

Page: 1 of 103

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Equipment Under Test Mobile Computer

Brand Name Honeywell Model No. EDA50-011

Company Name Honeywell International Inc

Honeywell Sensing & Productivity Solutions

Company Address 9680 OLD BAILES RD FORT MILL SC 29707 UNITED

STATES

Standards IEEE/ANSI C95.1-1992, IEEE 1528-2013,

KDB248227D01v02r02,KDB865664D01v01r04, KDB865664D02v01r02,KDB447498D01v06,

KDB648474D04v01r03

FCC ID HD5-EDA50011

Date of Receipt Oct. 27, 2016

Date of Test(s) Jan. 02, 2017 ~ Jan. 11, 2017

Date of Issue Feb. 22, 2017

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on behalf of SGS	
Engineer	Supervisor
Jimmy Chang	John Teh
Matt Kuo	John Yeh
Date: Feb. 22, 2017	Date: Feb. 22, 2017

Page: 2 of 103

Revision History

Report Number	Revision	Description	Issue Date
E5/2016/A0030	Rev.00	Initial creation of document	Feb. 22, 2017

Page: 3 of 103

Contents

1.1 Testing Laboratory
1.3 Description of EUT 1.4 Test Environment 1.5 Operation Description 1.6 Positioning Procedure 1.7 Evaluation Procedures 1.8 Probe Calibration Procedures 1.9 The SAR Measurement System 1.10 System Components 1.11 SAR System Verification 1.12 Tissue Simulant Fluid for the Frequency Band 1.13 Test Standards and Limits
1.3 Description of EUT 1.4 Test Environment 1.5 Operation Description 1.6 Positioning Procedure 1.7 Evaluation Procedures 1.8 Probe Calibration Procedures 1.9 The SAR Measurement System 1.10 System Components 1.11 SAR System Verification 1.12 Tissue Simulant Fluid for the Frequency Band 1.13 Test Standards and Limits
1.5 Operation Description 1.6 Positioning Procedure 1.7 Evaluation Procedures 1.8 Probe Calibration Procedures 1.9 The SAR Measurement System 1.10 System Components 1.11 SAR System Verification 1.12 Tissue Simulant Fluid for the Frequency Band 1.13 Test Standards and Limits
1.6 Positioning Procedure11.7 Evaluation Procedures11.8 Probe Calibration Procedures21.9 The SAR Measurement System21.10 System Components21.11 SAR System Verification21.12 Tissue Simulant Fluid for the Frequency Band21.13 Test Standards and Limits3
1.7 Evaluation Procedures11.8 Probe Calibration Procedures21.9 The SAR Measurement System21.10 System Components21.11 SAR System Verification21.12 Tissue Simulant Fluid for the Frequency Band21.13 Test Standards and Limits3
1.8 Probe Calibration Procedures 2 1.9 The SAR Measurement System 2 1.10 System Components 2 1.11 SAR System Verification 2 1.12 Tissue Simulant Fluid for the Frequency Band 2 1.13 Test Standards and Limits 3
1.9 The SAR Measurement System 2 1.10 System Components 2 1.11 SAR System Verification 2 1.12 Tissue Simulant Fluid for the Frequency Band 2 1.13 Test Standards and Limits 3
1.10 System Components 2 1.11 SAR System Verification 2 1.12 Tissue Simulant Fluid for the Frequency Band 2 1.13 Test Standards and Limits 3
1.11 SAR System Verification
1.12 Tissue Simulant Fluid for the Frequency Band
1.13 Test Standards and Limits
2. Summary of Results
3. Instruments List
4. Measurements3
5. SAR System Performance Verification
6. DAE & Probe Calibration Certificate
7. Uncertainty Budget
8. Phantom Description
9. System Validation from Original Equipment Supplier

Page: 4 of 103

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory			
No. 2, Keji 1st Rd., Guishan Township, Taoyuan County, 33383, Taiwan			
Tel	+886-2-2299-3279		
Fax +886-2-2298-0488			
Internet	nttp://www.tw.sgs.com/		

1.2 Details of Applicant

Company Name	Honeywell International Inc Honeywell Sensing & Productivity Solutions
Company Address	9680 OLD BAILES RD FORT MILL SC 29707 UNITED STATES

Page: 5 of 103

1.3 Description of EUT

EUT Name	Mobile Computer				
Brand Name	Honeywell				
Model No.	EDA50-011				
FCC ID	HD5-EDA50011				
Antenna Peak Gain	Main 2.4GHz:2.55dBi / 5GHz:1.67dBi				
Mode of Operation	⊠WLAN802.11 a/b/g/n(20M/40M) ⊠Bluetooth				
Duty Cycle	WLAN802.11 a/b/g/n(20M/40M)		1		
Duty Cycle	Bluetooth		1		
	WLAN802.11 b/g/n(20M)	2412	_	2462	
	WLAN802.11 n(40M)	2422	_	2452	
	WLAN802.11 a/n(20M) 5.2G	5180	_	5240	
	WLAN802.11 n(40M) 5.2G	5190	_	5230	
TX Frequency Range (MHz)	WLAN802.11 a/n(20M) 5.3G	5260	_	5320	
	WLAN802.11 n(40M) 5.3G	5270	_	5310	
	WLAN802.11 a/n(20M) 5.6G	5500	_	5700	
	WLAN802.11 n(40M) 5.6G	5510	_	5670	
	WLAN802.11 a/n(20M) 5.8G	5745	_	5825	
	WLAN802.11 n(40M) 5.8G	5755	_	5795	
	Bluetooth	2402	_	2480	
	WLAN802.11 b/g/n(20M)	1	_	11	
	WLAN802.11 n(40M)	3	_	9	
	WLAN802.11 a/n(20M) 5.2G	36	_	48	
Channel Number (ARFCN)	WLAN802.11 n(40M) 5.2G	38	_	46	
	WLAN802.11 a/n(20M) 5.3G	52	_	64	
	WLAN802.11 n(40M) 5.3G	54	_	62	
	WLAN802.11 a/n(20M) 5.6G	100		140	
	WLAN802.11 n(40M) 5.6G	102	_	134	

Report No. : E5/2016/A0030 Page : 6 of 103

	WLAN802.11 a/n(20M) 5.8G	149	_	165
Channel Number (ARFCN)	WLAN802.11 n(40M) 5.8G	151	_	159
,	Bluetooth	0	_	78

	Max. SAR (1 g) (Unit: W/Kg)					
Mode	Band	Measured	Reported	Position	/ Channel	
	WLAN802.11 b	0.401	0.408	□Left ⊠Cheek 11	⊠Right □Tilt _Channel	
	WLAN802.11 n(40M) 5.2G	0.921	0.938	□Left ⊠Cheek 46	⊠Right □Tilt _Channel	
Head	WLAN802.11 n(40M) 5.3G	0.952	0.985	□Left ⊠Cheek 54	⊠Right □Tilt _Channel	
	WLAN802.11 n(40M) 5.6G	1.040	1.052	□Left ⊠Cheek 110	⊠Right □Tilt _Channel	
	WLAN802.11 a 5.8G	1.140	1.151	□Left ⊠Cheek 157	⊠Right □Tilt _Channel	

Report No. : E5/2016/A0030 Page : 7 of 103

Max. SAR (1 g) (Unit: W/Kg)					
Mode	Band	Measured	Reported	Position / Channel	
	WLAN802.11 b	0.106	0.108	⊠Front □Back 11 Channel	
	WLAN802.11 n(40M) 5.2G	0.194	0.198	⊠Front □Back <u>46</u> Channel	
Body-worn	WLAN802.11 n(40M) 5.3G	0.188	0.195	⊠Front □Back 54 _Channel	
	WLAN802.11 n(40M) 5.6G	0.165	0.167	☐Front ☐Back 126 Channel	
	WLAN802.11 a 5.8G	0.177	0.179	⊠Front □Back 157 Channel	

Max. SAR (10 g) (Unit: W/Kg)					
Mode	Band	Measured	Reported	Position /	Channel
	WLAN802.11 b	0.305	0.311	11 (Back Left Channel
	WLAN802.11 n(40M) 5.2G	0.359	0.366	⊠Front ☐ ☐Top ☐ 46 (Back Left Channel
Product specific 10-g SAR	WLAN802.11 n(40M) 5.3G	0.373	0.386	⊠Front ☐ ☐Top ☐ 54 (Back Left Channel
	WLAN802.11 n(40M) 5.6G	0.444	0.448		Back Left hannel
	WLAN802.11 a 5.8G	0.584	0.589		Back Left Channel

Page: 8 of 103

Maximum Output Power of WLAN802.11 a/b/g/n(20M/40M) and Bluetooth

The maximum conducted average power((Unit: dBm) including tune-up tolerance is shown as below.

Mode	2.4G WLAN	5.2G WLAN	5.3G WLAN	5.6G WLAN	5.8G WLAN
TX Frequency (MHz)	2412 - 2462	5180 - 5240	5260 - 5320	5500 - 5700	5745 - 5825
802.11b	12.00	N/A	N/A	N/A	N/A
802.11g	12.00	N/A	N/A	N/A	N/A
802.11n (20M)	12.00	12.00	12.00	12.00	12.00
802.11n (40M)	12.00	12.00	12.00	12.00	8.50
802.11a	N/A	12.00	12.00	12.00	12.00

Mode	Bluetooth
TX Frequency (MHz)	2402 - 2480
BR/EDR	3.00
BLE	0.00

Measured Conducted Power Result of WLAN802.11 a/b/g/n(20M/40M)

The measuring conducted average power (Unit: dBm) is shown as below.

	802.11 b	Max. Rated Avg.	Average conducted output power (dBm)
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
СП	(MHz)	Tolerance (ubili)	1
1	2412	12	11.81
6	2437	12	11.79
11	2462	12	11.92

Report No. : E5/2016/A0030 Page : 9 of 103

802.11 g		Max. Rated Avg.	Average conducted output power (dBm)	
СП	Frequency	Power + Max.	Data Rate (Mbps)	
CH ''	(MHz)	Tolerance (dBm)	6	
1	2412	12	11.91	
6	2437	12	11.84	
11	2462	9.5	9.08	

808	2.11 n(20M)	Max. Rated Avg.	Average conducted output power (dBm)
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
СП	(MHz)	Tolerance (ubili)	6.5
1	2412	11	10.58
6	2437	12	11.82
11	2462	8	7.85

802.11 n(40M)		Max. Rated Avg.	Average conducted output power (dBm)
СН	Frequency Power + Max.		Data Rate (Mbps)
СП	(MHz)	Tolerance (dbill)	13.5
3	2422	11	10.50
6	2437	12	11.85
9	2452	9.5	9.33

Report No. : E5/2016/A0030 Page : 10 of 103

8	302.11 a		Average conducted output	
5.2/5.3/5.6/5.8G		Max. Rated Avg. Power + Max.	power(dBm)	
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
OH	(MHz)		6	
36	5180	9.00	8.64	
40	5200	12.00	11.64	
44	5220	12.00	11.91	
48	5240	12.00	11.94	
52	5260	12.00	11.99	
56	5280	12.00	11.63	
60	5300	12.00	11.98	
64	5320	8.00	7.54	
100	5500	8.50	8.08	
120	5600	12.00	11.86	
124	5620	12.00	11.72	
128	5640	12.00	11.55	
140	5700	9.50	9.13	
149	5745	7.50	7.40	
153	5765	12.00	11.65	
157	5785	12.00	11.96	
161	5805	12.00	11.89	
165	5825	8.50	8.38	

Page: 11 of 103

802	2.11 n(20M)		Average conducted output	
5.2/5.3/5.6/5.8G		Max. Rated Avg.	power(dBm)	
СН	Frequency	Power + Max. Frequency Tolerance (dBm)	Data Rate (Mbps)	
OH	(MHz)		6.5	
36	5180	9.00	8.17	
44	5220	12.00	11.81	
48	5240	12.00	11.85	
52	5260	12.00	11.95	
56	5280	12.00	11.76	
60	5300	12.00	11.99	
64	5320	8.00	7.50	
100	5500	9.00	8.51	
120	5600	12.00	11.84	
124	5620	12.00	11.79	
128	5640	12.00	11.72	
140	5700	7.00	6.69	
149	5745	6.50	6.11	
157	5785	12.00	11.91	
165	5825	8.50	8.39	

Report No. : E5/2016/A0030 Page : 12 of 103

802	2.11 n(40M)		Average conducted output
5.2/5.3/5.6/5.8G		Max. Rated Avg.	power (dBm)
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)
СП	(MHz)		13.5
38	5190	6.00	5.55
46	5230	12.00	11.92
54	5270	12.00	11.85
62	5310	4.00	3.56
102	5510	4.00	3.69
110	5550	12.00	11.95
118	5590	12.00	11.93
126	5630	12.00	11.96
134	5670	9.50	9.05
151	5755	5.50	5.13
159	5795	8.50	8.19

Page: 13 of 103

Bluetooth conducted power table:

Frequency	Data	Max. Rated Avg. Power + Max.	Avg. conducted output power		
(MHz)	Rate	Tolerance (dBm)	dBm	mW	
2402	1	3	1.72	1.486	
2441	1	3	0.33	1.079	
2480	1	3	2.06	1.607	
2402	2	3	-0.64	0.863	
2441	2	3	-1.83	0.656	
2480	2	3	0.04	1.009	
2402	3	3	-0.64	0.863	
2441	3	3	-1.63	0.687	
2480	3	3	-0.12	0.973	

	Max. Rated Avg.	Avg. Conducted output power	
Frequency (MHz)		BT4.0	
		dBm	mW
2402	0	-2.77	0.528
2442	0	-0.79	0.834
2480	0	-2.04	0.625

Page: 14 of 103

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

- 1. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- 2. During the SAR testing, the DASY 5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.

WLAN

802.11b DSSS SAR Test Requirements:

- 3. SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 4. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

 SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Page: 15 of 103

Initial Test Configuration:

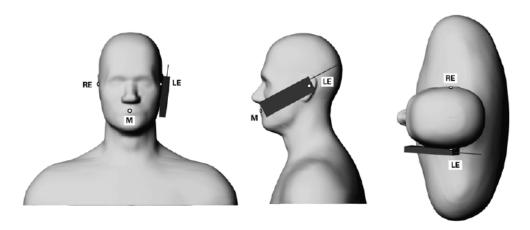
- 6. An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band.
- 7. SAR is measured using the highest measured maximum output power channel. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 8. For WLAN, 5.2 n(40)/5.3 n(40)/5.6 n(40)/5.8a is chosen to be the initial test configurations.
- 9. For WLAN, since the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for subsequent test configurations.

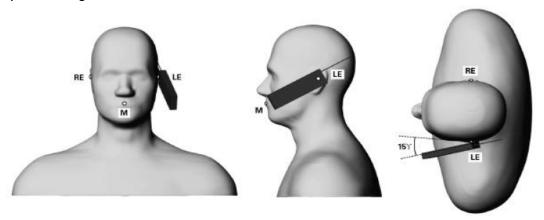
Other

- 10.BT and WLAN use the same antenna path and Bluetooth can't transmit simultaneously with WLAN.
- 11. According to **KDB447498D01v06**, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is \leq 0.8 W/kg, when the transmission band is \leq 100MHz.
- 12. According to KDB865664D01v01r04, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

Page: 16 of 103

13. According to KDB447498D01v06 – The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, and \leq 7.5 for product specific 10-g SAR.


mode	position	max. power (dB)	max. power (mW)	f(GHz)	calculation	SAR exclusion threshold	SAR test exclusion
BT	body-worn	3	1.995	2.48	0.314	3	yes
ВТ	product specific 10-g SAR	3	1.995	2.48	0.628	7.5	yes


Page: 17 of 103

1.6 Positioning Procedure

Head SAR measurement statement

Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Cheek/Touch Position:

The handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

Ear/Tilt Position:

With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

Page: 18 of 103

Body SAR measurement statement

1. Body-worn exposure: 10mm

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

2. Phablet SAR test consideration

Since the device is a phablet (overall diagonal dimension > 16.0 cm), the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for product specific 10-g SAR.

1.7 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- 3. The generation of a high-resolution mesh within the measured volume.
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid.
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

Page: 19 of 103

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans.

The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found.

If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Page: 20 of 103

1.8 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.8.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

Whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

 The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the

Page: 21 of 103

thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- 2. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- 3. The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (\sim 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed $\pm 5\%$.
- 4. Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

Page: 22 of 103

1.8.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- 1. The setup must enable accurate determination of the incident power.
- 2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.
- Due to the small wavelength in liquids with high permittivity, even small setups
 might be above the resonant cutoff frequencies. The field distribution in the
 setup must be carefully checked for conformity with the theoretical field
 distribution.

References

- (1) N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- (2) K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- (3) K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 23 of 103

1.9 The SAR Measurement System

A block diagram of the SAR measurement system is given in Fig. a. This SAR measurement system uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). Model EX3DV4 field probes are used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

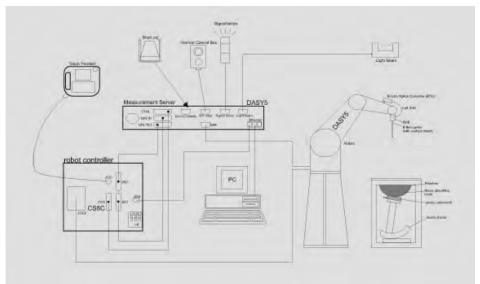


Fig. a A block diagram of the SAR measurement system

Page: 24 of 103

The DASY 5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows7
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Report No. : E5/2016/A0030 Page : 25 of 103

1.10 System Components

EX3DV4 E-Field Probe

	iela Flobe
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL2450/5200/5300/5600/5800 MHz Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz, Linearity: ± 0.6 dB
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	$10 \mu W/g \text{ to} > 100 \text{ mW/g}$
Range	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Tip diameter: 2.5 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Report No. : E5/2016/A0030 Page : 26 of 103

PHANTOM

Construction:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209.			
	It enables the dosimetric evaluation	n of left and right hand phone		
	usage as well as body mounted us	sage at the flat phantom region. A		
	cover prevents evaporation of the	liquid. Reference markings on the		
	phantom allow the complete setup of all predefined phantom			
	positions and measurement grids by manually teaching three points			
	with the robot.			
Shell	2 ± 0.2 mm			
Thickness:		THE PARTY OF THE P		
Filling	Approx. 25 liters			
Volume:		1 2		
Dimensions: Height: 850 mm;				
	Length: 1000 mm;			
	Width: 500 mm			

DEVICE HOLI	DER	
Construction	In combination with the Twin SAM Phantom	1-
	V4.0/V4.0C or Twin SAM, the Mounting	THE RESERVE
	Device (made from POM) enables the	
	rotation of the mounted transmitter in	
	spherical coordinates, whereby the rotation	
	point is the ear opening. The devices can	
	be easily and accurately positioned	
	according to IEC, IEEE, CENELEC, FCC or	
	other specifications. The device holder can	
	be locked at different phantom locations	Device Holder
	(left head, right head, flat phantom).	

Page: 27 of 103

1.11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% (according to KDB865664D01) from the target SAR values.

These tests were done at 2450/5200/5300/5600/5800 MHz. The tests were

conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was 21.7°C, the relative humidity was 62% and the liquid depth above the ear reference points was above 15 cm (≤3G) or 10 cm (>3G) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

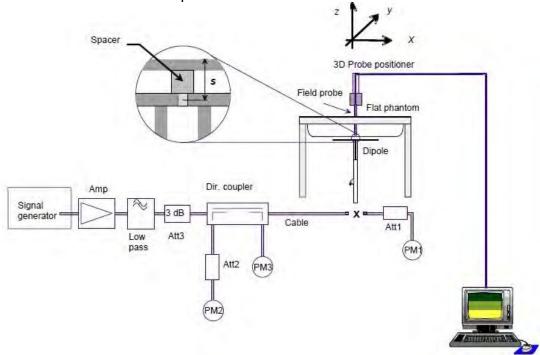


Fig. b The block diagram of system verification

Report No. : E5/2016/A0030 Page : 28 of 103

Validation Kit	S/N	Frequ (Mh	,	1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D2450V2	727	2450	Head	51	13.2	52.8	3.53%	Jan. 02, 2017
D2430 V2	121	2430	Body	49.6	12.8	51.2	3.23%	Jan. 09, 2017
		5200	Head	77	7.71	77.1	0.13%	Jan. 02, 2017
		3200	Body	71.9	7.55	75.5	5.01%	Jan. 09, 2017
		5300 Head		79.9	8.09	80.9	1.25%	Jan. 04, 2017
D5GHzV2	1023	Body		75.1	7.7	77	2.53%	Jan. 10, 2017
DOGITZVZ	1023	5600	Head	82.6	8.56	85.6	3.63%	Jan. 04, 2017
		3000	Body	78.3	7.92	79.2	1.15%	Jan. 10, 2017
		5800	Head	77.3	7.99	79.9	3.36%	Jan. 06, 2017
			Body	75.3	7.45	74.5	-1.06%	Jan. 11, 2017
Validation Kit	S/N	Frequ (MF	•	1W Target SAR-10g (mW/g)	Measured SAR-10g (mW/g)	Measured SAR-10g normalized to 1W (mW/a)	Deviation (%)	Measured Date
D0450\/0	707	2450	Head	23.7	5.84	23.36	-1.43%	Jan. 02, 2017
D2450V2	727	2450	Body	23.3	5.91	23.64	1.46%	Jan. 09, 2017
		5200	Head	22.1	2.18	21.8	-1.36%	Jan. 02, 2017
		5200	Body	20.3	2.09	20.9	2.96%	Jan. 09, 2017
		5300	Head	23.1	2.27	22.7	-1.73%	Jan. 04, 2017
D5GHzV2	1023	5500	Body	21.2	2.21	22.1	4.25%	Jan. 10, 2017
DOGHZVZ	1023	5600	Head	23.6	2.41	24.1	2.12%	Jan. 04, 2017
		3000	Body	22.1	2.25	22.5	1.81%	Jan. 10, 2017
		5800	Head	22	2.27	22.7	3.18%	Jan. 06, 2017
		3000	Body	21.1	2.15	21.5	1.90%	Jan. 11, 2017

Table 1. Results of system verification

Page: 29 of 103

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Head/Body-simulant fluid were measured by using the Schmid & Partner Engineering AG Model DAKS-3.5 Dielectric Probe Kit in conjunction with Network Analyzer.

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The measured conductivity and permittivity are all within \pm 5% of the target values.

Tissue Type	Measurement Date	Measured Frequency (MHz)	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	% dev εr	% dev σ
		2450	39.200	1.800	38.409	1.871	2.02%	-3.94%
		2462	39.185	1.813	38.311	1.857	2.23%	-2.42%
	Jan. 2, 2017	5190	35.997	4.645	34.685	4.740	3.65%	-2.05%
		5200	35.986	4.655	34.585	4.753	3.89%	-2.11%
		5230	35.951	4.686	34.501	4.779	4.03%	-1.99%
		5270	35.906	4.727	34.676	4.779	3.42%	-1.11%
Llood		5300	35.871	4.758	34.646	4.933	3.42%	-3.69%
Head	Jan. 4, 2017	5310	35.860	4.768	34.779	4.922	3.01%	-3.24%
		5550	35.586	5.014	34.464	4.969	3.15%	0.89%
		5600	35.529	5.065	34.287	4.958	3.49%	2.11%
		5630	35.494	5.096	34.076	5.060	4.00%	0.70%
		5785	35.317	5.255	35.010	5.357	0.87%	-1.95%
	Jan. 6, 2017	5800	35.300	5.270	34.339	5.321	2.72%	-0.97%
		5805	35.294	5.275	34.248	5.248	2.96%	0.51%
		2450	52.700	1.950	52.928	2.007	-0.43%	-2.92%
	Jan. 9, 2017	2462	52.685	1.967	51.654	2.015	1.96%	-2.44%
	Jan. 3, 2017	5200	49.014	5.299	47.685	5.256	2.71%	0.82%
		5230	48.974	5.334	48.219	5.526	1.54%	-3.59%
Body		5270	48.919	5.381	48.062	5.561	1.75%	-3.34%
Body	Body	5300	48.879	5.416	47.413	5.411	3.00%	0.09%
	Jan. 10, 2017	5600	48.471	5.766	48.839	5.855	-0.76%	-1.54%
		5630	48.431	5.801	48.800	5.887	-0.76%	-1.47%
	lan 11 2017	5785	48.220	5.982	47.895	6.165	0.67%	-3.05%
	Jan. 11, 2017	5800	48.200	6.000	47.822	6.078	0.78%	-1.30%

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 30 of 103

The composition of the tissue simulating liquid:

						<u> </u>				
			Ingredient							
Frequency (MHz)	Mode	DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	Total amount		
0.450	Head	550ml	450ml		_	1	ı	1.0L(Kg)		
2450	Body	301.7ml	698.3ml		_	1		1.0L(Kg)		

Simulating Liquids for 5 GHz, Manufactured by SPEAG:

Ingredients	Water	Esters, Emulsifiers, Inhibitors	Sodium and Salt
(% by weight)	60-80	20-40	0-1.5

Table 3. Recipes for tissue simulating liquid

Page: 31 of 103

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.

These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter.

Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over a 10 grams of tissue (defined as a tissue volume in the shape of a cube).

Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

2. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube).

Page: 32 of 103

Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube).

General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure.

Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .6)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 W/kg	8.00 W/kg
Spatial Average SAR (Whole Body)	0.08 W/kg	0.40 W/kg
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 33 of 103

2. Summary of Results

WLAN 802.11b

Mode	Position Distance (mm)		СН	Freq.	Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 1g (W/kg)		Plot page
					Tolerance (dBm)	(dBm)		Measured	Reported	
	RE Cheek	-	11	2462	12.00	11.92	1.86%	0.401	0.408	39
Head	RE Tilt	-	11	2462	12.00	11.92	1.86%	0.234	0.238	-
пеац	LE Cheek	-	11	2462	12.00	11.92	1.86%	0.203	0.207	-
	LE Tilt	-	11	2462	12.00	11.92	1.86%	0.154	0.157	-
Body-	Front side	10	11	2462	12.00	11.92	1.86%	0.106	0.108	40
worn	Back side	10	11	2462	12.00	11.92	1.86%	0.094	0.096	-

Mode	Position	Distance (mm)	СН	Freq.	Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 10g (W/kg)		Plot page
					Tolerance (dBm)	(dBm)		Measured	Reported	
product	Front side	0	11	2462	12.00	11.92	1.86%	0.250	0.255	-
specific	Back side	0	11	2462	12.00	11.92	1.86%	0.223	0.227	-
10-g	Top side	0	11	2462	12.00	11.92	1.86%	0.121	0.123	-
SAR	Left side	0	11	2462	12.00	11.92	1.86%	0.305	0.311	41

Page: 34 of 103

WLAN 802.11n(40M) 5.2G

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Avg. Scaling	J. Scaling (W/kg)		_	Plot page
		, ,		,	Tolerance (dBm)	(dBm)		Measured	Reported	, 0	
	RE Cheek	-	38	5190	6.00	5.55	10.92%	0.198	0.220	-	
	RE Cheek	-	46	5230	12.00	11.92	1.86%	0.921	0.938	42	
Head	RE Cheek*	-	46	5230	12.00	11.92	1.86%	0.915	0.932	-	
Tieau	RE Tilt	-	46	5230	12.00	11.92	1.86%	0.628	0.640	-	
	LE Cheek	-	46	5230	12.00	11.92	1.86%	0.426	0.434	-	
	LE Tilt	-	46	5230	12.00	11.92	1.86%	0.383	0.390	-	
Body-	Front side	10	46	5230	12.00	11.92	1.86%	0.194	0.198	43	
worn	Back side	10	46	5230	12.00	11.92	1.86%	0.151	0.154	-	

* - repeated at the highest SAR measurement according to the KDB 865664 D01

Mode	Position	ion Distance (mm)		Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance	Measured Avg. Power	Scaling	Averaged SAR over 10g (W/kg)		Plot page
					(dBm)	(dBm)		Measured	Reported	
product	Front side	0	46	5230	12.00	11.92	1.86%	0.359	0.366	44
specific	Back side	0	46	5230	12.00	11.92	1.86%	0.306	0.312	-
10-g	Top side	0	46	5230	12.00	11.92	1.86%	0.261	0.266	-
SAR	Left side	0	46	5230	12.00	11.92	1.86%	0.304	0.310	-

Page: 35 of 103

WLAN 802.11n(40M) 5.3G

Mode	Position	tion Distance (mm)		Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 1g (W/kg)		Plot page
		, ,		,	Tolerance (dBm)	(dBm)		Measured	Reported	
	RE Cheek	-	54	5270	12.00	11.85	3.51%	0.952	0.985	45
	RE Cheek*	-	54	5270	12.00	11.85	3.51%	0.950	0.983	-
Head	RE Cheek	-	62	5310	4.00	3.56	10.66%	0.171	0.189	-
пеац	RE Tilt	-	54	5270	12.00	11.85	3.51%	0.633	0.655	-
	LE Cheek	-	54	5270	12.00	11.85	3.51%	0.462	0.478	-
	LE Tilt	-	54	5270	12.00	11.85	3.51%	0.389	0.403	-
Body-	Front side	10	54	5270	12.00	11.85	3.51%	0.188	0.195	46
worn	Back side	10	54	5270	12.00	11.85	3.51%	0.147	0.152	-

* - repeated at the highest SAR measurement according to the KDB 865664 D01

Mode	Position	Position	Position	Position	Position	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
					Tolerance (dBm)	(dBm)		Measured	Reported						
product	Front side	0	54	5270	12.00	11.85	3.51%	0.373	0.386	47					
specific	Back side	0	54	5270	12.00	11.85	3.51%	0.290	0.300	-					
10-g	Top side	0	54	5270	12.00	11.85	3.51%	0.240	0.248	-					
SAR	Left side	0	54	5270	12.00	11.85	3.51%	0.321	0.332	-					

Page: 36 of 103

WLAN 802.11n(40M) 5.6G

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dRm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
								Measured	Reported	
Head	RE Cheek	-	110	5550	12.00	11.95	1.16%	1.040	1.052	48
	RE Cheek*	-	110	5550	12.00	11.95	1.16%	1.020	1.032	-
	RE Cheek	-	126	5630	12.00	11.96	0.93%	0.928	0.937	-
	RE Tilt	-	110	5550	12.00	11.95	1.16%	0.603	0.610	-
	LE Cheek	-	110	5550	12.00	11.95	1.16%	0.359	0.363	-
	LE Tilt	-	110	5550	12.00	11.95	1.16%	0.300	0.303	-
Body- worn	Front side	10	126	5630	12.00	11.96	0.93%	0.165	0.167	49
	Back side	10	126	5630	12.00	11.96	0.93%	0.107	0.108	-

* - repeated at the highest SAR measurement according to the KDB 865664 D01

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 10g (W/kg)		Plot page
								Measured	Reported	
product specific 10-g SAR	Front side	0	126	5630	12.00	11.96	0.93%	0.389	0.393	-
	Back side	0	126	5630	12.00	11.96	0.93%	0.221	0.223	-
	Top side	0	126	5630	12.00	11.96	0.93%	0.211	0.213	-
	Left side	0	126	5630	12.00	11.96	0.93%	0.444	0.448	50

Page: 37 of 103

WLAN 802.11a 5.8G

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/		Plot page
				,	Tolerance (dBm)	(dBm)		Measured	Reported	
	RE Cheek	-	157	5785	12.00	11.96	0.93%	1.140	1.151	51
	RE Cheek*	=	157	5785	12.00	11.96	0.93%	1.020	1.029	-
Head	RE Cheek	=	161	5805	12.00	11.89	2.57%	1.070	1.097	-
Heau	RE Tilt	-	157	5785	12.00	11.96	0.93%	0.748	0.755	-
	LE Cheek	-	157	5785	12.00	11.96	0.93%	0.411	0.415	-
	LE Tilt	-	157	5785	12.00	11.96	0.93%	0.351	0.354	-
Body-	Front side	10	157	5785	12.00	11.96	0.93%	0.177	0.179	52
worn	Back side	10	157	5785	12.00	11.96	0.93%	0.094	0.095	-

* - repeated at the highest SAR measurement according to the KDB 865664 D01

Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Measured Avg. Power (dBm)	Scaling	Averaged 10 (W/ Measured)g	Plot page
product	Front side	0	157	5785	12.00	11.96	0.93%	0.453	0.457	-
specific	Back side	0	157	5785	12.00	11.96	0.93%	0.253	0.255	-
10-g	Top side	0	157	5785	12.00	11.96	0.93%	0.189	0.191	-
SAR	Left side	0	157	5785	12.00	11.96	0.93%	0.584	0.589	53

Page: 38 of 103

3. Instruments List

Manufacturer	Device	Type	Serial number	Date of last calibration	Date of next calibration
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3923	Sep.02,2016	Sep.01,2017
Schmid & Partner	System Validation	D2450V2	727	Apr.19,2016	Apr.18,2017
Engineering AG	Dipole	D5GHzV2	1023	Jan.26,2016	Jan.25,2017
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	547	Mar.21,2016	Mar.20,2017
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required
Schmid & Partner Engineering AG	Vector Network Analyzer and Vector Reflect meter	DAKS VNA R140	0170813	Mar.23,2016	Mar.22,2017
Schmid & Partner Engineering AG	Dielectric Probe Kit	DAKS-3.5	0004	Mar.23,2016	Mar.22,2017
Agilent	Dual-directional	772D	MY52180142	Apr.13,2016	Apr.12,2017
Agilent	coupler	778D	MY52180302	Apr.13,2016	Apr.12,2017
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.19,2016	Feb.18,2017
Agilent	Power Meter	E4417A	MY52240003	Oct.17,2016	Oct.16,2017
Agilopt	Dower Concer	E9301H	MY52200003	Oct.17,2016	Oct.16,2017
Agilent	Power Sensor	E9301H	MY52200004	Oct.17,2016	Oct.16,2017
TECPEL	Digital thermometer	DTM-303A	TP130073	Feb.26,2016	Feb.25,2017

Page: 39 of 103

4. Measurements

Date: 2017/1/2

WLAN 802.11b Head Re Cheek CH 11

Communication System: WLAN 2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.857 \text{ S/m}$; $\varepsilon_r = 38.311$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient temperature: 22.9° C; Liquid temperature: 22.0° C

DASY5 Configuration:

• Probe: EX3DV4 - SN3923; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/9/2;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

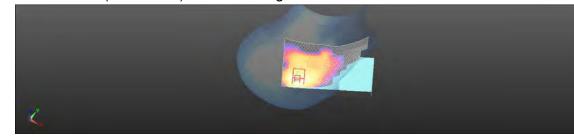
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (81x141x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.616 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


dB 0 -5.45 -10.89 -16.34 -21.78

Reference Value = 8.720 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.401 W/kg; SAR(10 g) = 0.191 W/kg

Maximum value of SAR (measured) = 0.594 W/kg

0 dB = 0.594 W/kg = -2.26 dBW/kg

Page: 40 of 103

Date: 2017/1/9

WLAN 802.11b_Body-worn_Front side_CH 11_10mm

Communication System: WLAN 2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 2.015$ S/m; $\epsilon_r = 51.654$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 22.2° C

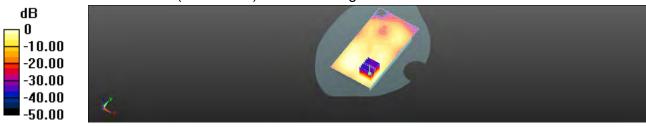
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(8.06, 8.06, 8.06); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (81x151x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.125 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dv=5mm, dz=5mm

Reference Value = 4.069 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.128 W/kg

0 dB = 0.128 W/kg = -8.93 dBW/kg

Page: 41 of 103

Date: 2017/1/9

WLAN 802.11b_Product specific 10-g SAR_Left side_CH 11_0mm

Communication System: WLAN 2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 2.015$ S/m; $\epsilon_r = 51.654$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 22.2° C

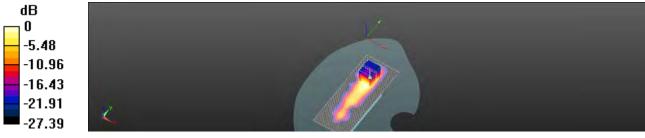
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(8.06, 8.06, 8.06); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (61x151x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.939 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 8.567 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.692 W/kg; SAR(10 g) = 0.305 W/kg

Maximum value of SAR (measured) = 0.883 W/kg

0 dB = 0.883 W/kg = -0.54 dBW/kg

Page: 42 of 103

Date: 2017/1/2

WLAN 802.11n(40M) 5.2G_Head_Re Cheek_CH 46

Communication System: WLAN 5G; Frequency: 5230 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5230 MHz; $\sigma = 4.779 \text{ S/m}$; $\varepsilon_r = 34.501$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient temperature: 22.8° C; Liquid temperature: 22.1° C

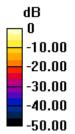
DASY5 Configuration:

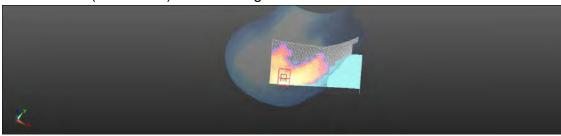
- Probe: EX3DV4 SN3923; ConvF(5.36, 5.36, 5.36); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (91x171x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.82 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 2.874 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 4.23 W/kg

SAR(1 g) = 0.921 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 1.90 W/kg

0 dB = 1.90 W/kg = 2.78 dBW/kg

Page: 43 of 103

Date: 2017/1/9

WLAN 802.11n(40M) 5.2G_Body-worn_Front side_CH 46_10mm

Communication System: WLAN 5G; Frequency: 5230 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5230 MHz; $\sigma = 5.526 \text{ S/m}$; $\epsilon_r = 48.219$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.424 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 1.596 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.702 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.067 W/kg

Maximum value of SAR (measured) = 0.413 W/kg

0 dB = 0.413 W/kg = -3.84 dBW/kg

Page: 44 of 103

Date: 2017/1/9

WLAN 802.11n(40M) 5.2G_ Product specific 10-g SAR_Front side_CH 46 0mm

Communication System: WLAN 5G; Frequency: 5230 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5230 MHz; $\sigma = 5.526 \text{ S/m}$; $\varepsilon_r = 48.219$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

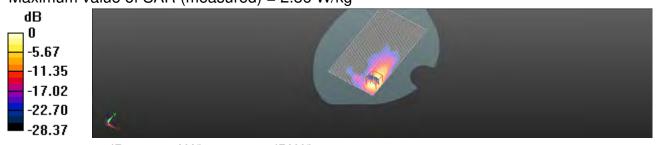
Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 3.14 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 1.661 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 5.71 W/kg

SAR(1 g) = 1.33 W/kg; SAR(10 g) = 0.359 W/kg Maximum value of SAR (measured) = 2.86 W/kg

0 dB = 2.86 W/kg = 4.57 dBW/kg

Page: 45 of 103

Date: 2017/1/4

WLAN 802.11n(40M) 5.3G Head Re Cheek CH 54

Communication System: WLAN 5G; Frequency: 5270 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5270 MHz; $\sigma = 4.779 \text{ S/m}$; $\epsilon_r = 34.676$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient temperature: 22.7° C; Liquid temperature: 22.2° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(5.36, 5.36, 5.36); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (91x171x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.88 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 2.328 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.37 W/kg

SAR(1 g) = 0.952 W/kg; SAR(10 g) = 0.289 W/kg

Maximum value of SAR (measured) = 1.95 W/kg

0 dB = 1.95 W/kg = 2.91 dBW/kg

Page: 46 of 103

Date: 2017/1/10

WLAN 802.11n(40M) 5.3G_Body-worn_Front side_CH 54_10mm

Communication System: WLAN 5G; Frequency: 5270 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5270 MHz; $\sigma = 5.561 \text{ S/m}$; $\epsilon_r = 48.062$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.2° C; Liquid temperature: 21.6° C

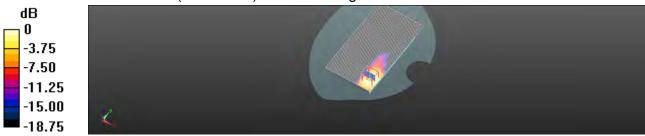
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.411 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.759 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.394 W/kg

0 dB = 0.394 W/kg = -4.04 dBW/kg

Page: 47 of 103

Date: 2017/1/10

WLAN 802.11n(40M) 5.3G_ Product specific 10-g SAR_Front side_CH 0mm

Communication System: WLAN 5G; Frequency: 5270 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5270 MHz; $\sigma = 5.561 \text{ S/m}$; $\varepsilon_r = 48.062$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

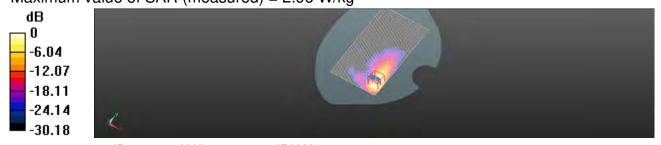
Ambient temperature: 22.2° C; Liquid temperature: 21.6° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 3.13 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 1.558 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 5.85 W/kg

SAR(1 g) = 1.38 W/kg; SAR(10 g) = 0.373 W/kg Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg

Page: 48 of 103

Date: 2017/1/4

WLAN 802.11n(40M) 5.6G Head Re Cheek CH 110

Communication System: WLAN 5G; Frequency: 5550 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5550 MHz; $\sigma = 4.969 \text{ S/m}$; $\varepsilon_r = 34.464$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient temperature: 22.6° C; Liquid temperature: 22.3° C

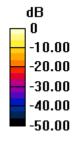
DASY5 Configuration:

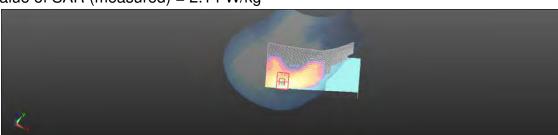
- Probe: EX3DV4 SN3923; ConvF(4.94, 4.94, 4.94); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (91x171x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 2.09 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 2.288 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 4.88 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.312 W/kg

Maximum value of SAR (measured) = 2.14 W/kg

0 dB = 2.14 W/kg = 3.31 dBW/kg

Page: 49 of 103

Date: 2017/1/10

WLAN 802.11n(40M) 5.6G Body-worn Front side CH 126 10mm

Communication System: WLAN 5G; Frequency: 5630 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5630 MHz; $\sigma = 5.887 \text{ S/m}$; $\epsilon_r = 48.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.395 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.668 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.061 W/kg

Maximum value of SAR (measured) = 0.398 W/kg

0 dB = 0.398 W/kg = -4.01 dBW/kg

Page: 50 of 103

Date: 2017/1/10

WLAN 802.11n(40M) 5.6G_ Product specific 10-g SAR_Left side_CH 126 0mm

Communication System: WLAN 5G; Frequency: 5630 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5630 MHz; $\sigma = 5.887 \text{ S/m}$; $\varepsilon_r = 48.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

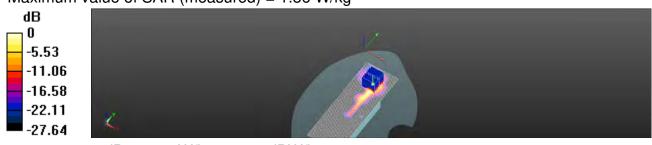
Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (71x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.78 W/kg


Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 3.134 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 4.18 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.444 W/kg Maximum value of SAR (measured) = 1.86 W/kg

0 dB = 1.86 W/kg = 2.69 dBW/kg

Page: 51 of 103

Date: 2017/1/6

WLAN 802.11a 5.8G Head Re Cheek CH 157

Communication System: WLAN 5G; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 5.357 \text{ S/m}$; $\varepsilon_r = 35.01$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Ambient temperature: 22.5° C; Liquid temperature: 21.9° C

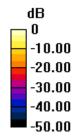
DASY5 Configuration:

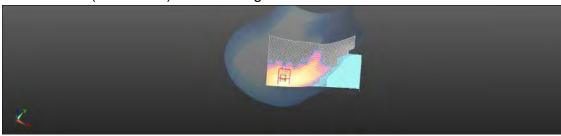
- Probe: EX3DV4 SN3923; ConvF(4.96, 4.96, 4.96); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Head/Area Scan (101x171x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 2.76 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 1.316 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 5.72 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.342 W/kg

Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dBW/kg

Page: 52 of 103

Date: 2017/1/11

WLAN 802.11a 5.8G_Body-worn_Front side_CH 157_10mm

Communication System: WLAN 5G; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 6.165$ S/m; $\varepsilon_r = 47.895$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 21.8° C

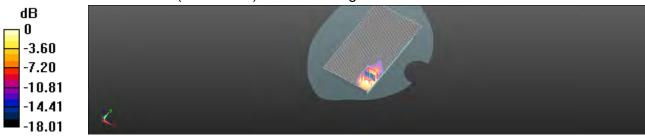
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.19, 4.19, 4.19); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (101x181x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.464 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.509 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.177 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.449 W/kg

0 dB = 0.449 W/kg = -3.48 dBW/kg

Page: 53 of 103

Date: 2017/1/11

WLAN 802.11a 5.8G_ Product specific 10-g SAR_Left side_CH 157_0mm

Communication System: WLAN 5G; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5785 MHz; $\sigma = 6.165$ S/m; $\epsilon_r = 47.895$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 21.8° C

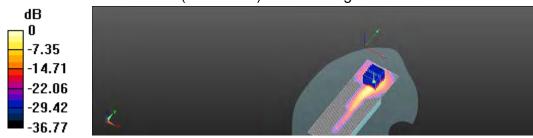
DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.19, 4.19, 4.19); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Body/Area Scan (71x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 4.31 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 2.414 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 10.4 W/kg

SAR(1 g) = 2.08 W/kg; SAR(10 g) = 0.584 W/kg

Maximum value of SAR (measured) = 4.67 W/kg

0 dB = 4.67 W/kg = 6.70 dBW/kg

Page: 54 of 103

5. SAR System Performance Verification

Date: 2017/1/2

Dipole 2450 MHz SN:727 Head

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.871 \text{ S/m}$; $\epsilon_r = 38.409$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

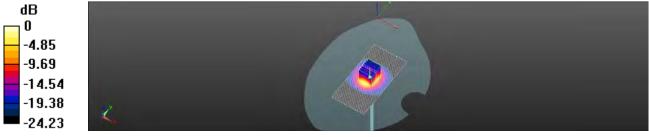
Ambient temperature: 22.9° C; Liquid temperature: 22.0° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (61x121x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 21.4 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.3 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 5.84 W/kg Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg

Page: 55 of 103

Date: 2017/1/9

Dipole 2450 MHz_SN:727_Body

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.007 \text{ S/m}$; $\varepsilon_r = 52.928$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 22.2° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(8.06, 8.06, 8.06); Calibrated: 2016/9/2;

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

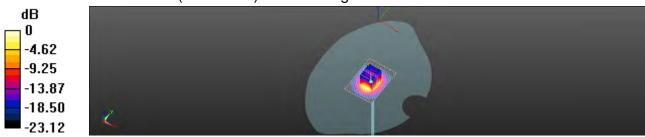
· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250mW/Area Scan (51x71x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 19.2 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.01 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.63 dBW/kg

Page: 56 of 103

Date: 2017/1/2

Dipole 5200 MHz_SN:1023_Head

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.753 \text{ S/m}$; $\varepsilon_r = 34.585$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.8° C; Liquid temperature: 22.1° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(5.36, 5.36, 5.36); Calibrated: 2016/9/2;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 16.8 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.45 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 34.5 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.18 W/kgMaximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.09 dBW/kg

Page: 57 of 103

Date: 2017/1/9

Dipole 5200 MHz_SN:1023_Body

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.256 \text{ S/m}$; $\varepsilon_r = 47.685$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

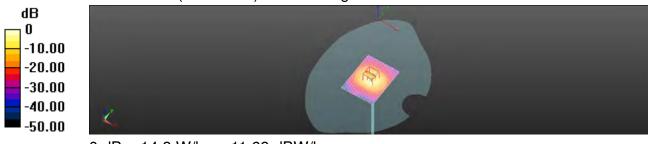
Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 14.9 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.51 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.69 dBW/kg

Page: 58 of 103

Date: 2017/1/4

Dipole 5300 MHz_SN:1023_Head

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.933 \text{ S/m}$; $\epsilon_r = 34.646$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.7° C; Liquid temperature: 22.2° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(5.36, 5.36, 5.36); Calibrated: 2016/9/2;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.0 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.90 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 37.7 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 17.2 W/kg

0 dB = 17.2 W/kg = 12.35 dBW/kg

Page: 59 of 103

Date: 2017/1/10

Dipole 5300 MHz_SN:1023_Body

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.411 \text{ S/m}$; $\varepsilon_r = 47.413$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.2° C; Liquid temperature: 21.6° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.58, 4.58, 4.58); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 15.6 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.08 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 7.7 W/kg; SAR(10 g) = 2.21 W/kgMaximum value of SAR (measured) = 15.1 W/kg

0 dB = 15.1 W/kg = 11.80 dBW/kg

Page: 60 of 103

Date: 2017/1/4

Dipole 5600 MHz_SN:1023_Head

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 4.958 \text{ S/m}$; $\epsilon_r = 34.287$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.6° C; Liquid temperature: 22.3° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.94, 4.94, 4.94); Calibrated: 2016/9/2;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

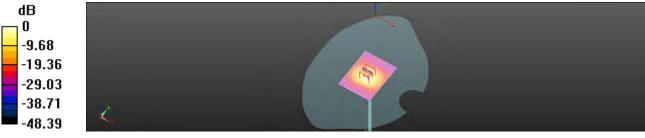
Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 19.1 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.93 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 40.4 W/kg

SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.41 W/kgMaximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

Page: 61 of 103

Date: 2017/1/10

Dipole 5600 MHz_SN:1023_Body

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.855 \text{ S/m}$; $\varepsilon_r = 48.839$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.3° C; Liquid temperature: 21.7° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4, 4, 4); Calibrated: 2016/9/2;

Sensor-Surface: 2mm (Mechanical Surface Detection)

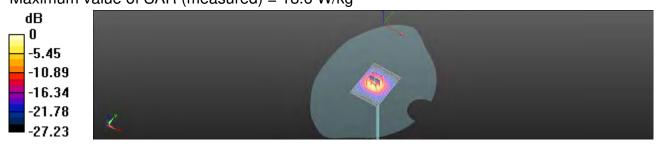
Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (61x81x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.1 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.11 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.25 W/kgMaximum value of SAR (measured) = 18.6 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Page: 62 of 103

Date: 2017/1/6

Dipole 5800 MHz_SN:1023_Head

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.321 \text{ S/m}$; $\varepsilon_r = 34.339$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

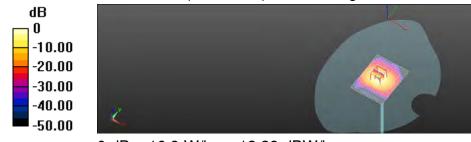
Ambient temperature: 22.5° C; Liquid temperature: 21.9° C

DASY5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(4.96, 4.96, 4.96); Calibrated: 2016/9/2;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn547; Calibrated: 2016/3/21
- · Phantom: Head
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.6 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.10 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 16.9 W/kg

Page: 63 of 103

Date: 2017/1/11

Dipole 5800 MHz_SN:1023_Body

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.078 \text{ S/m}$; $\varepsilon_r = 47.822$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient temperature: 22.4° C; Liquid temperature: 21.8° C

DASY5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(4.19, 4.19, 4.19); Calibrated: 2016/9/2;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

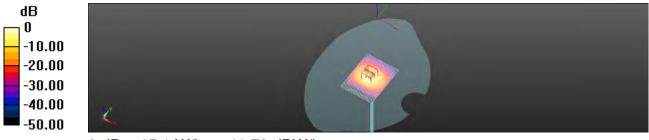
Electronics: DAE4 Sn547; Calibrated: 2016/3/21

· Phantom: Head

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=100mW/Area Scan (71x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 15.1 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 52.71 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.15 W/kgMaximum value of SAR (measured) = 15.1 W/kg

0 dB = 15.1 W/kg = 11.79 dBW/kg

Page: 64 of 103

6. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibriordienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden) Certificate No: DAE4-547_Mar16 CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 547 Object Calibration procedure(s) QA CAL-06, V29 Calibration procedure for the data acquisition electronics (DAE) March 21, 2016 Calibration date: This calibration certificate documents the traceability to national staticiants, which retailed the physical units of measurements (St. The measurements and the unpertenties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed biboratory facility: environment temperature (22 s.5)°C and humiday < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Dr Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 09-Sep-15 (No:17153) Sep-15 Scheduled Check Secondary Standards in# Check Date (in house) SE LIWS 063 AA 1001 05-Jan-16 (in house check) Auto DAE Calibration Unit In house check: Jan-17 in house check: Jan-17 Calibrator Box V2.1 SE UMS 005 AA 1002 05-Jan-16 (in house check) Signatura Name Technician Calibrated by: H.Mayoraz Fin Bombot Deputy Technical Manager Approved by: Issued: March 21, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-547_Mar16

Page 1 of 5

Page: 65 of 103

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughmasstrasse 43, 8004 Zurich, Switzelland

Schweizerlacher Kellbriertliensi Service ausse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accrecitation No.: SCS 0108

According by the Serics Accorditation Service (SAS)
The Swiss Accorditation Service is one of the signaturies to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics Connector angle information used in DASY's

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The ligure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation/ influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the Internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage; Typical value for information, Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Centricate No: DAE4-547_Mar16

Page 2 nt 5

Page: 66 of 103

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = 6.1μV, High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	z
High Range	403.135 ± 0.02% (k=2)	403.036 ± 0.02% (k=2)	402.684 ± 0.02% (k=2)
Low Range	3.95305 ± 1.50% (k=2)	3.90339 ± 1.50% (k=2)	3.96094 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	162.0 ° ± 1 °

Certificate No: DAE4-547_Mar16

Page: 67 of 103

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.21	2.19	0.00
Channel X + Input	20002.69	2.01	0.01
Channel X - Input	-19996.82	4.06	-0.02
Channel Y + Input	199993.69	1.38	0.00
Channel Y + Input	19996.39	-2.33	-0.01
Channel Y - Input	-20002.28	-1.42	0.01
Channel Z + Input	199992.57	0.40	0.00
Channel Z + Input	20001.18	0.43	0.00
Channel Z - Input	-19999.63	1.28	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)	
Channel X + Input	2000.74	0.01	0.00	
Channel X + Input	200.96	-0.15	-0.08	
Channel X - Input	-198.85	-0.17	0.09	
Channel Y + Input	2000.55	-0.24	-0.01	
Channel Y + Input	200.62	-0.63	-0.31	
Channel Y - Input	-199.16	-0.63	0.32	
Channel Z + Input	2000.92	0.18	0.01	
Channel Z + Input	200.09	-1.21	-0.60	
Channel Z - Input	-199.88	-1.33	0.67	

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.77	-5.74
	- 200	5.75	4.10
Channel Y	200	-0.96	-1.19
	- 200	-0.19	-0.50
Channel Z	200	5.38	5.39
	- 200	-7.88	-7.92

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	3.23	-2.09
Channel Y	200	9.86	-	4.46
Channel Z	200	4.46	8.53	-

Certificate No: DAE4-547_Mar16

Page 4 of 5

Page: 68 of 103

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16360	14961
Channel Y	16477	16929
Channel Z	16075	16224

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.98	0.14	1.82	0.32
Channel Y	-0.29	-1.11	0.56	0.32
Channel Z	-1.72	-2.77	-0.15	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

, , , , , , , , , , , , , , , , , , , ,	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Low Battery Alarm Voltage (Typical Values for information)				
Typical values	Alarm Level (VDC)			
Supply (+ Vcc)	+7.9			
Supply (- Vcc)	-7.6			

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)		
Supply (+ Vcc)	+0.01	+6	+14		
Supply (- Voc)	-0.01	-8	-9		

Certificate No: DAE4-547_Mar16

Page 5 of 5

Page: 69 of 103

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalormage Servizio evizzero di taratura Swiss Calibration Service

Accredited by the Swas Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilisteral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Сипление №0: ЕХЗ-3923_Sep16

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3923

Calibration presedure(s)

QA CAL 01.49, QA CAL-14.44. QA CAL-23.45, QA CAL-25.46

Calibration procedure for dosimitric E-field probes.

Calburfor date:

September 2, 2016

This calibration cardificate obcurrents the tracestrity to retorned standards, which rautice this physical units of measurements (SI). The measurements and the uncertainties with confrience probability are given on the following pages and are part of the certificate.

All calteriors have been conducted in the closed into ratory facility invironment introduction (22 ± 5)°C and humidity < 70%.

Calibration Equipment used (M6 TE orbio) for calibration)

Primary Standards	16	Car Date (Certificate No.) Scheduled Calib		
Power main NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17	
Power sensor NRP-251	SN: 183244	08-Apt-18 (No. 217-02288)	Apr-17	
Fower sensor NRP-Z91	BN: 103245	C6-Apr-16 (No. 217-02289)	Apr-17	
Reference 20 dB Attenuator	SN: 55277 (20x)	06-Apr-18 (No. 217-02293)	Apr-17	
Reference Probe E330V2	5N: 3013	31-Dec 15 (No E33-3813 Dec15)	Dec 16.	
DAE4	SN: 660	23-Bac-15 (No DAE4-600 Dec15)	Deci-16	
Sepondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E44198	SN: ISB41293874	06-Apr-18 (in naise check Juli-16)	in house streck day-18	
Power serisor E4412A	SN MY41408087	05-Apr-18 (in house check Jun-16)	16) In house aback, sun 18	
Power sensor E4412A	SM 000110210	DS-Apr 16 (in house check Jun-18)	in house check, ain-18	
RP generals: HP 8848C	SN: US3642U01780	04-Aug-99 (in house check Jun-16)	H house check: Jun-18	
Network Analyzer HP 8753E	SM: US37390886	18-Oct-01 (in house check Oct-15)	is house check, Cits-16	

Forcion Librarity Learninian Witnel Wills Calibrated by Testinesi Manuaer Kinga Policylo Approved by Issued September 2, 2016 This conforming certificate shall not be reproduced except to full written approve of the laticularly

Certificate No: EX3-3923_Sep16

Page 1 of 11

Page: 70 of 103

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerincher Keltbeterdinget s Service suinn chininenage C Sanvizio svizzaro di turatura 9 Swins Calibration Buryley

Accreditation No | SCS 010E

Accrecited by the Swee Accrecitation Security (BAS)

The Swite Accorditation Service is use of the signatures to the EA Muzetaseral Agreement for the incognision of cascination certificates

Glossary:

blopi pritelume ausait NORMx,y,z sensitivity in thee space aussilivity in TSL / NORMs, y, z CUNF DCP diada compression point

crest factor (1/duty_cycle) of the RF signs. CE A.B.C.D modulation dependent linearization parameters

Polarization is a rotation around probe axis

If relation around an axes that is in the plane normal to probe exis (at measurement center), Polarization II

a w = 0 is normal to probe axis

Corrector Angle information used in DASY system to align probe sensor X to the policy coordinate system.

Calibration is Performed According to the Following Standards:

a) IEEE Std 1529-2013. "IEEE Recommended Practice for Detarmining this Peak Spatist-Averaged Specific Absorption Rate (SAR) in the flumman Head from Wireless Communications Devices. Measurement Techniques", June 2013.

b) IEC 522(9-1, Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in cices praximity to the ser (frequency range of 300 MHz to 3 GHz)", February 2005.

c) IEC 62209-2, Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices.

used in close proximity to the human body (flequincy range of 90 MHz to 6 GHz)". March 2010 d) KDB 965664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMy,y,z: Assessed for E-field potanization b=0 (f ≤ 900 MHz in TEM-cell; f ≤ 1800 MHz: R22 waveguide), NORMy,y,z are only intermediate values, i.e., the uncertainties of NORMy,y,z does not affilial thin \mathbb{S}^3 -field. uncertainty inside TSL (see below Com/F)

NORM/I/x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncortainty of the frequency response is included in the stated uncertainty of CornP.

DCPx.y.c: DCP are illumerical invariantion parameters assessed based on the data of power switch Mith CW signal (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not cultivated but determined based on the signal characteristics

Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization paremeters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on requency no media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConyF and Boundary Effect Parameters: Assessed in fall phantom using 6-field (or Temperature Transfer Standard for I s 800 MHz; and inside waveguide using analytical field distributions based on power measurements for t > 800 MHz. The same satups are used for assessment of the garansilars applied for houndary compensation (alpha, depth) of which typical uncartainty values are given. These perameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMs, v.z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent. ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100. Mitz

Spherical (sutropy (SD) downtion from isotropy): in a field of low gradients resizzed using a flat phareoni exposed by a paich antenna.

Sensor Officer. The sensor officet corresponds to the officer of virtual inequirement penter from the probe tip. (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information pained by determining the MORMA (no.

uncertainty required)

Cemificale Not EX3-3923 Septle

Page 2 pl 11

Page: 71 of 103

EX3DV4 - 9N 3923

September 2, 2016.

Probe EX3DV4

SN:3923

Manufactured:

March 8, 2013 August 30, 2016 September 2, 2016

Repaired: Calibrated:

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3923_Sep16

Price Idi I

Page: 72 of 103

EX30V4 SN:3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ² / ^A	0.55	0.46	0.45	±10.1%
DCP (mV)*	101.5	102.8	106.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	dBõV	C	D dE	WR mV	Unc (k=2)
0	CW	X	0.0	0.0	1.0	0.00	150.8	±3.0 %
		Y	0.0	0.0	1.0		149.7	1,765,000
		2	0.0	0.0	1.0		151.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No. EX3-3923, Sept.6

Page 4 of 11

A The encertenties of Norm X,Y,Z do not affect the E² field unantenty world T&L poe Pages 5 and (i)\
Numerical internation pleasedon transferry net required.
** Uncertainty is determined using the max, deviation from their response applying rectangular cartifolities, and a expensived for the aquase of the field value.

Page: 73 of 103

EX3DV4- SN/3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Head Tissue Simulating Media

r(MHz) ^C	Relative Permittivity ⁵	Conductivity (5/m) ⁷	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth " (mm)	Unic (k=2)
750	41,9	0.89	11.01	11.01	11.01	0.53	0.80	±12.0%
835	41.5	0.90	10.66	10.66	10.66	0.47	0.80	±12.0%
900	41.5	0.07	10.40	10.40	10.40	0.38	0.93	±12.0 %
1750	40.1	1.37	9,27	9.27	9.27	0.29	0:80	± 12.0 %
1900	40.0	1.40	8.90	8.90	8.90	0.30	0.80	±12.0 %
2000	40.0	1,40	8.92	8.92	8.92	0.34	0.80	± 12.0 %
2450	39.2	1,80	7.95	7.95	7.95	0.33	0.85	± 12.0 %
2600	39.0	1,96	7.77	7.77	7.77	0.33	0.80	±12.0 %
0250	35.9	4.71	5.36	5,36	5.36	0.30	1.80	±13.1 %
5800	35.5	5,07	4.94	4.94	4.94	0:40	1.80	± 13 1 %
5750	35.4	5.22	4.96	4.96	4.96	0.40	1.80	±13.1 W

Frequency visitify above 30s WHz of ± 100 MHz only appear for DABY v4.4 and higher (see Page 2), also it a midricled to ± 50 MHz. The stress will ye also RSS of the ComFuncestamy at califoration frequency at the uncertainty for the indicated frequency band. Frequency wildly below 300 MHz to ± 10.5, 40, 59 and 70 MHz to ComFlacestamy at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz (necessary validity can be extended to ± 100 MHz.

At Properties below 3 GHz, the validity of tissue parameters (vanolity) and be missed to ± 10% if leaded comparisation formula is applied to measured SAR values. At Inquestions show 3 GHz, the validity of finance parameters (vanolity) and it is restricted to ± 5%. The uncertainty is the RSS of the ConwFlucture to the Con

Carthonia No: EX3-3923_Septil

Diego 5 of TT

Page: 74 of 103

EX3DV4-8N:3923

September 2, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Calibration Parameter Determined in Body Tissue Simulating Media

r (Miniz) c	Relative Permissivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvFZ	Alpha ⁶	Depth (mm)	Una (k=2)
750	58.5	0.96	10.83	10.83	10.83	0.32	0.98	± 12,0 %
635	55.2	0.97	10.67	10.87	10.87	0,37	0.96	± 12.0 %
900	55.0	1,05	10.52	10.52	10.52	0.44	0.80	212.0%
1760	53.4	1.49	8.78	8,78	8.78	0.39	0.81	112.0 %
1900	53.3	1,52	8.47	8.47	8.47	0.37	0.80	± 12.0 %
2000	53.3	1.52	8.88	8.68	8.68	0.38	0.80	± 12.0 %
2450	52.7	1.95	5.06	8.08	8,08	0.30	0.80	± 12.0 %
2600	52.5	2.16	7.84	7.84	7.84	0.27	0.80	± 12.0 %
5250	48.9	5.36	4.58	4.58	4.58	0.50	1,90	₫ 13.1 %
5600	48.5	5.77	4.00	4.00	4:00	0,65	1,90	± 13,1 V
5760	48.8	5.94	4.19	4.19	4.19	0.55	1,90	±13.19

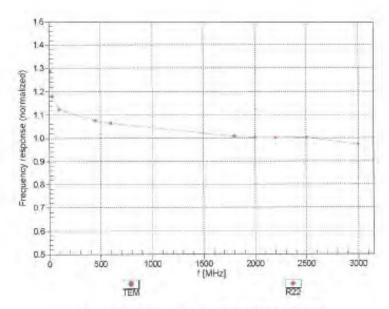
Fingurancy validity abuse 300 MHz of ± 100 MHz only applies for DASY vA.4 and higher (see Prog. 2), son if is inswirted to ± 50 MHz. The uncertainty of the RSS of the ConVF uncertainty of calibration frequency and the uncertainty for the indicated frequency sand. Firequency validity states 500 MHz is ± 10, 25, 40, 50 and 10 MHz or ConVF assessments at 30, 64, 124, 190 and 201 MHz exspections. Above 5 GHz hequancy validity can be retireded to ± 110 MHz.

At frequencies below 3 GHz, the validity of assure parameters (a and a) can be (assessed to ± 10% if iquid compensation formula is applied to measured 5AR values. At frequencies above 3 GHz, the validity of these parameters (a and a) is restricted to ± 6%. The uncertainty is the RSS of time David uncertainty for indicated length state parameters.

Applied byth are determined during calibration. SPAG searches the remaining davistion due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for insquencies timeween 3-6 GHz at any desirate larger than hart the probe in diameter from the boundary.

Conficate No. 5X3-3923, Sep15

Fags 8 of 11



Page: 75 of 103

EX3DV4- BN:3923

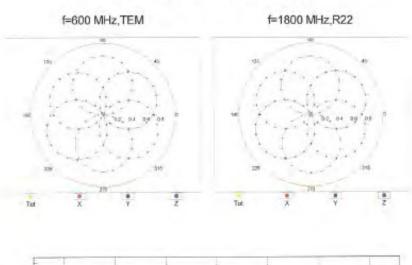
September 2, 2016

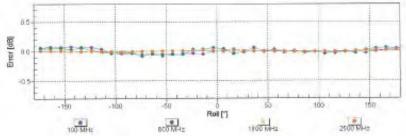
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3923_Sep16

Page 7 of 11




Page: 76 of 103

EX3DV4-SN:3923

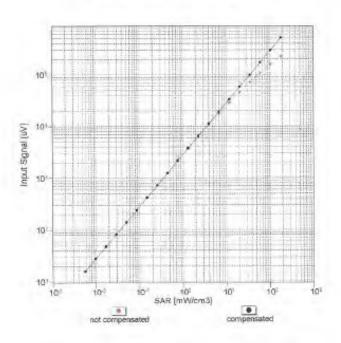
September 2, 2016

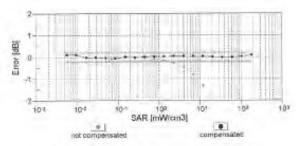
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3923_Sep16

Page 8 of 11




Page: 77 of 103

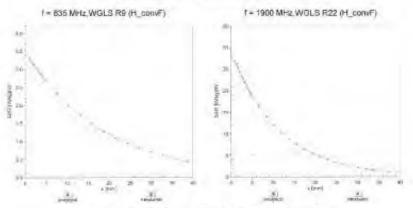
EX3DV4- SN:3923

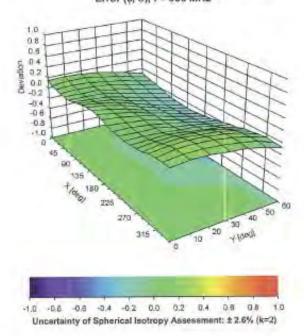
September 2, 2016

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No. EX3-3923_Sep16


Page 9 of 11


Page: 78 of 103

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (6, 8), f = 900 MHz

Certificate No: EX3-3923_Sep15

Page 10 of 11

Page: 79 of 103

EX3DV4- SN 3923

September 2, 2010

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3923

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	26.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	psabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2,5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point.	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3923, Son15

Page 11 of (1

Page: 80 of 103

7. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (3-6G)

Α	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit v	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.55%	N	1	1	1	1	6.55%	6.55%	oc oc
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	œ
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	œ
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	œ
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	œ
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	œ
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	œ
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	œ
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	œ
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	œ
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	œ
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	œ
Liquid permittivity (mea.)	4.03%	N	1	1	0.64	0.43	2.58%	1.73%	М
Liquid Conductivity (mea.)	3.69%	N	1	1	0.6	0.49	2.21%	1.81%	М
Combined standard uncertainty		RSS					12.20%	11.97%	
Expant uncertainty (95% confidence							24.40%	23.94%	

Page: 81 of 103

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

A	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	∞
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	∞
Modulation Response	2.40%	R	√3	1.732	1	1	1.40%	1.40%	∞
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	∞
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	∞
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	∞
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	∞
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	∞
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	∞
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	∞
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	∞
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Liquid permittivity (mea.)	2.23%	N	1	1	0.64	0.43	1.43%	0.96%	М
Liquid Conductivity (mea.)	3.94%	N	1	1	0.6	0.49	2.36%	1.93%	М
Combined standard uncertainty		RSS					11.75%	11.61%	
Expant uncertainty (95% confidence							23.49%	23.22%	

Page: 82 of 103

8. Phantom Description

Schmis & Parmer Engineering AG Zoughquestrages 43, 8004 Zurich, Switzellan Phona +41 1 245 9700, Fax +41 1 245 9779 Into Gapang corn, Into Wenver age of corn

Certificate of Conformity / First Article Inspection

item	SAM Twin Phantom V4.0	
Type No.	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland	

Tests
The series production process used allows the limitation to test of first articles.
Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first sricle Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Links feated

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff,
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz = 6 GHz; Relative permittivity < 5. Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be competible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material competibility.	DEGMBE based simulating liquids	Pre-saries, First article, Material samples
Segging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with itssue simulating liquid.	< 1% typical < 0.6% if filled with 155mm of HSL900 and without OUT below	Prototypes, Sample testing

- Standards [1] CENELEC EN 50361 [2] IEEE Sid 1526-2003 [3] IEO 62209 Part I

- FCC DET Bulletin 65, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4]

07.07.2005

Signature / Stamp

Doc No Mit - QC 000 PAD C - =

Phon

TITL

Page: 83 of 103

9. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kellbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA
Numbraleral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: D2450V2-727 Apr16

CALIBRATION CERTIFICATE D2450V2 - SN:727 Disject QA CAL-05.V9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 19, 2016 This calibration certificate documents the traceability to national standards, which realise the physical units of insessment The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All celibrations have been conducted in the closed suboratory lacility, unvironment temperature (22 ± 3)°C and humidity = 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Primary Standards Scheduled Calibration Power mater NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 SN: 103245 06-Apr-16 (No. 217-02289) Power sensor NRP-Z91 Apr-17. Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 9047.2 / 06327 05-Apr-16 (No. 217-02295) Reference Probe EX3DV4 SN: 7349 31-Dec-15 (No. EX3-7349_Dec16) Dec-16 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15) Dec-15 Scheduled Check Secondary Standards Check Date (in house). Power meter EPM-442A SN 0B37480704 07-Oct-15 (No. 217-02222) In house check: Oct-16: SN US37292789 07-Oct-15 (No. 217-02222) In house check: Oct-16. Power sensor HP 8481A in house check; Oct-16. Power sensor HP 8481A SIV MY41092317 07-Oct-16 (No. 217-02223) in nouse check: Oct-16 RF generator R&S SMT-06 SNL 100972 15-Jun-15 (in house check Jun-15) Network Analyzer HP 6753E SN-US37390585 18-Oct-01 (in house check Oct-15) in house check: Oct-16 Laboratory Technician Michael Weber Catherstud by: Technical Manager Approved by: Kalja Poković Issuell: April 20, 2016 This calibration partificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-727_Apr16

Page 1 of 8

Page: 84 of 103

Calibration Laboratory of Schmid & Partner Engineering AG

S Schweizerlscher Kullbrürdinnst C Servizio sullsan d'étalonnage Servizio evizzero di taratura S Swiss Calibration Service

Published No.: SCS 0108

According by the Swiss Accordinator, Service (SAS)

The Swiss Accordination Service is one of the signatories to the EA Multilinator Agreement for the recognition of calibration certificates

trasse 43, 8004 Zuricht, Switzerland

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005.
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Centificate Not D2450V2-727_April 9

Page 2 of 8

Page: 85 of 103

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr16

Page: 86 of 103

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 2.0 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Γ	Impedance, transformed to feed point	52.1 Ω + 4.8 jΩ
Γ	Return Loss	- 25.9 dB

General Antenna Parameters and Design

٠		
ı	Electrical Delay (one direction)	1.148 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve metching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr16

Page 4 of 8

Page: 87 of 103

DASY5 Validation Report for Head TSL

Date: 19.04.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency; 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³

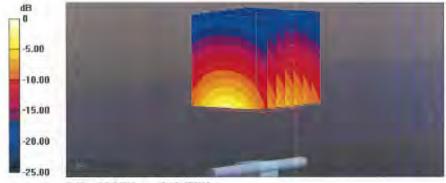
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12,2015.
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

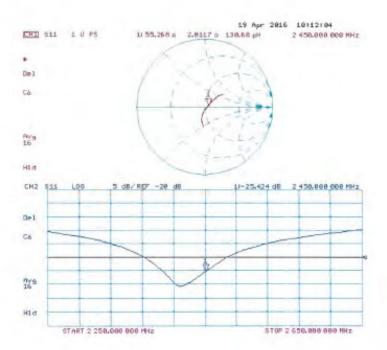
Reference Value = 112.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.93 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg


Certificate No. D2450V2-727_Apr16

Page 5 of 8

Page: 88 of 103

Impedance Measurement Plot for Head TSL

Page: 89 of 103

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 42, 8004 Zurich, Switzerland

S Service susse d'étatonnage C Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accledited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration sertificates

CALIBRATION	CERTIFICATE		
Обрыст	D5GHzV2 SN:	1023	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date	January 26, 2016		
		creal standards, which realize the physical un robability are given on the following pages an	
		ry facility: environment temperature (22 s. 91%	
il collorations have been cond subtration Equipment used (M	ucted in the closed laborator		
ii calibrations have been cond alibration Equipment used iMi nimary Standards	ucted in the closed laborator	by facility: anvisorement temperature (22 \pm 91%)	C and humidity < 70%.
collorations have been cond elibration Equipment used iMi imany Standards over moter EPM-442A	ucred in the closed laborator STE critical for calibration) ID 4	ry facility: environment temperature (22 ± 81°C Cal Date (Certificate No.)	C and humidity < 70%. Schooluled Calibration
abbrations have been conditional formation Equipment used (Minary Standards page moter EPM-42A cover sensor HP 8461A	used in the closed laborator STE critical for calibration) ID 4 GB37480704	ry facility: environment temperature (22 ± 81°C Cal Dahe (Certificate No.) G7-Oct 15 (No. 217-02222)	C and humidity < 70%. Schooluled Calibration Oct-16
Il calibrations have been cond silibration Equipment used IM nimary Standards ower moter EPM-442A ower sensor IPP 8481A ower sensor IPP 8481A	Used in the closed laborator STE crisical for calibration ID # GB37480704 US37292783	Oal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Schooluled Calibration Oct-16 Oct-16
alibration Equipment used (Mi minury Standards hower meter EPM-442A hower sensor HP 8481A hower sensor HP 8481A hower sensor HP 8481A terrence 20 dB Attenuator	Ucred in the closed laborator STE critical for calibration) ID # GB37480704 US37292783 MY41092317	ry facility: sinvisormant temperature (22 ± 91°4 Cal Dahi (Certificate No.) 07-Oct 15 (No. 217-02222) 07-Oct 15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Schooluled Calibration Oct-16 Oct-16 Oct-16 Oct-16 Nar-16 Mar-18
alibration Equipment used (Mi Primary Standards Towar meter EPM-442A Power sensor HP 8481A Yower sonsor HP 8481A Seference 20 dB Attenuator type-N mismatch combination televence Probe EX3DV4	Ucred in the closed laborator ETE critical for calibration) ID # GB37480704 US37292783 MY41092117 SN: 5055 (20k)	Cal Date (Certificate No.) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02223) G7-Oct-15 (No. 217-02131) G1-Apr-15 (No. 217-02131) G1-Apr-15 (No. 217-02134) G1-Oct-15 (No. 217-02134)	Schooluled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16
alibration Equipment used (Mi minary Standards lower meter EPM-442A flower sensor HP 8481A lower sensor HP 8481A lower sensor HP 8481A leaference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4	Used in the closed laborator BTE critical for calibration) ID 4 GB37480704 JIS37292783 MY41092317 SN: 5059 (20k) SN: 5047.2 / D6327	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Schooluled Calibration Oct-16 Oct-16 Oct-16 Nar-16 Mar-16 Mar-16
Millipstion Equipment used (Millipstion Equipment used (Millipstion Equipment used (Millipstion)) Advances EPM-442A Fower sensor HP 8481A Fower sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 JAE4	Used in the closed laborators ID 4 GB37480704 US37292763 ANY41092317 SN: 5055 (20x) SN: 5047.2 / 05327 SN: 3503	Cal Date (Certificate No.) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02222) G7-Oct-15 (No. 217-02223) G7-Oct-15 (No. 217-02131) G1-Apr-15 (No. 217-02131) G1-Apr-15 (No. 217-02134) G1-Oct-15 (No. 217-02134)	Schooluled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16
alibration Equipment used (Mi Salibration Equipment used (Mi Primary Standards Tower meser EPM-442A Tower sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination leterence Probe EX3DV4 IAE4	Used in the closed laborator ID # GB37480704 US37292765 MY41092917 SN: 5055 (20%) SN: 5047.2 (105327 SN: 3503 SN: 601	Oal Date (Certificate No.) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Oct 15 (No. 217-02131) O1-	Schooluled Calibration Col-16 Col-16 Col-16 Mar-16 Mar-16 Dec-16 Dec-16
	Used in the closed laborator ETE critical for calibration) ID 4 GB37480704 US37292783 MY41092917 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 001	Oal Date (Certificate No.) O7-Oct-15 (No. 217-02222) O7-Oct-15 (No. 217-02222) O7-Oct-15 (No. 217-02223) O1-Apr-15 (No. 217-02151)	Scheduled Calibration Col-16 Col-16 Col-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination televence Probe EXSDV4 DAE4 Secondary Standards RF generator R&S SMT-06	Used in the closed laborator ID # GB37480704 US37292783 MY41092317 SN: 5059 (20N) SN: 5047.2 J 06327 SN: 3603 SN: 001 ID # 100972 US37390085-S4205	Oal Date (Certificate No.) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Oct 15 (No. EXT-02131) O1-Oct 15 (No. EXT-02131) ODec 15 (No. EXT-02131) ODec 15 (No. EXT-02131) ODec 15 (No. DAE4-601_Dec15) Check Date (In house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Cel-16 Cel-16 Cel-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18
alibration Equipment used (Mi mimary Standards lower meter EPM-442A rower sensor HP 8481A rower sensor HP 8481A lafarance 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 (AE4 econdary Standards (F generator R&S SMT-06 (eleveric Analyzar HP 8753E	Used in the closed laborator ATE crisical for calibration) ID 4 GB37480704 US37292765 MY41092917 SN: 5055 (20N) SN: 5047.2 105327 SN: 3503 SN: 601 ID # 100972 US37390085-\$4205	Oal Date (Certificate No.) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. E17-02131) O1-Oct 15 (No. E33-3503_Dect5) O0-Oct 15 (No. E33-3503_Dect5) O1-Oct 15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Oct-16 Oct-16 Oct-16 Nar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Oct-16
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination televence Probe EXSDV4 DAE4 Secondary Standards RF generator R&S SMT-06	Used in the closed laborator ID # GB37480704 US37292783 MY41092317 SN: 5059 (20N) SN: 5047.2 J 06327 SN: 3603 SN: 001 ID # 100972 US37390085-S4205	Oal Date (Certificate No.) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02222) O7-Oct 15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Oct 15 (No. EXT-02131) O1-Oct 15 (No. EXT-02131) ODec 15 (No. EXT-02131) ODec 15 (No. EXT-02131) ODec 15 (No. DAE4-601_Dec15) Check Date (In house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Calibration Cel-16 Cel-16 Cel-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18

Certificate No. 05GHzV2-1023_Jan16

Page 1 of 15

Page: 90 of 103

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughnusstanse 11, 2004 Zurich, Switzerlaus

S Schweizerscher Kalibeiertileer
C Service suisse d'étalonnage
Servicie evizzere di territore
Same Cellination Service

Accreditation No.: SCS 0108

According by the Swine According on Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilatoral Agreement for the recognition of communion certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sunsitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", June 2013
- EC 62208-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30, MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Fued Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The Impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No. 05GHzV2-1023_lan1fi

Page 2 of 15

Page: 91 of 103

Measurement Conditions

DASV system configuration, as far as not given on page 1.

WST system configuration, as lar as not	given on page 1.	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5600 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 m/ho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	4.51 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Page: 92 of 103

Head TSL parameters at 5300 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Page: 93 of 103

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ⁵ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Page: 94 of 103

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.37 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D6GHzV2-1023_Jan16

Page 6 of 15

Page: 95 of 103

Body TSL parameters at 5600 MHz

The following peremeters and calculations were applied

ne following parameters and calculations were appr	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.91 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1023_Jan16

Page: 96 of 103

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.1 Ω - 8.4 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.6 Ω · 4.2 jΩ
Return Loss	- 27.4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.9 Ω - 1.4 jΩ
Return Loss	- 26.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω + 2.2 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.4 Ω - 6.8 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.9 Ω - 2.4 jΩ
Return Loss	- 31,8 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 0.1 jΩ
Return Loss	- 25.0 dB

Certificate No: D5GHzV2-1023_Jan16

Page 8 of 15

Page: 97 of 103

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.4 Ω + 2.4 jΩ
Return Loss	- 23.8 dB

General Antenna Parameters and Design

1	Electrical Delay (one direction)	1.199 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 05, 2004

Certificate No: D6GHzV2-1023_Jan16

Page 9 of 15

Page: 98 of 103

DASY5 Validation Report for Head TSL

Date: 26.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1023

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=4.51$ S/m; $\epsilon_r=35.2$; $\rho=1000$ kg/m³, Medium parameters used: f=5300 MHz; $\sigma=4.6$ S/m; $\epsilon_r=35.1$; $\rho=1000$ kg/m³, Medium parameters used: f=5600 MHz; $\sigma=4.9$ S/m; $\epsilon_r=34.7$; $\rho=1000$ kg/m³, Medium parameters used: f=5800 MHz; $\sigma=5.1$ S/m; $\epsilon_r=34.4$; $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.59, 5.59, 5.59); Calibrated: 31.12.2015, ConvF(5.25, 5.25, 5.25); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95, 4.95); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Scrial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.68 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.14 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.32 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 8.31 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Certificate No: D5GHzV2-1023_Jan16

Page 10 of 15

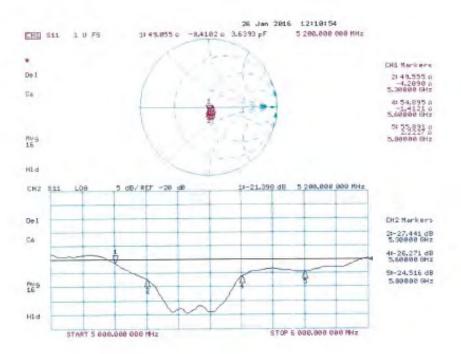
Page: 99 of 103

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.15 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg


Maximum value of SAR (measured) = 18.8 W/kg

Page: 100 of 103

Impedance Measurement Plot for Head TSL

Page: 101 of 103

DASY5 Validation Report for Body TSL

Date: 25.01.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1023

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600

MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.37$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.5$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.91$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.19$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.75, 4.75, 4.75); Calibrated: 31.12.2015, ConvF(4.35, 4.35, 4.35); Calibrated: 31.12.2015, ConvF(4.27, 4.27, 4.27); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.72 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.25 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.43 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.67 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.23 W/kg

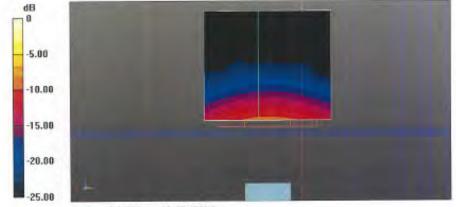
Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D6GHzV2-1023_Jan16

Page 13 of 15

Page: 102 of 103

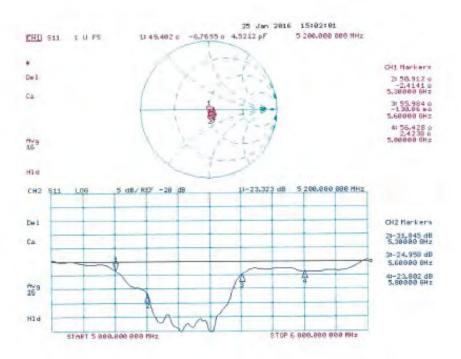
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.76 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg


Maximum value of SAR (measured) = 18.5 W/kg

Page: 103 of 103

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1023_Jan16

Page 15 of 15

- End of 1st part of report -