be relaxed to \pm 10% if flouid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

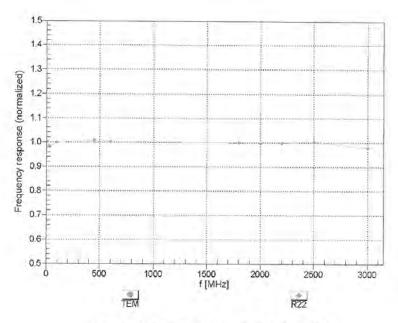
8(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5


L6ARFW120LW

ES3DV3-SN:3225

January 10, 2013

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3225_Jan13

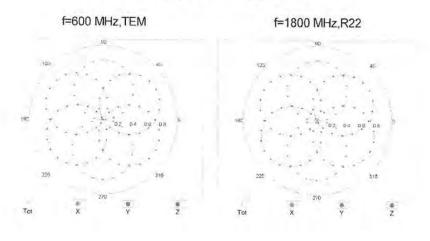
Page 7 of 11

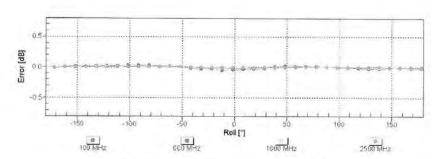
9(69)

Author Data

Andrew Becker

July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5


FCC ID: L6ARFW120LW

ES3DV3-SN:3225

January 10, 2013

Receiving Pattern (ϕ), $9 = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3225_Jan13

Page 8 of 11

Appendix D for the BlackBerry® Smartphone Model

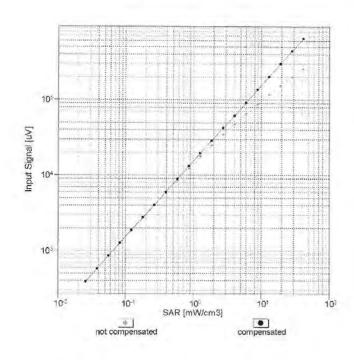
RFW121LW SAR Report Rev 2

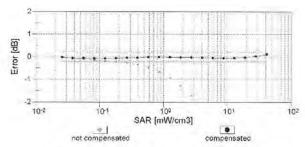
10(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5


L6ARFW120LW

ES3DV3-SN:3225

January 10, 2013

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3225_Jan13

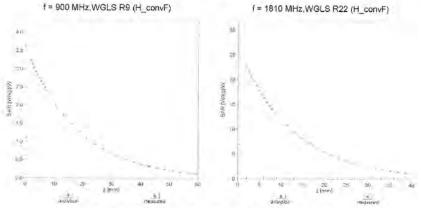
Page 9 of 11

11(69)

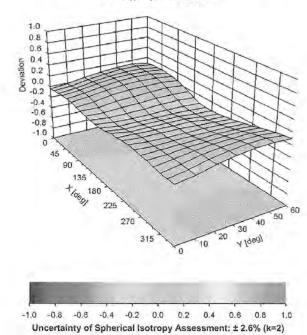
Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5

L6ARFW120LW


January 10, 2013

ES3DV3- SN:3225

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (¢, 9), f = 900 MHz

Certificate No: ES3-3225_Jan13

Page 10 of 11

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

12(69)

Author Data

Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

ES3DV3-SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	8.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3225_Jan13

Page 11 of 11

Document

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **13(69)**

Author Data

Andrew Becker

July 02 – August 15, 2013

March 24-26, 2014 December 8-12, 2014 st Report No

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Certificate No: EX3-3548_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3548

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

January 15, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3548_Jan13

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: January 15, 2013

Page 1 of 11

1003001 0011011 / 101201

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

iment

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **14(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013

March 24-26, 2014 December 8-12, 2014 Test Report No

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Katibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

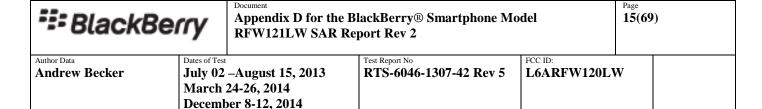
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis


Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
 the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3548_Jan13 Page 2 of 11

EX3DV4 - SN:3548 January 15, 2013

Probe EX3DV4

SN:3548

Manufactured: Calibrated: November 16, 2004 January 15, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3548_Jan13

Page 3 of 11

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

16(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

EX3DV4-- SN:3548

January 15, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3548

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.36	0.44	0.43	± 10.1 %
DCP (mV) ⁸	103.2	98.0	98.7	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	181.3	±3.3 %
		Y	0.0	0.0	1.0		149.2	***************************************
		Z	0.0	0.0	1.0		198.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.
Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

17(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

EX3DV4-SN:3548

January 15, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3548

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2600	39.0	1.96	7.15	7.15	7.15	0.47	0.86	± 12.0 %
5200	36.0	4.66	5.13	5.13	5.13	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.79	4.79	4.79	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.61	4.61	4.61	0.45	1.80	± 13.1 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else t is restricted to ± 50 MHz. The uncertainty is the RSS of the Com/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3548_Jan13

At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (it and it) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page **18(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

EX3DV4-SN:3548

January 15, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3548

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2600	52.5	2.16	7.08	7.08	7.08	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.68	4.68	4.68	0.52	1.90	± 13.1 %
5500	48.6	5.65	4.15	4.15	4.15	0.52	1.90	± 13.1 %
5800	48.2	6.00	4.19	4.19	4.19	0.60	1.90	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^c At frequencies below 3 GHz, the validity of tissue parameters (a and or) can be relaxed to ± 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and α) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and α) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

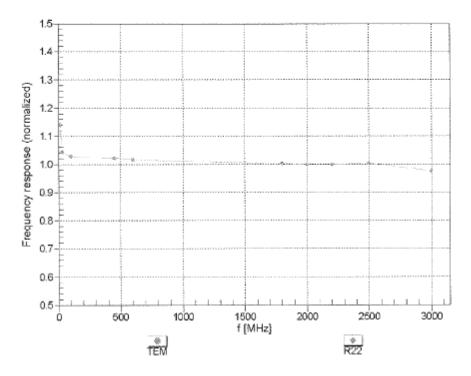
19(69)

Author Data **Andrew Becker**

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5


L6ARFW120LW

EX3DV4-- SN:3548

January 15, 2013

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

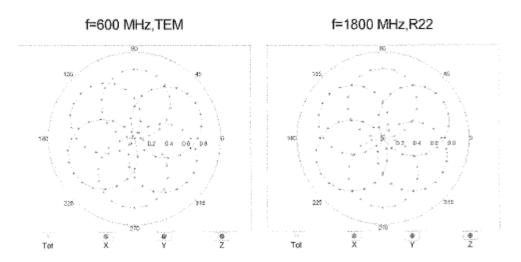
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

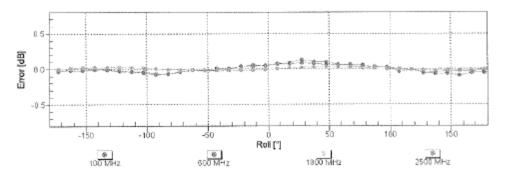
20(69)

Author Data

Andrew Becker

July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5


L6ARFW120LW

EX3DV4-SN:3548

January 15, 2013

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

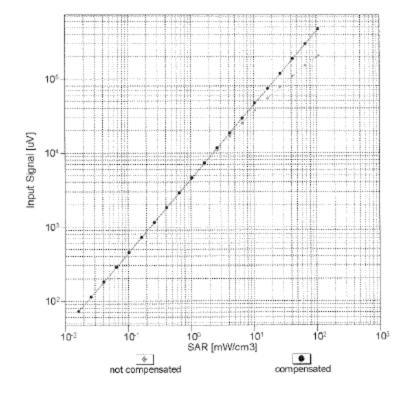
21(69)

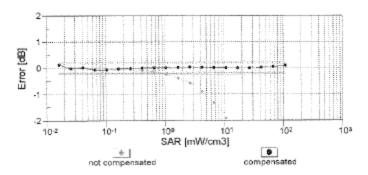
Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5


L6ARFW120LW


EX3DV4-- SN:3548

January 15, 2013

Dynamic Range f(SAR_{head})

(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3548_Jan13

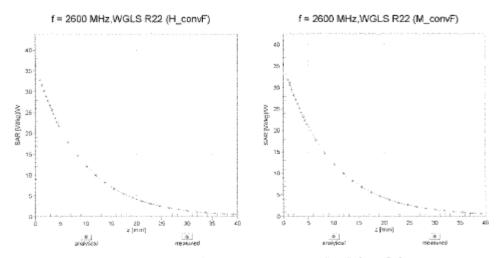
Page 9 of 11

22(69)

Author Data

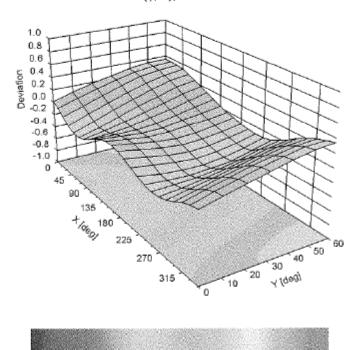
Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5

L6ARFW120LW

EX3DV4~SN:3548


January 15, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (¢, 9), f = 900 MHz

0.0

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

0.2

0.4

-0.8 -0.6 -0.4 -0.2

Page **23(69)**

Author Data

Andrew Becker

Dates of Test
July 02 –August 15, 2013
March 24-26, 2014
December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

EX3DV4- SN:3548

January 15, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-72.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

24(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RTS (RIM Testing Services)

Certificate No: D835V2-446_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 446

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 07, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
US37292783	01-Nov-12 (No. 217-01640)	Oct-13
SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
Name	Function	Signature
Leif Klysner	Laboratory Technician	Seftly
Katja Pokovic	Technical Manager	LA LA
	US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Leif Klysner	GB37480704 D1-Nov-12 (No. 217-01640) US37292783 O1-Nov-12 (No. 217-01640) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.3 / 06327 27-Mar-12 (No. ES3-3205_Dec12) SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) SN: 601 27-Jun-12 (No. DAE4-601_Jun12) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-12) IS-Oct-01 (in house check Oct-13) IS-Oct-01 (in house check Oct-14) IS-Oct-01 (in house c

Certificate No: D835V2-446_Jan13

Page 1 of 6

25(69)

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-446_Jan13

Page 2 of 6

Document

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **26(69)**

Author Data

Andrew Becker

Dates of Test
July 02 -August 15, 2013
March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID:

L6ARFW120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 æ 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	nn.	(week)

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2,38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.39 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-446_Jan13

Page 3 of 6

27(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 6.5 jΩ	
Return Loss	-23.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 24, 2001	

Certificate No: D835V2-446_Jan13

Page 4 of 6

28(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

DASY5 Validation Report for Head TSL

Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 446

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

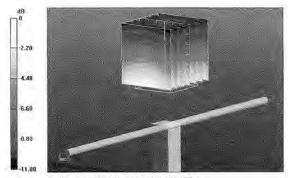
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.650 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.61 W/kg

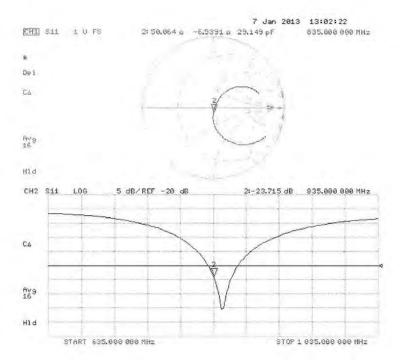
SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.79 W/kg

0 dB = 2.79 W/kg = 4.46 dBW/kg

29(69)

Author Data


Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Impedance Measurement Plot for Head TSL

30(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Certificate No: D1900V2-545_Jan13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D1900V2 - SN: 545 Object

> QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz

January 09, 2013 Calibration date:

Calibration procedure(s)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ESSDV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Obran El Daar
Approved by:	Kalja Pokovic	Technical Manager	the Kill
			Issued: January 9, 2013

Certificate No: D1900V2-545_Jan13

Page 1 of 6

31(69)

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power, No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-545_Jan13

Page 2 of 6

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

32(69)

Author Data

Andrew Becker

July 02 – August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	anna.	

SAR result with Head TSL.

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5,26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

33(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.0 \Omega + 1.7 \Omega$	
Return Loss	- 34.3 dB	

General Antenna Parameters and Design

	100000000000000000000000000000000000000
Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

Certificate No: D1900V2-545_Jan13

Page 4 of 6

34(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

DASY5 Validation Report for Head TSL

Date: 09.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 545

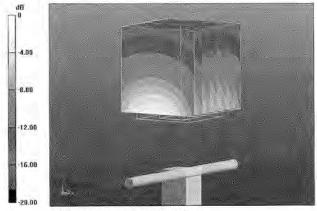
Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.493 V/m; Power Drift = 0.05 dB

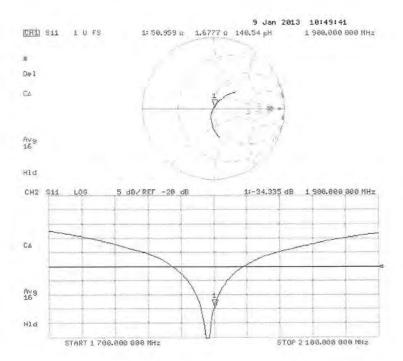
Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.26 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

0 dB = 12.2 W/kg = 10.86 dBW/kg

35(69)

Author Data


Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Impedance Measurement Plot for Head TSL

36(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ATS (RIM Testing Services)

Certificate No: D2450V2-747_Nov11

bject	D2450V2 - SN: 7	47	ALC: NO.
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	November 09, 20	111	
THE RESERVE OF THE PROPERTY OF STREET		onal standards, which realize the physical un robability are given on the following pages an	AND ADMINISTRATION OF THE PROPERTY OF THE PROP
		ry facility: environment temperature (22 ± 3)°0	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	ID # GB37480704	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12
Primary Standards Power meter EPM-442A			
Primary Standards Power meter EPM-442A Power sensor HP 8481A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Oct-12 Oct-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 SN; 5086 (20g)	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368)	Oct-12 Oct-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN; 5086 (20g) SN; 5047.2 / 06327	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371)	Oct-12 Oct-12 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Rype-N mismatch combination Reference Probe ES3DV3 DAE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN; 5086 (20g) SN; 5047.2 / 06327 SN; 3205 SN; 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (In house check Oct-11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 29-Mar-11 (No. 217-01368) 29-Mar-11 (No. 217-01368) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (In house check Oct-11)	Oct-12 Oct-12 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

Certificate No: D2450V2-747 Nov11

Page 1 of 6

37(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

FCC ID:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-747 Nov11

Page 2 of 6

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

Page **38(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID:

L6ARFW120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz ≠ 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1,84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	7-94-5	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.39 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-747_Nov11

39(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.5 \Omega + 1.3 j\Omega$
Return Loss	- 31.2 dB

General Antenna Parameters and Design

1.161 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

Certificate No: D2450V2-747_Nov11

Page 4 of 6

40(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

DASY5 Validation Report for Head TSL

Date: 09.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 747

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_t = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011

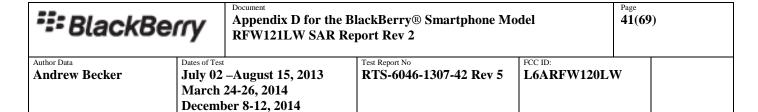
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07, 2011

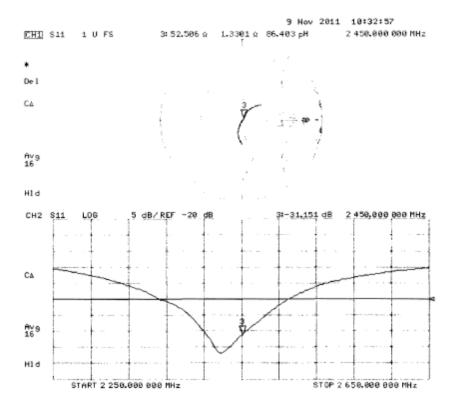
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.853 W/kg


SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.39 mW/gMaximum value of SAR (measured) = 17.782 mW/g

0 dB = 17.780 mW/g

Impedance Measurement Plot for Head TSL

42(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

FCC ID:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Certificate No: D5GHzV2-1033 Nov11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D5GHzV2 - SN: 1033 Object CANALISTA PAR distribution in QA CAL-22.v1 ALL AND PROPERTY A Calibration procedure(s) Calibration procedure for dipole validation kits between 3-6 GHz The state of the s November 15, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) US37292783 Power sensor HP 8481A 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe EX3DV4 SN: 3503 04-Mar-11 (No. EX3-3503_Mar11) Mar-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 US37390585 S4206 18-Oct-01 (in house check Oct-11) Network Analyzer HP 8753E In house check: Oct-12 Name Function Calibrated by: Laboratory Technician Technical Manager Katja Pokovio Approved by: Issued: November 16, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1033 Nov11

Page 1 of 8

43(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

Test Report No RTS-6046-1307-42 Rev 5

L6ARFW120LW

FCC ID:

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage

С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvE not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1033 Nov11 Page 2 of 8

44(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

ing parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	87.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov11

45(69)

Author Data

Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov11

46(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.1 Ω - 8.7 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.3 Ω - 2.7 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Ω - 4.3 jΩ	
Return Loss	- 22.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

Certificate No: D5GHzV2-1033_Nov11

47(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

DASY5 Validation Report for Head TSL

Date: 15.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.46$ mho/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.75 \text{ mho/m}$; $\varepsilon_r = 34.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5800 MHz; $\sigma = 5.03 \text{ mho/m}; \ \epsilon_r = 33.7; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.595 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.134 W/kg

SAR(1 g) = 8.16 mW/g; SAR(10 g) = 2.33 mW/gMaximum value of SAR (measured) = 18.725 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.819 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.056 W/kg

SAR(1 g) = 8.82 mW/g; SAR(10 g) = 2.5 mW/gMaximum value of SAR (measured) = 21.019 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

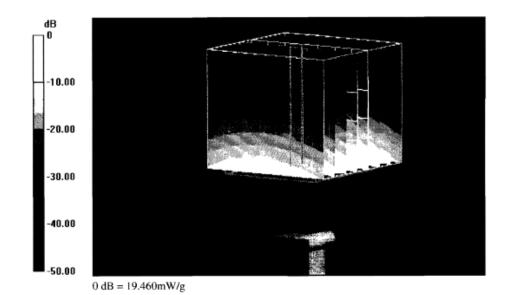
Reference Value = 62.220 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.743 W/kg

SAR(1 g) = 8.03 mW/g; SAR(10 g) = 2.28 mW/gMaximum value of SAR (measured) = 19.463 mW/g

Certificate No: D5GHzV2-1033_Nov11 Page 6 of 8

48(69)


Author Data

Andrew Becker

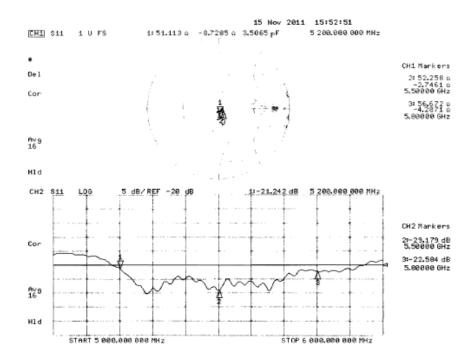
Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

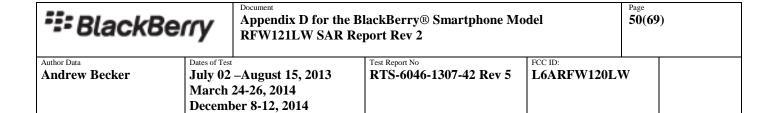
RTS-6046-1307-42 Rev 5

L6ARFW120LW

49(69)

Author Data


Andrew Becker


Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Impedance Measurement Plot for Head TSL

Documen

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **51(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Probe 3592

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizenscher Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multitateral Agreement for the recognition of calibration certificates

Pliant

Calibration procedure(s)

Blackberry Waterloo

Certificate No: EX3-3592_Nov14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3592

QA CAL-01,v9, QA CAL-14,v4, QA CAL-23,v5, QA CAL-25,v6

Calibration procedure for dosimetric E-field probes

Calibration date: November 10, 2014

This palitivation cartificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncortainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID:	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	G841293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	. 03 Apr-14 (No. 217-01915)	Apr-16
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN; S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ESUDV2	SN: 3013	30-Dec-13 (No. ES3-3013, Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	(0	Check Date (in house)	Scheduled Check
RI- generator HP 8648C	U83642U01700	4-Aug-89 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-16

Name Function Signature
Calibrated by: Lef Klysner Laboratory Fechnician

Approved by: Ketja Pukovic Technical Manager

Issued: November 10, 2014

This cellulation cellificate shall not be reproduced except in full without written approval of the leboratory.

Certificate No. EX3-3592_Nov14

Page 1 of 11

ument

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **52(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizertscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z GonvF DCP CF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D modulation dependent linear Polarization op o rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 8 = 0 is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 EC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z' Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide), NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters. Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * CornvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No. EX3-3592 Nov14

Page 2 of 11

cument

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **53(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014 December 8-12, 2014 RTS-6046-1307-42 Rev 5

FCC ID:

L6ARFW120LW

EX3DV4 - SN:3592

November 10, 2014

Probe EX3DV4

SN:3592

Manufactured: Calibrated: September 18, 2006 November 10, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3592 Nov14

Page 3 of 11

54(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Basic Calibration Parameters

	Sensor X	SensorY	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.48	0.47	0.40	±10.1 %
DCP (mV) ^a	95,2	98.0	98.8	

Modulation Calibration Parameters

מוט	Communication System Name		A dB	B dBõV	C	dB	VR mV	Unc [±] (k=2)
D	CW	×	0.0	0.0	1.0	0.00	145.9	±3.3 %
	100-110-110-110-110-110-110-110-110-110	Y	0.0	0,0	1.0		156.9	
		Z	0.0	0.0	1.0		149.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX, Y.Z do not affect the E² field uncertainty inside TSL (see Pages 5 and 6).

¹² Numerical linearization parameter, uncertainty not required.

¹⁵ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

55(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2600	39.0	1.96	6.80	6.80	6.80	0.36	0.93	± 12.0 %
5250	35.9	4.71	4.63	4.63	4.63	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.20	4.20	4.20	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.34	4.34	4:34	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (add Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncortainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 128, 190 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (s and or) can be relaxed to ± 40% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and or) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncortainty for relicated target tissue parameters.

Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies aclow 3 GHz and below ± 2% for frequencies belowed a 18 GHz at any distance larger than half the probe to diameter from the boundary.

Certificate No. EX3-3592 Nov14

Page 5 of 11

diameter from the boundary.

56(69)

Author Data

Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

EX3DV4 8N:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ¢	Relative Permittivity F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^C (mm)	Unct. (k=2)
2600	52.5	2.16	6.84	6.84	6,84	0.78	0.62	± 12.0 %
5250	48,9	5.36	4.06	4.06	4.06	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.45	1.90	± 13.1 %
5750	48,3	5.94	3.81	3.81	3.81	0.50	1.90	± 13.1 %

Errequency validity above 300 MHz of ± 10% MHz only applies for DASY v4.4 and higher (see Page 2), else if is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency benut. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At trequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compansation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty in indicated largel tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always loss than ± 1% for frequencies below 3 GHz and heliow ± 2% for frequencies below 3 GHz at any distance larger than half the probe lip claimeter from the boundary.

Certificate No: EX3-3592_Nov14

Page 6 of 11

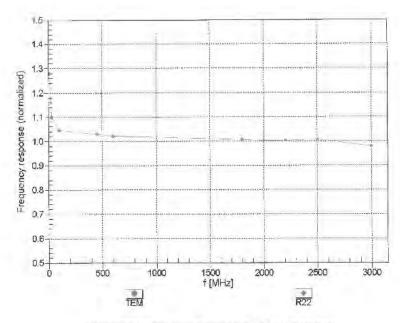
clameter from the boundary.

57(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

EX3DV4- 5N:3592

November 10, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3592 Nov14

Page 7 of 11

58(69)

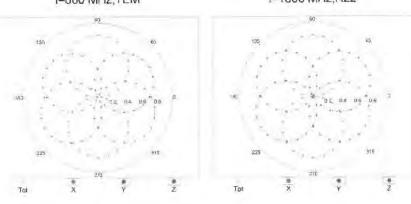
Author Data

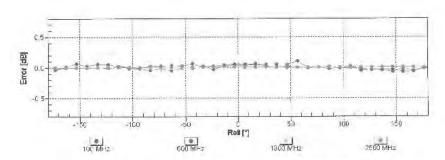
Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW


EX3DV4- SN:3592


November 10, 2014

Receiving Pattern (6), 9 = 0°

f=600 MHz,TEM

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3592_Nov14

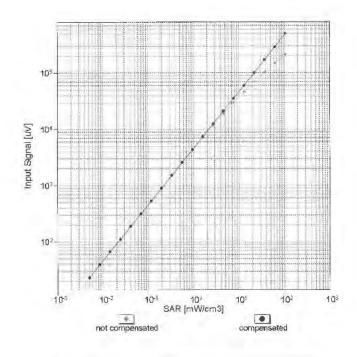
Page 8 of 11

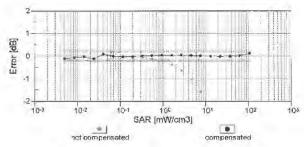
59(69)

Author Data

Andrew Becker

July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5


L6ARFW120LW

EX3DV4 SN:3592

November 10, 2014

Dynamic Range f(SAR_{head}) (TEM cell , feval= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3592 Nov14

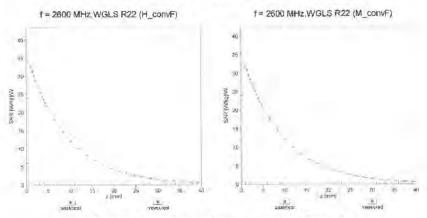
Page 9 of 11

60(69)

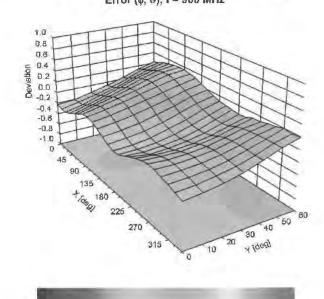
Author Data

Andrew Becker

July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014


RTS-6046-1307-42 Rev 5

L6ARFW120LW


EX3DV4- SN:3592

November 10, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, 8), f = 900 MHz

Certificate No: EX3-3592_Nov14

Page 10 of 11

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix D for the BlackBerry® Smartphone Model

RFW121LW SAR Report Rev 2

61(69)

Author Data

Andrew Becker

July 02 – August 15, 2013 March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

EX3DV4-SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-13.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tîp Diameter	2,5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3592_Nov14

Page 11 of 11

Document

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **62(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013

March 24 26, 2014

March 24-26, 2014 December 8-12, 2014 RTS-6046-1307-42 Rev 5

L6ARFW120LW

5000 Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di tarature
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Blackberry Waterloo

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1033_Nov13

Object	D5GHzV2 - SN: 1	033	
Calibration procedure(s)	QA CAL-22.v2 Calibration proces	dure for dipole validation kits beti	ween 3-6 GHz
Calibration date:	November 08, 20	13	
		onal standards, which realize the physical un obability are given on the following pages an	
All calibrations have been condu	cred in the closed laborator	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
All calibrations have been conducations between conducation Equipment used (M&		y facility: environment temporature (22 ± 3)°C	2 and humidity < 70%.
		y facility: environment temporature (22 ± 3)*C Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (M&	TE critical for calibration) (0 # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration) [ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator	TE critical for calibration) (D # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 9481A Power sensor HP 3481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) [D #] GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 08-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration) (D # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 9481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	TE critical for calibration) (D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 3 / 06327 SN: 3205	Cal Data (Certificate No.) 08-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dac-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ESSDV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 3 / 06327 SN: 3205 SN: 801	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481 A Power sensor HP 8481 A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ESSDV3	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 3 / 06327 SN: 3206 SN: 801	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
Calibration Equipment used (M& Pnimary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 801 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 9481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards HF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 9 (06927 SN: 3205 SN: 801 ID # 100005 US37390585 \$4206 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) Function	Scheduled Celibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check, Oct-15
Calibration Equipment used (M& Pnimary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attanuator Type-N mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 801 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01738) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-14

Certificate No: D5GHzV2-1033_Nov13

Page 1 of 8

Document

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **63(69)**

Author Data

Andrew Becker

July 02 –August 15, 2013

March 24-26, 2014 December 8-12, 2014 st Report No

RTS-6046-1307-42 Rev 5

FCC ID:

L6ARFW120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstsssse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service sulsse d'étalonnage

C Servicio suizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1033_Nov13

Page 2 of 8

64(69)

Author Data

Andrew Becker

Dates of Test
July 02 –August 15, 2013
March 24-26, 2014
December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID:

L6ARFW120LW

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	-

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	34.6 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	_	-

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.4 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1033_Nov13

Page 3 of 8

cument

Appendix D for the BlackBerry® Smartphone Model RFW121LW SAR Report Rev 2

Page **65(69)**

Author Data

Andrew Becker

Dates of Test

July 02 –August 15, 2013

March 24-26, 2014

December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35,3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	34.2 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1033 Nov13

Page 4 of 8

66(69)

Author Data

Andrew Becker

Dates of Test July 02 -August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

FCC ID: L6ARFW120LW

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.1 Ω - 9.6 μΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50:3 Ω - 4.1 jΩ
Return Loss	- 27.7 aB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.8 12 - 4.0 js2
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns.

After long term use with 100W radiated power, only a slight warming of the dipote near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

Certificate No: D5GHzV2-1033, Nov13

Page 5 of 8

67(69)

Author Data

Andrew Becker

July 02 –August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

DASY5 Validation Report for Head TSL

Date: 08.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHZ

Medium parameters used: f = 5200 MHz; $\sigma = 4.46 \text{ S/m}$; $\varepsilon_r = 35$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.75$ S/m; $\epsilon_i = 34.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.06 \text{ S/m}$; $\epsilon_c = 34.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (TEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phamom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.635 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.397 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.128 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0 W/kg

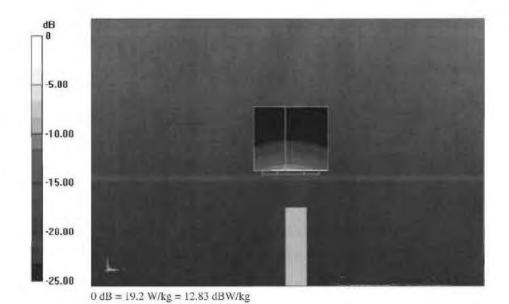
SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1033_Nov13

Page 6 of 8

68(69)


Author Data

Andrew Becker

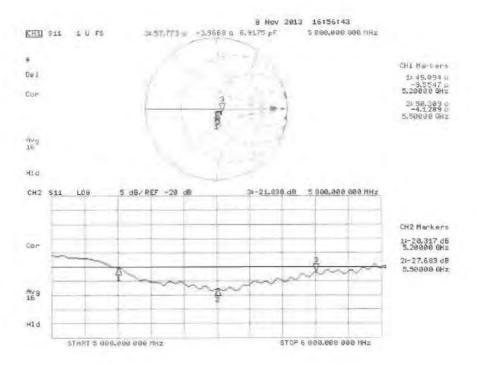
Dates of Test
July 02 –August 15, 2013
March 24-26, 2014
December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

69(69)

Author Data


Andrew Becker

Dates of Test July 02 – August 15, 2013 March 24-26, 2014 December 8-12, 2014

RTS-6046-1307-42 Rev 5

L6ARFW120LW

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1033_Nov13

Page 8 of 8